
The Annals of Statistics
2001, Vol. 29, No. 1, 266–294

MINIMAX RISK BOUNDS IN EXTREME VALUE THEORY

By Holger Drees

University of Heidelberg

Asymptotic minimax risk bounds for estimators of a positive extreme
value index under zero-one loss are investigated in the classical i.i.d. setup.
To this end, we prove the weak convergence of suitable local experiments
with Pareto distributions as center of localization to a white noise model,
which was previously studied in the context of nonparametric local den-
sity estimation and regression. From this result we derive upper and lower
bounds on the asymptotic minimax risk in the local and in certain global
models as well. Finally, the implications for fixed-length confidence inter-
vals are discussed. In particular, asymptotic confidence intervals with al-
most minimal length are constructed, while the popular Hill estimator is
shown to yield a little longer confidence intervals.

1. Introduction. Consider i.i.d. random variables Xi, i ∈ �, whose dis-
tribution function (d.f.) F belongs to the weak domain of attraction of an
extreme value d.f. Gγ, that is,

�

(
a−1
n

(
max
1≤i≤n

Xi − bn

))
−→ Gγ weakly

for some constants an > 0 and bn ∈ �. Here Gγ�x� = exp�−�1 + γx�−1/γ� for
1+ γx > 0, which is interpreted as G0�x� = exp�−e−x� if γ = 0. The shape of
the upper tail of F is largely determined by the real parameter γ = γ�F�, the
so-called extreme value index. Several estimators of γ have been discussed in
literature [see, e.g., Hill (1975), Pickands (1975), Csörgő, Deheuvels and Ma-
son (1985), Dekkers et al. (1989) and Drees (1998a,b)], yet much less is known
about the best achievable performance of arbitrary estimators for γ. It is the
main goal of the present paper to establish asymptotic risk bounds for arbi-
trary estimators of a positive extreme value index, and thereby to determine
how much space is left for further improvements of known estimators.

Falk (1995) and Marohn (1997), among others, use LAN-theory to calculate
asymptotically sharp risk bounds for sequences of estimators γ̂n that depend
only on the kn largest order statistics. However, under the conditions they
imposed on the sequence �kn�n∈�, the distribution of γ̂n under F can be ap-
proximated in the variational distance by its distribution under a suitable
generalized Pareto distribution [Reiss (1989), Corollary 5.5.5], that is, essen-
tially not semiparametric, but parametric models are considered. Moreover,
estimators attaining these risk bounds are inefficient in the following sense:
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For any family � of distributions considered in those papers one may find
estimator sequences γ̃n, n ∈ �, which are based on a larger number k̃n > kn
of order statistics, such that for any sequence �γ̂n�n∈� of the aforementioned
type one has γ̃n − γ�F� = oP�γ̂n − γ�F�� uniformly over all F ∈ � .

Here we consider genuinely semiparametric models of heavy–tailed distri-
butions, that is, we assume F ∈ D�Gγ� for some γ > 0. While for environmen-
tal data light–tailed distributions (with γ < 0) often cannot be excluded a pri-
ori, financial data sets and teletraffic data usually exhibit heavy tails [see Em-
brechts, Klüppelberg and Mikosch (1997), Section 6.2, particularly Example
6.2.9, and Adler, Feldman and Taqqu (1998), Chapter 1, for several examples].
Another important field of applications are non–life (re–)insurances, in partic-
ular fire insurances [Embrechts Klüppelberg and Mikosch (1997), page 332ff.],
storm insurances [Rootzén and Tajvidi (1997)] and business interruption in-
surances [Zajdenweber (1995)], where indeed the very existence of heavy tails,
which show up in the data sets of insurance claims, is the main reason why
classical methods to calculate premiums based on the central limit theorem
are supplemented (or even replaced) by extreme value procedures.

For the case γ > 0, Hall and Welsh (1984) established optimal uniform
rates of convergence over families of d.f.’s with density of the type f�x� =
cx−�1/γ+1��1 + r�x��, where �r�x�� ≤ Ax−ρ/γ for fixed constants A�ρ > 0. This
result was generalized in Theorem 2.1 of Drees (1998c), which can be refor-
mulated in the following way. Define

� �γ1� c� ε� u� �=
{
F d.f.

∣∣∣ F−1�1− t� = ct−γ exp
(∫ 1

t
η�s�/sds

)
�

�γ − γ1� ≤ ε� �η�t�� ≤ u�t�� t ∈ �0�1
}(1.1)

where γ1 > ε > 0, c > 0 and u denotes a bounded function that is ρ–varying
at 0 for some ρ ≥ 0 and satisfies limt↓0 u�t� = 0 yet is bounded away from 0
on �δ�1 for all δ > 0. Observe that every d.f. F ∈ � �γ1� c� ε� u� belongs to the
weak domain of attraction of Gγ for some γ > 0. Conversely, if F satisfies the
well-known von Mises condition g�x� �= �1 −F�x��/�xf�x�� → γ as x → ∞,
then F−1�1− t� = ct−γ exp�∫ 1t η�s�/sds� for some c > 0 and η�s� �= g�F−1�1−
s�� − γ tends to 0 as s tends to 0; in particular, this holds true if F belongs
to the weak domain of attraction of Gγ and if it has an eventually monotone
density. Notice that g�x� = γ (i.e. η = 0) corresponds to the Pareto d.f.Fγ�x� =
�x/c�−1/γ. Hence, essentially � �γ1� c� ε� u� consists of smooth distributions in
the domain of attraction of an extreme value distribution Gγ with γ ∈ �γ1 −
ε� γ1 + ε� such that the distance to the pertaining Pareto d.f. Fγ, measured
in terms of the difference between the von Mises function g and its limit, is
bounded by the function u. In view of the prominent role the (generalized)
Pareto distributions play in extreme value theory [cf. Reiss (1989), Chapter
5], this choice of a semiparametric model seems natural. Furthermore, it can
be shown that for any d.f. F satisfying the von Mises condition one can find
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a regularly varying function u that converges to 0 and dominates η, so that
F ∈ � �γ1� c� ε� u� for γ1 ∈ �γ�F� − ε� γ�F� + ε�.

Let �tn�n∈� be a sequence satisfying

lim
n→∞u�tn��ntn�

1/2 = 1�(1.2)

the existence and asymptotic uniqueness of such a sequence follows from The-
orem 1.5.12 of Bingham, Goldie and Teugels (1987).

Then, for arbitrary estimators γ̂n based on a sample of size n, one has

lim inf
n→∞ sup

F∈� �γ1�c�ε�u�
Pn
F��γ̂n − γ�F�� > au�tn�� > 0(1.3)

for all a < ∞ if ρ > 0, and all a < 1 if ρ = 0. Here Pn
F denotes the joint

distribution of n i.i.d. random variables with d.f. F.
If ρ = 0, that is, u is slowly varying at 0, then u�tn� is an asymptoti-

cally sharp lower bound for the estimation error in the following sense: For
any an, lim infn→∞ an/u�tn� < 1 implies lim supn→∞ supF∈� �γ1�c�ε�u�P

n
F��γ̂n −

γ�F�� > an� > 0 for all estimators γ̂n, whereas there are estimators γ̂n
(e.g., the well-known Hill estimator based on a suitable number of largest
order statistics) such that limn→∞ supF∈� �γ1�c�ε�u�P

n
F��γ̂n − γ�F�� > an� = 0 if

lim infn→∞ an/u�tn� > 1.
In contrast, such a sharp bound does not exist if ρ > 0; in this case in-

equality (1.3) merely describes the optimal rate of convergence. For exam-
ple, if one chooses u�t� = Atρ (which essentially leads to the model consid-
ered by Hall and Welsh), then u�tn� ∼ A1/�2ρ+1�n−ρ/�2ρ+1�; that is, the op-
timal rate equals n−ρ/�2ρ+1�. (Here an ∼ bn means an/bn → 1.) Moreover,
it was proved that the Hill estimator based on a suitable number of order
statistics converges with the optimal rate [Drees (1998c), Theorem 2.2]. How-
ever, since the same holds true for a large class of estimators of γ, including
Pickands’ (1975) estimator and the maximum likelihood estimator examined
by Smith (1987) [see Theorem 4.3 of Drees (1998d)], inequality (1.3) is too
crude to yield a useful benchmark for the evaluation of the performance of
estimators for the extreme value index. [A similar remark applies to a rather
rough risk bound for the Hall–Welsh model that was derived by Donoho and
Liu (1991a).]

In more general extreme value models allowing arbitrary γ ∈ � the sit-
uation is somewhat different, in that estimators of the extreme value index
that are not location invariant [like, e.g, the moment estimator proposed by
Dekkers, Einmahl and de Haan (1989)] usually do not converge with the opti-
mal rate, provided the finite right endpoint is not known in advance in case of
γ < 0, whereas a large class of location invariant estimators do attain the op-
timal rate [Drees (1998c), Section 3, and Drees (1998d), Theorem 4.3]. Hence,
unlike in the case γ > 0, the result about the optimal rate of convergence
renders it possible to sort out certain well-known estimators with unfavor-
able asymptotic properties. This new phenomenon is due to the qualitatively
larger impact of a shift in the data if the underlying distribution has a finite
right endpoint (compared with heavy–tailed distributions). However, since it
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was seen in Drees (1998c) that the incorporation of a location parameter leads
to substantially more complicated local models, these general extreme value
models will be examined elsewhere.

Here we will establish an asymptotically almost sharp lower bound for the
left-hand side of (1.3); that is, a lower bound for the asymptotic minimax risk
under the zero-one loss generated by the function ��−au�tn��au�tn�c . This new
bound may serve as a benchmark to assess the efficiency of estimators in the
present semiparametric setup. For the aforementioned reasons, we concen-
trate on the case ρ > 0.

First, it is proved in Section 2 that certain local experiments with Pareto
distributions as center of localization converge to white noise models of a
type that was previously studied in the context of nonparametric local density
estimation and regression. Therefore, the powerful tools of LeCam’s theory
of the convergence of experiments show that the asymptotic minimax risk
for the sequence of local experiments is bounded from below by the mini-
max risk in the limit experiment, which we investigate in Section 3 using
methods introduced by Ibragimov and Khas’minskii (1985) and Donoho and
Liu (1991b). In Section 4, implications for the minimax problem described
above and for the construction of fixed-length confidence intervals are dis-
cussed. In particular, it is shown that in typical situations the Hill estima-
tor leads to a confidence interval which is merely a few percent longer than
the shortest possible fixed-size confidence interval. All proofs are collected in
Section 5.

It is worth mentioning that although we focus on a lower bound on the
minimax risk of estimators for γ under zero-one loss, the main result of
Section 2 also makes it feasible to establish risk bounds under quadratic
loss or even risk bounds for estimators of certain extreme quantiles (see
Section 2).

For the sake of notational simplicity, in the sequel we assume that c = 1
and let � �γ1� ε� u� �= � �γ1�1� ε� u�.

2. Weak convergence of local experiments. As mentioned above, our
investigation of the minimax risk is based on a result about the weak conver-
gence of certain local experiments related to the model � �γ1� ε� u�. The basic
idea of this approach is to consider sequences of local alternatives converging
to a fixed center of localization in such a way that the increasing degree of
difficulty to discriminate between these alternatives and the center of local-
ization compensates the increase of information contained in the sample as n
tends to infinity.

Relations (1.2) and (1.3) show that the function u, which describes the max-
imal deviation between the upper quantile function (q.f.) F−1�1 − t� and the
pertaining Pareto q.f. t−γ, determines the optimal rate of convergence of esti-
mators for γ. Hence it is natural to fix a Pareto q.f. F−1

0 �1 − t� = t−γ0 as the
center of localization and then to consider alternatives with extreme value
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index converging to γ0 with the rate u�tn�. More specifically, we define

F−1
n�h�1− t� �= F−1

n�h�γ0
�1− t�

�= t−γ0 exp
(∫ 1

t

dnh�cns�
s

ds

)
= t−�γ0+dnh�0�� exp

(∫ 1

t

dn�h�cns� − h�0��
s

ds

)
� t ∈ �0�1�

where dn → 0 and cn → ∞; in the applications below we choose dn = u�tn�
and cn = 1/tn, such that (1.2) reads as

lim
n→∞

nd2
n

cn
= 1!(2.1)

To discuss the effect of this localization, assume for the time being that the
function h, which acts as the local parameter, has compact support, say [0,1].
Then F−1

n�h = F−1
0 on �0�1 − 1/cn, that is, the deviation from the Pareto q.f.

is more and more concentrated in the tail. A similar approach, which gave
rise to the concept of extreme value tangents, was proposed by Janssen and
Marohn (1994). Likewise, Low (1992) demonstrated that a sequence of local
experiments, in which the difference between the densities of the center of lo-
calization and of the local alternatives, respectively, is supported by a compact
interval shrinking towards a fixed point, is appropriate for local density esti-
mation problems [cf. also Low (1997)]. Then it was proved that this sequence
converges to essentially the same white noise model that occurs as the limit
experiment in Theorem 2.1 below. The fact that local extreme value, density
and regression models converge to the same type of white noise model under-
pins the close relation between the corresponding semiparametric estimation
problems.

In order to ensure that F−1
n�h actually is a q.f., one has to assume that

γ0 + dnh�cns� ≥ 0 for all s ∈ �0�1. Moreover, for the application to our mini-
max problem, we must assure that Fn�h ∈ � �γ1� ε� u�, and thus in particular
dn�h�cns�−h�0�� = dnh�cns�+o�1� ≤ u�s� which is bounded for s ∈ �0�1. For
the proof of the main result of this section we need uniform versions of these
restrictions, that is, we suppose

h ∈ � �n� �=
{
h ∈ L2�0�∞�

∣∣∣ − γ0 < inf
m≥ndm inf

s∈�0�1
h�cms�

≤ sup
m≥n

dm sup
s∈�0�1

h�cms� <∞
}
�

↑ � �=
{
h ∈ L2�0�∞�

∣∣∣ − γ0 < lim inf
n→∞ dn inf

s∈�0�1
h�cns�

≤ lim sup
n→∞

dn sup
s∈�0�1

h�cns� <∞
}
!

In particular, bounded square integrable functions belong to � .
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For h ∈ � �n� denote by Pn
n�h = Pn

n�h�γ0
the distribution of n i.i.d. random

variables with q.f. F−1
n�h and let P0 �= P1�0 be the Pareto distribution with q.f.

F−1
0 . Moreover,

Qh �= Qh�γ0
�= �

(
1
γ0

∫ ·

0
h�s�ds+W

)
whereW denotes a standard Brownian motion (defined on some abstract prob-
ability space) with paths belonging to the space C�0�∞� of continuous func-
tions on the positive real line, which is equipped with the σ–field � �0�∞�
generated by the canonical projections. (In the sequel, often the index γ0 is
omitted, when a fixed local model is considered.)

Theorem 2.1. Suppose that dn > 0, dn → 0 and cn → ∞ are sequences
satisfying �2!1�! Then(

�n��n� �Pn
n�h�h∈� �n�

)
−→

(
C�0�∞��� �0�∞�� �Qh�h∈�

)
weakly, that is, for all h1� ! ! ! � hm ∈ � one has

�

((
log

Pn
n�hi

Pn
0

)
1≤i≤m

∣∣∣Pn
0

)
−→ �

((
log

Qhi

Q0

)
1≤i≤m

∣∣∣Q0

)

= �

(−�hi�2
2γ20

)
1≤i≤m

�

(
�hi� hj�
γ20

)
1≤i�j≤m


weakly, where �hi� hj� �= ∫∞

0 hi�s�hj�s�ds and �h� = �h�h�1/2 are the inner
product and the norm, respectively, of the Hilbert space L2�0�∞�.

The main step in the proof of this result is to verify a kind of L2–differen-
tiability in the tail, which implies an approximation of the loglikelihood:

Proposition 2.1. Under the assumptions of Theorem 2!1� one has

lim
n→∞

∫ ∞

1

[
n1/2

(
f
1/2
n�h�x� − f

1/2
0 �x�

)
− 1

2gn�h�x�f
1/2
0 �x�

]2
dx = 0

where fn�h and f0 are the Lebesgue-densities of Pn�h and P0, respectively, and

gn�h�x� �=
n1/2dn
γ0

(∫ 1

x−1/γ0

h�cns�
s

ds− h
(
cnx

−1/γ0)) � x ≥ 1!

Consequently,

log
dPn

n�h

dPn
0
�x1� ! ! ! � xn� = n−1/2

n∑
i=1

gn�h�xi� −
�h�2
2γ20

+ oPn
0
�1�!(2.2)
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By virtue of LeCam’s asymptotic minimax theorem, Theorem 2.1 has im-
plications for our estimation problem. Observe that in the local model the
extreme value index γ�Fn�h� = γ0 + dnh�0� is determined by h�0�, which
hence is the local parameter of interest. An estimator ĥ�0� for this parameter
defines an estimator for the extreme value index via γ̂n = γ0+dnĥ�0�, so that
�γ̂n − γ�Fn�h��/dn = �ĥ�0� − h�0��. However, recall from the minimax theorem
that in the limit experiment one has to consider the infimum over all random-
ized estimators for h�0�, that is, Markov kernelsK from �C�0�∞��� �0�∞�� to
�����; the pertaining risk equals

∫
K�x� �h�0� − a�h�0� + ac�Qh�dx�. Thus

we have the following result:

Corollary 2.1. Let �γ̂n�n∈� be an arbitrary sequence of estimators for γ.
Then, under the assumptions of Theorem 2!1� for all �̃ ⊂ � and all a > 0

lim inf
n→∞ sup

h∈�̃ ∩� �n�
Pn
n�h��γ̂n − γ�Fn�h�� > adn�

≥ inf
K

sup
h∈�̃

∫
K
(
x� �h�0� − a�h�0� + ac

)
Qh�dx�

where on the right-hand side the infimum is taken over all randomized esti-
mators K of h�0�.

Of course, the assertion holds true if we consider randomized estimators of
the extreme value index, too.

Next we examine the implications of this result for the minimax estimation
in the global model � �γ1� ε� u�. For the clarity of exposition, we concentrate on
the case u�t� = Atρ for some A�ρ > 0, corresponding to the model considered
by Hall and Welsh, yet in a sequence of remarks we indicate the necessary
changes when dealing with more general ρ–varying boundary functions u with
ρ > 0 satisfying the conditions stated below (1.1).

To employ Corollary 2.1 with dn = u�tn� = A1/�2ρ+1�n−ρ/�2ρ+1� and cn =
1/tn = A2/�2ρ+1� n1/�2ρ+1�, one must ensure that eventually the local models
are included in � �γ1� ε� u�, that is,
u�tn��h�s/tn� − h�0�� ≤ u�s�� s ∈ �0�1 ⇐⇒ �h�s� − h�0�� ≤ sρ� s > 0!

Furthermore, we assume that h ∈ L2�0�∞� is bounded. Thus, let

�ρ �=
{
h ∈ L2�0�∞�

∣∣∣ �h�s� − h�0�� ≤ sρ� s > 0� sup
s>0

�h�s�� <∞
}
⊂ � !

Corollary 2.2. For a� ρ > 0, u�t� = Atρ for t ∈ �0�1, and an arbitrary
sequence of estimators �γ̂n�n∈� for γ, we have

lim inf
n→∞ sup

F∈� �γ1�ε�u�
Pn
F��γ̂n − γ�F�� > au�tn��

≥ sup
�γ0−γ1�<ε

inf
K

sup
h∈�ρ

∫
K
(
x� �h�0� − a�h�0� + ac

)
Qh�γ0

�dx�!
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Therefore, a lower bound on the minimax risk in the white noise experiment
defines a lower asymptotic minimax risk bound in the model � �γ1� ε� u�, too.

Remark. For more general ρ–varying functions u (ρ > 0), one may use
the Potter bounds [Bingham, Goldie and Deheuvels (1987), Theorem 1.5.6] to
show that for all

h ∈ �̃ρ �=
{
h ∈ L2�0�∞�

∣∣∣ sup
s>0

�h�s�� <∞� for some δ > 0

�h�s� − h�0�� ≤ �1− δ�min�sρ−δ� sρ+δ�� s > 0
}

one has Fn�h ∈ � �γ1� ε� u� for sufficiently large n. Therefore, the analog to
Corollary 2.2 with �ρ replaced by �̃ρ holds true in this situation [where,
of course, dn = u�tn� and cn = 1/tn with tn satisfying (1.2) differ from the
constants in the Hall–Welsh model]. ✷

Likewise, one gets asymptotic lower risk bounds under arbitrary lower
semicontinuous, level compact loss functions, for example, under quadratic
loss. Furthermore, one may also obtain asymptotic lower risk bounds for esti-
mators of extreme quantiles

F−1
n�h�1− q/cn� =

(
q

cn

)−γ0
exp

(
dn

∫ cn
q

h�s�
s

ds

)
� q > 0�

from minimax risk bounds for estimators of the linear functional
∫ t0
q h�s�/sds

if h is assumed to have a compact support ⊂ �0� t0.

3. Minimax risk bounds in the white noise model. In this section we
analyze the minimax risk in the limiting white noise experiment �C�0�∞��
� �0�∞�� �Qh�h∈�ρ

�. While unfortunately that risk is not known exactly, one
may establish suitable bounds, taking up the approach by Donoho and Liu
(1991b).

To derive an upper bound on the minimax risk, we first look for affine
minimax estimators in one-dimensional linear submodels. Because �ρ is sym-
metric about 0, one may restrict oneself to families of the type �Qλh�λ∈�−1�1,
where h ∈ �ρ with h�0� > 0.

Let

Yh �=
∫
hdx

�h� �

where again
∫
hdx denotes a stochastic integral. Hence

� �Yh �Qλh� = � �λ�h�/γ0�1� = � �ϑ�1��(3.1)

where ϑ �= λ�h�/γ0 is bounded in absolute value by τh �= �h�/γ0. An esti-
mator ϑ̂ for the bounded normal mean ϑ defines an estimator λ̂ �= γ0ϑ̂/�h�
and hence an estimator for the parameter of interest λh�0�, too, such that
�λ̂h�0� − λh�0�� > a is equivalent to �ϑ̂−ϑ� > a�h�/�γ0h�0�� =� ah.
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The minimax affine estimator for ϑ under the zero-one loss generated by
��−ah�ahc equals chYh with

ch �=
(
1
2
+
(
1
4
+ 1

2ahτh
log

τh + ah
τh − ah

)1/2
)−1

=
1
2
+
(
1
4
+ h�0�γ20

2a�h�2 log
h�0� + a

h�0� − a

)1/2
−1

if h�0� > a, and ch = 0 if h�0� ≤ a; the corresponding minimax risk is equal
to

Raff �h� �= 0

(
−τh + ah

ch
+ τh

)
+0

(
τh − ah
ch

− τh

)
if h�0� > a, and Raff �h� = 0 else [Drees (1999), Theorem 1]. Here 0 de-
notes the standard normal d.f. The arguments of Donoho and Liu (1991b) and
Donoho (1994) show that the maximum of these minimax affine risks among
all one-dimensional submodels equals the minimax risk among all affine es-
timators in the full model and thus is an upper bound for the minimax risk
among all estimators for h�0� in the full model. (An estimator in the full
model is called affine if it can be represented as d + ∫

hdx for some d ∈ �
and h ∈ L2�0�∞�.) Furthermore, the minimax affine estimator in the most
difficult one-dimensional submodel defines a minimax affine estimator in the
full model. This leads to:

Theorem 3.1. Let ξ be the unique positive solution of the equation

ξ1+1/ρ

log ξ+a
ξ−a

= γ20�ρ+ 1�
a

(3.2)

and define

hξ�t� �= �ξ − tρ���0�ξ1/ρ�t�!(3.3)

Then

ĥ�0� �= γ0�1+ 1/ρ�ξ−�1+1/ρ�
∫
hξ dx(3.4)

is minimax among all affine estimators for h�0� in the full model �Qh�h∈�ρ
.

The corresponding minimax risk is

0

(
− ξ1+1/�2ρ�

γ0�2�ρ+ 1��2ρ+ 1��1/2
(
1+ 2ρ+ 1

ξ
a

))

+0
(

ξ1+1/�2ρ�

γ0�2�ρ+ 1��2ρ+ 1��1/2
(
1− 2ρ+ 1

ξ
a

))
!

(3.5)



RISK BOUNDS IN EXTREME VALUE THEORY 275

Observe that the least favorable direction h must be of type (3.3) for some
ξ > 0, since this way h�0� = ξ is maximized among all h ∈ �ρ with fixed norm
�h� (and thus fixed τh), so that ah is minimized and the risk pertaining to ϑ̂
and hence also to λ̂h�0� is maximized.

Next we turn to the lower bound on the minimax risk, which is obtained as
the supremum of all minimax risks in one-dimensional linear submodels. No-
tice that now the restriction to affine estimators has been dropped. Zeytinoglu
and Mintz (1984) described the minimax estimator for ϑ in model (3.1) under
zero-one loss. It turned out that the minimax risk depends on τh only through
the smallest integer l that is greater than or equal to τh/ah = h�0�/a. The
arguments given in the last paragraph show that it is sufficient to consider
functions h of type (3.3) when looking for the supremum of these minimax risks
among all one-dimensional submodels. Moreover, for fixed l, ahξ = a�hξ�/�γ0ξ�
is minimized and thus the minimax risk maximized if ξ ↓ �l − 1�a, because
�hξ�/ξ is a strictly increasing function of ξ.

The corresponding minimax risk Rmm�hξ� can be derived from the solution
of a system of nonlinear equations; for details refer to Zeytinoglu and Mintz
(1984) or Drees (1999). To find the supremum of all minimax risks in one-
dimensional submodels, one must compare limξ↓�l−1�a Rmm�hξ� for all l ≥ 2
numerically (see Section 4). Note that here the supremum is not attained, that
is, there is no most difficult one-dimensional submodel. A detailed discussion
of the relationship between the minimax risks in the full model and its one-
dimensional submodels, respectively, can be found in the paper by Donoho and
Liu (1991b).

Remark. Since in the definition of �̃ρ the constant δ > 0 may be cho-
sen arbitrarily small, it is easily seen that the minimax affine risk and the
minimax risk are both the same in the models �Qh�h∈�ρ

and �Qh�h∈�̃ρ
.

To sum up, we have found an upper and a lower bound for the minimax
risk in the limiting white noise model. In the next section it is seen that these
bounds carry over to the sequence of local models, and that they are almost
identical for those values a which arise from the construction of confidence
intervals.

4. Minimax risk bounds for the extreme value index. According to
Corollary 2.1, the lower risk bound in the limiting white noise model obtained
in the preceding section, namely, the supremum of minimax risks among all
one-dimensional linear subfamilies, is a lower bound for the asymptotic mini-
max risk in the sequence of local models. In contrast to that, it is not obvious
from the LeCam–theory that the upper bound on the minimax risk in the
limiting model carries over in a similar manner. To prove that this holds true
indeed, we construct a sequence of estimators for the local parameter of in-
terest h�0� that asymptotically attains the upper bound (3.5) on the minimax
risk.
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To this end, recall that the minimax affine estimator (3.4) in the limit ex-
periment is a multiple of the stochastic integral of hξ defined in (3.3). In view
of Theorem 2.1, approximation (2.2) and the Girsanov formula (5.10) (see the
proof of Theorem 2.1 below), the estimator

γ20�1+ 1/ρ�ξ−�1+1/ρ�n−1/2
n∑
i=1

gn�hξ�Xi�

= ξ−1/ρu�tn�
ρ+ 1
ρ

n∑
i=1

(
log

Xi

�ξ1/ρtn�−γ0

+γ0
ρ+ 1
ρ

((
Xi

�ξ1/ρtn�−γ0
)−ρ/γ0

− 1

))

×��1�∞�

(
Xi

�ξ1/ρtn�−γ0
)
�

with dn = u�tn� and tn = 1/cn satisfying (1.2), is a natural candidate. [Here
and in the sequel we use the canonical model, that is, Xi �= Xi�n � �n → �,
�x1� ! ! ! � xn�  → xi; hence, under P

n
n�h the random variables Xi are i.i.d. with

d.f. Fn�h.]
Note that this estimator is based only on the exceedances over the threshold

�ξ1/ρtn�−γ0 . As usual, instead one may use all exceedances over the random
threshold Xn−kn�n; that is, the �kn + 1�th largest order statistic, where kn is
chosen such that F−1

0 �1 − kn/n� = �kn/n�−γ0 ≈ �ξ1/ρtn�−γ0 . By virtue of (1.2)
and γ�Fn�h� = γ0+u�tn�h�0�, this modification leads to the following estimator
for the extreme value index in the local model:

γ̂locn �= γ0 +
ρ+ 1
ρ

· 1
kn

kn∑
i=1

(
log

Xn−i+1�n
Xn−kn�n

+γ0
ρ+ 1
ρ

(Xn−i+1�n
Xn−kn�n

)−ρ/γ0
− 1


= γ̂Hill

n + 1
ρ

(
γ̂Hill
n − γ0

)
+γ0

(
ρ+ 1
ρ

)2 1
kn

kn∑
i=1

(Xn−i+1�n
Xn−kn�n

)−ρ/γ0
− 1
ρ+ 1

 �
(4.1)

where kn �= �ξ1/ρA−2/�2ρ+1�n2ρ/�2ρ+1�, ξ is defined by (3.2) and

γ̂Hill
n �= 1

kn

kn∑
i=1

log
Xn−i+1�n
Xn−kn�n

is the popular Hill estimator. Notice that γ̂locn can be interpreted as a modifi-
cation of the Hill estimator, depending on A and a only through the number
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kn+ 1 of order statistics on which it is based. Moreover, it can be represented
as the functional

Tloc�z� �= γ0 +
ρ+ 1
ρ

∫ 1

0
log

z�t�
z�1� + γ0

ρ+ 1
ρ

((
z�t�
z�1�

)−ρ/γ0
− 1

)
dt(4.2)

applied to the tail empirical quantile function

Qn�kn
�t� �=Xn−�knt�n� 0 ≤ t ≤ 1�

that is, γ̂locn is a statistical tail functional in the sense of Drees (1998a,b).
Following the approach of those papers, it is not difficult to prove that indeed
this estimator attains the asymptotic minimax affine risk bound:

Theorem 4.1. Let dn = A1/�2ρ+1�n−ρ/�2ρ+1� and cn = A2/�2ρ+1�n1/�2ρ+1�.
Then, for all a > 0, the maximal risk

sup
h∈�ρ∩� �n�

Pn
n�h

{
�γ̂locn − γ�Fn�h�� > adn

}
converges to the minimax affine risk �3!5� in the white noise model, which thus
is an upper bound on the asymptotic minimax risk in the sequence of local
models.

Remark. Check that the parameter space �ρ enters the proof of Theorem
4.1 only via the bias term (5.18), and that for kn it is merely essential that
k
−1/2
n ∼ ξ−1/�2ρ�dn. So if in case of a more general boundary function u we

choose kn = �ξ1/ρ�u�tn��−2, then we arrive at the same conclusion as in The-
orem 4.1, because obviously the limit in (5.19) is not altered if �ρ is replaced
with �̃ρ.

So far we have shown that the bounds on the minimax risk in the limit-
ing white noise model are also bounds on the asymptotic minimax risk in the
sequence of local models. To obtain an analogous result for the global model
� �γ1� ε� u�, in the next step we construct an estimator of the extreme value
index in � �γ1� ε� u� by replacing the parameter γ0 of the center of localiza-
tion by a suitable initial estimator. Although any estimator that converge to
the true value with the optimal rate n−ρ/�2ρ+1� works, the calculations become
particularly simple if one uses the Hill estimator in the initial estimation
step. For the asymptotic behavior of this estimator has been studied thor-
oughly, and, in addition, the second term in the representation (4.1) vanishes.

Thus, we define k̄n �= �n2ρ/�2ρ+1� and γ̄n �= k̄−1
n

∑k̄n
i=1 log�Xn−i+1�n/Xn−k̄n�n�.

Let ξ̄n be the solution of (3.2) if γ0 is replaced by γ̄n and define γ∗
n �= k̂−1

n

∑k̂n
i=1

log�Xn−i+1�n/Xn−k̂n�n� with k̂n �= �ξ̄nA−2/�2ρ+1�n2ρ/�2ρ+1�. Then our adaptive



278 H. DREES

estimator for γ in the model � �γ1� ε� u� is

γ̂n �= γ∗
n + γ∗

n

(
ρ+ 1
ρ

)2 1

k̂n

k̂n∑
i=1

(Xn−i+1�n
Xn−k̂n�n

)−ρ/γ∗n
− 1
ρ+ 1

 !
In the following theorem it is shown that the asymptotic maximal risk of

γ̂n equals the supremum of the asymptotic maximal risks pertaining to the
estimators γ̂locn among all local models under consideration. To determine this
supremum, note that the solution ξ = ξ�γ0� a� ρ� of (3.2) satisfies

ξ
(
cγ0� c

2ρ/�2ρ+1�a� ρ
)
= c2ρ/�2ρ+1�ξ�γ0� a� ρ�(4.3)

for all c > 0. Consequently, the minimax affine risk (3.5) remains the same if
�γ0� a� is replaced with �cγ0� c2ρ/�2ρ+1�a�. Since obviously the risk is a decreas-
ing function of a for fixed γ0, it follows that (3.5) is an increasing function of
γ0 for fixed a, and thus the aforementioned supremum of maximal risk of γ̂locn
among all local models is obtained by replacing γ0 with γ1 + ε in (3.5).

Theorem 4.2. Under the assumptions of Theorem 4!1� γ̂n attains the
asymptotic minimax affine risk, that is,

lim
n→∞ sup

F∈� �γ1�ε�u�
Pn
F��γ̂n − γ�F�� > adn�

= 0

(
− ξ1+1/�2ρ�

�γ1 + ε��2�ρ+ 1��2ρ+ 1��1/2
(
1+ 2ρ+ 1

ξ
a

))

+0
(

ξ1+1/�2ρ�

�γ1 + ε��2�ρ+ 1��2ρ+ 1��1/2
(
1− 2ρ+ 1

ξ
a

))
�

where ξ = ξ�γ1 + ε� a� ρ� is the solution of �3!2� with γ0 replaced by γ1 + ε.

It should be emphasized that the estimator γ̂n in the global model is adap-
tive only in the sense that the parameter γ0 of the center of localization used
in the construction of γ̂locn is estimated from the data. In particular, γ̂n still
depends on the choice of A and ρ, which determine the global model under
consideration. However, because A and ρ are parameters of the model and
not of the underlying d.f. F, in general, it does not make sense to “estimate”
them. On the other hand, one may assume that F itself is of the form

F−1�1− t� = ct−γ exp
(∫ 1

t

η�s�
s

ds

)
with η�s� = Asρ�1+ o�1��(4.4)

(and not merely �η�s�� ≤ Asρ as supposed up to now). In this situation, Drees
and Kaufmann [(1998), Theorem 1] and Danielsson et al. [(1998), (3.9)] pro-
posed consistent estimators ρ̂n of ρ and a data–driven choice k̂optn of the number



RISK BOUNDS IN EXTREME VALUE THEORY 279

of order statistics that minimizes the asymptotic mean squared error of the
Hill estimator. Since the number kn used in (4.1) is related to k̂optn via

kn =
(
ξ�γ̄n� a� ρ̂n�

)1/ρ̂n( 2ρ̂n
�ρ̂n + 1�2γ̄2n

)1/�2ρ̂n+1�
k̂optn �1+ oP�1���

one may construct a consistent estimator k̂n for kn (in the sense that k̂n/kn →
1 in probability) based on ρ̂n and k̂

opt
n . Then the estimator γ̂n depending on

the unknown values of kn and ρ and the estimator where these are replaced
with their respective estimators have the same limit distribution under F
[although the latter need not be adaptive in the sense used, e.g., by Lepskii
(1991)]. In fact, in (4.4) one may even replace Asρ�1 + o�1�� by a more gen-
eral ρ–varying function; see Drees and Kaufmann [(1998), Theorem 3] for
details.

In Figure 1, the solid lines represent the asymptotic maximal risk (3.5) of
γ̂locn , regarded as a function of the constant a defining the loss function, for
ρ = 0!1 (left) and ρ = 1 (right), where γ0 = 1 in both cases. The broken
line is the lower bound for the asymptotic minimax risk, which was computed
numerically as supl≥2 limξ↓�l−1�a Rmm�hξ� (see Section 3).

Notice that for the calculation of the lower bound it is crucial not to use
the one-dimensional submodel that is most difficult for affine estimators. For
example, for ρ = 1 and a = 0!82, the direction hξ is least favorable for the mini-
max affine estimator if ξ = ξaff ≈ 1!638 and for the general minimax estimator
if ξ ↓ 1!64; despite this small difference, the minimax risk limξ↓1!64Rmm�hξ�
is about 12% greater than Rmm�hξaff �. Hence, the use of hξaff would yield a
substantially less accurate lower bound. In fact, the minimax risk Rmm�hξ� is
a discontinuous function of ξ as the minimax risk in model (3.1) is a discontin-
uous function of τh. Thus, even minor changes of ξ may lead to large changes
of the risk. On the other hand, for some a, the minimax risks Rmm�hξaff � and

Fig. 1. Asymptotic maximal risk of γ̂locn �solid line�� of γ̂Hill
n �dotted line� and asymptotic lower

risk bound �dashed line�
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supl∈� limξ↓�l−1�a Rmm�hξ� =� limξ↓�l∗−1�a Rmm�hξ� are almost equal, although
�l∗ −1�a is significantly larger than hξaff ; for instance, ρ = 1 and a = 0!01 lead
to �l∗−1�a = 2!62 and ξaff ≈ 1!587, yet the relative deviation of the pertaining
risks is less than 0!1%.

The plots clearly demonstrate that the difference between the asymptotic
lower risk bound and the asymptotic risk of the “minimax affine” estimator
γ̂locn is moderate; particularly for large values of a, which are decisive for the
construction of confidence intervals (see below), it is negligible. Hence γ̂locn is
almost optimal.

Since γ̂locn is a modification of γ̂Hill
n , it is interesting to compare its risk with

that of the much simpler Hill estimator. Taking up the approach by Csörgő,
Deheuvels and Mason (1985) (or imitating the proof of Theorem 4.1), one can
prove that for kn = �λn2ρ/�2ρ+1�

sup
h∈�ρ∩� �n�

Pn
n�h��γ̂Hill

n − γ�Fn�h�� > adn�

−→ �
(
λρA2ρ/�2ρ+1�/�ρ+ 1�� λ−1γ20A−2/�2ρ+1�

)
�−a� ac

= 0

(
− 1
γ0

(
λρ+1/2

A

ρ+ 1
+ λ1/2A1/�2ρ+1�a

))

+0
(
1
γ0

(
λρ+1/2

A

ρ+ 1
− λ1/2A1/�2ρ+1�a

))
[cf. Drees (1998c), proof of Theorem 2.2]. Straighforward calculations show
that an asymptotically optimal number of order statistics is given by

kHill
n �=

[(
ρ+ 1
2ρ+ 1

ξHill

)1/ρ

A−2/�2ρ+1�n2ρ/�2ρ+1�
]
�

leading to the maximal risk

0

(
− �ρ+ 1�1/�2ρ�
γ0�2ρ+ 1�1+1/�2ρ� ξ

1+1/�2ρ�
Hill

(
1+ 2ρ+ 1

ξHill
a

))

+0
(

�ρ+ 1�1/�2ρ�
γ0�2ρ+ 1�1+1/�2ρ� ξ

1+1/�2ρ�
Hill

(
1− 2ρ+ 1

ξHill
a

))(4.5)

where ξHill is the unique solution of

ξ
1+1/ρ
Hill

log ξHill+a
ξHill−a

= γ20�2ρ+ 1�1+1/ρ
2a�ρ+ 1�1/ρ !(4.6)

Observe that the structure of these formulas is similar to that of (3.2) and
(3.5).
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Table 1

Length of α–confidence intervals based on γ̂locn and γ̂Hill
n divided by

lower bound for confidence interval length

� � 0.9 0.95 0.99 0.995

γ̂locn 1.00 1.00 1.00 1.000.1
γ̂Hill
n 1.02 1.02 1.02 1.02

γ̂locn 1.01 1.00 1.00 1.001
γ̂Hill
n 1.05 1.04 1.04 1.04

The graphs of (4.5) are represented by the dotted lines in Figure 1. By
and large, the difference between the asymptotic risk of γ̂locn and γ̂Hill

n is even
smaller than the distance between the risk for γ̂locn and the lower bound, yet
now the difference is more distinct in the upper tail. Notice that the behavior of
the risk for large a is particularly important for the construction of asymptotic
confidence intervals with fixed (deterministic) length that are symmetric about
the estimator under consideration if, as usual, the confidence coefficient α is
close to 1. For the half-length of such a confidence interval equals the value a
where the graph of the pertaining risk intersects the line “risk = 1− α.”

In Table 1, the ratio of the length of these confidence intervals to the lower
bound on the length of arbitrary fixed-size confidence intervals, which is ob-
tained from the lower risk bound plotted in Figure 1, is given for α = 0!9, 0.95,
0.99 and 0.995 and ρ = 0!1 and 1. Note that these ratios can be regarded as
measures of efficiency for the estimators γ̂locn and γ̂Hill

n . The confidence inter-
vals based on γ̂locn have almost minimal length in all cases. In contrast, if one
uses the Hill estimator, then the confidence intervals are a few percent longer.
Nevertheless, in practice the slight loss of efficiency hardly justifies the use of
the substantially more complicated adaptive minimax estimator.

Finally, it is worth mentioning that one obtains a similar picture for differ-
ent parameters γ0 of the center of localization. For it is easily seen from (4.3)
and the subsequent discussion, in combination with analogous arguments for
the lower risk bound and the risk of the Hill estimator, that the plots for gen-
eral γ0 > 0 can be obtained from Figure 1 by stretching the a-axis by the
factor γ2ρ/�2ρ+1�0 . Consequently, the change of the center of localization does
not affect the ratios given in Table 1, which hence also equal the correspond-
ing ratios of the length of fixed-size confidence intervals in the global model
� �γ1� ε� u�.

5. Proofs.

Proof of Proposition 2.2. For the sake of notational simplicity, the index
h, which indicates the dependence of gn�h on h, is omitted. Throughout the
proof, const! denotes a generic constant which depends on h but not on n, s
or t and which may vary from line to line.
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First note that gn is well defined since for h ∈ L2�0�∞� and t > 0 the
Cauchy-Schwarz inequality yields

∫ cn
t

�h�s��
s

ds ≤
(∫ ∞

t
h2�s�ds

∫ ∞

t
s−2 ds

)1/2

≤ �h�t−1/2!(5.1)

Furthermore, the boundedness of h ∈ � on compact intervals, which is im-
mediate from the definition of � , implies

∫ ∞

t

�h�s��
s

ds ≤ �h� + sup
0<s≤1

�h�s��� log t� <∞ for t ∈ �0�1!(5.2)

By the definition of F−1
n�h, one has

fn�h�F−1
n�h�1− t�� = − 1

d/dt�F−1
n�h�1− t��

= t

�γ0 + dnh�cnt��F−1
n�h�1− t� � t ∈ �0�1�

and f0�x� = x−�1/γ0+1�/γ0 for x ≥ 1. Hence the change of variables x = F−1
n�h�1−

t/cn� leads to

∫ ∞

1

[
n1/2

(
f
1/2
n�h�x� − f

1/2
0 �x�

)
− 1

2
gn�x�f1/2

0 �x�
]2

dx

= n

cn

∫ cn
0

(fn�h�F−1
n�h�1− t/cn��

f0�F−1
n�h�1− t/cn��

)1/2

− 1

−n
−1/2

2
gn�F−1

n�h�1− t/cn��
]2

f0�F−1
n�h�1− t/cn��

fn�h�F−1
n�h�1− t/cn��

dt

= nd2
n

cn

∫ cn
0

[
d−1
n

((
1+ dn

h�t�
γ0

)−1/2
exp

(
dn
2γ0

∫ cn
t

h�s�
s

ds

)
− 1

)

−n
−1/2

2dn
gn�F−1

n�h�1− t/cn��
]2

×
(
1+ dn

h�t�
γ0

)
exp

(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt!

(5.3)
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To prove that this expression tends to 0, first we consider

∫ cn
0

[
d−1
n

((
1+ dn

h�t�
γ0

)−1/2
exp

(
dn
2γ0

∫ cn
t

h�s�
s

ds

)
− 1

)

−n
−1/2

2dn
gn��t/cn�−γ0�

]2

×
(
1+ dn

h�t�
γ0

)
exp

(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt

≤ 3

( ∫ cn
0

[
d−1
n

(
exp

(
dn
2γ0

∫ cn
t

h�s�
s

ds

)
− 1

)
− 1

2γ0

∫ cn
t

h�s�
s

ds

]2

× exp
(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt

+
∫ cn
0

[
d−1
n

(
1−

(
1+ dn

h�t�
γ0

)1/2
)
+ 1

2γ0
h�t�

]2

× exp
(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt

+ 1

4γ20

∫ cn
0

(∫ cn
t

h�s�
s

ds− h�t�
)2
(
1−

(
1+ dn

h�t�
γ0

)1/2
)2

× exp
(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt

)

=� 3
(
I1 + I2 +

1

4γ20
I3

)
!

(5.4)

By (5.1), (5.2) and a Taylor expansion of the exponential function, one can
show that, for large n, the integrand of I1 is bounded in absolute value by

[
dn

8γ20

(∫ cn
t

h�s�
s

ds

)2
]2

exp
(
dn
γ0

∫ cn
t

�h�s��
s

ds

)

≤ d2
n

64γ40

[
�h�4t−2��1�∞��t� +

(
�h� + sup

0<s≤1
�h�s��� log t�

)4

��0�1�t�
]

× exp
(
1+ � log t�

2
��0�1�t�

)
!
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Hence,

I1 ≤ d2
n

(
const.

∫ ∞

1
t−2 dt+ const.

∫ 1

0
�1+ � log t��4t−1/2 dt

)
−→ 0!

Using the fact that, according to the definition of � , 1+ dnh�t�/γ0 is uni-
formly bounded and bounded away from 0 on �0� cn, one can prove in a similar
way that the integrand of I2 converges to 0 and that it is bounded by an in-
tegrable function of the form const.h2�t���1�∞��t� +const.t−1/2��0�1��t�. Hence,
by the dominated convergence theorem, I2 vanishes asymptotically, too.

Because of (5.1), (5.2) and the definition of � , on �0�1 the integrand of
I3 is eventually bounded by const.�1+ � log t��2t−1/2. On the other hand, using
the definition of � and a Taylor expansion, it is readily seen that �1 − �1 +
dnh�t�/γ0�1/2�2 ≤ min�const.,const.h2�t�� for t ∈ �0� cn, so on account of (5.1)
and (5.2), the integrand is bounded by the integrable function

const.
(
�h�2t−1 + h2�t�

)
min�1� h2�t�� ≤ const. �t−1h2�t� + h2�t��

on �1� cn. Since obviously the integrand tends to 0 for every t > 0, it follows
by the dominated convergence theorem that I3 → 0.

In view of (2.1), (5.3) and (5.4), it remains to verify that∫ cn
0

[
n−1/2

2dn
gn
(
F−1
n�h�1− t/cn�

)− n−1/2

2dn
gn ��t/cn�−γ0�

]2
×
(
1+ dn

h�t�
γ0

)
exp

(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt

vanishes asymptotically. Because the factor 1+dnh�t�/γ0 is uniformly bounded
on �0� cn, it suffices to prove that∫ cn

0

(∫ t
cn�F−1

n�h�1−t/cn��−1/γ0
h�s�
s

ds

)2

exp
(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt

+
∫ cn
0

(
h
(
cn
(
F−1
n�h �1− t/cn�

)−1/γ0)− h�t�
)2

× exp
(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt

=� I4 + I5 −→ 0!

(5.5)

For this end, check that cn�F−1
n�h�1 − t/cn��−1/γ0 = t exp�−dn/γ0

∫ cn
t h�s�/sds�

implies

I4 ≤ sup
0<s≤2

�h�s��
∫ 1

0

(
dn
γ0

∫ cn
t

h�s�
s

ds

)2

exp
(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt

+�h�2
∫ cn
1

∣∣∣t−1 − c−1n �F−1
n�h�1− t/cn��1/γ0

∣∣∣ exp(−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt
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≤ o�1� + const.
∫ cn
1
t−1

∣∣∣1− exp
(
dn
γ0

∫ cn
t

h�s�
s

ds

) ∣∣∣dt
≤ o�1� + const.dn

∫ cn
1
t−1

∫ cn
t

�h�s��
s

dsdt!

Hence integration by parts shows that I4 → 0:∫ cn
1
t−1

∫ cn
t

�h�s��
s

dsdt =
∫ cn
1

log t
�h�t��
t

dt ≤ �h�
(∫ ∞

1
t−2 log2 t dt

)1/2

<∞!

Now we turn to the last integral. From cn�F−1
n�h�1− t/cn��−1/γ0 → t and (5.2)

we conclude that for m ∈ �0�1 and sufficiently large n,∫ m
0

(
h
(
cn
(
F−1
n�h�1− t/cn�

)−1/γ0)− h�t�
)2

exp
(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt

≤ 8 sup
t≤2

h2�t�
∫ m
0
t−1/2 dt�

which can be made arbitrarily small by choosing m small. Moreover,

d

dt
cn
(
F−1
n�h �1− t/cn�

)−1/γ0 = (
1+ dn

h�t�
γ0

)
exp

(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
(5.6)

is uniformly bounded away from 0 on �m�cn, so that eventually∫ cn
M

(
h
(
cn
(
F−1
n�h �1− t/cn�

)−1/γ0)− h�t�
)2

exp
(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt

≤ 4
∫ cn
M
h2 (cn (F−1

n�h�1− t/cn
))−1/γ0� + h2�t�dt

≤ const.
∫ cn
cn�F−1

n�h�1−M/cn��−1/γ0
h2�s�ds+ 4

∫ cn
M
h2�t�dt

≤ const.
∫ cn
M/2

h2�s�ds+ 4
∫ cn
M
h2�t�dt

which is arbitrarily small for large M because h ∈ L2�0�∞�.
For every δ > 0, one may approximate h on �m/2�2M by a Lebesgue-a.e.

continuous function h̃ (e.g., a step function), such that∫ 2M

m/2

(
h̃�t� − h�t�

)2
dt ≤ δ and sup

m/2≤t≤2M
�h̃�t�� ≤ sup

m/2≤t≤2M
�h�t�� + 1!

Hence, using the boundedness of exp�−dn/γ0
∫ cn
t h�s�/sds� on �m�M and the

boundedness of the derivative (5.6) away from 0, we obtain for sufficiently
large n,∫ M

m

(
h
(
cn
(
F−1
n�h�1− t/cn�

)−1/γ0)− h�t�
)2

exp
(
−dn
γ0

∫ cn
t

h�s�
s

ds

)
dt
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≤ 4
(∫ M

m

(
h
(
cn
(
F−1
n�h�1− t/cn�

)−1/γ0)
−h̃

(
cn
(
F−1
n�h�1− t/cn�

)−1/γ0))2 dt
+
∫ M
m

(
h̃
(
cn
(
F−1
n�h�1− t/cn�

)−1/γ0)− h̃�t�
)2

dt

+
∫ M
m

(
h̃�t� − h�t�

)2
dt

)

≤ const.
∫ cn�F−1

n�h�1−M/cn��−1/γ0

cn�F−1
n�h�1−m/cn��−1/γ0

(
h�t� − h̃�t�

)2
dt

+4
∫ M
m

(
h̃
(
cn
(
F−1
n�h�1− t/cn�

)−1/γ0)− h̃�t�
)2

dt+ δ

≤ const. δ+ o�1� + δ

where the dominated convergence theorem has been used in the last step.
Summing up, we have shown that I5 becomes arbitrarily small as n→ ∞.

Thus (5.5) is verified and so is the first assertion.
Applying first the change of variables x = �t/cn�−γ0 and then Fubini’s the-

orem, one gets

∫ ∞

1
gn�x�f0�x�dx = n1/2dn

cnγ0

∫ cn
0

∫ 1

t/cn

h�cns�
s

ds− h�t�dt

= n1/2dn
cnγ0

(∫ cn
0

∫ s
0
dt

h�s�
s

ds−
∫ cn
0
h�t�dt

)
= 0!

Likewise,

∫ ∞

1
g2
n�x�f0�x�dx

= nd2
n

cnγ
2
0

∫ cn
0

(∫ cn
t

h�s�
s

ds− h�t�
)2

dt

= 1+ o�1�
γ20

(∫ cn
0
h2�t�dt− 2

∫ cn
0
h�t�

∫ cn
t

h�s�
s

dsdt

+
∫ cn
0

∫ cn
0

min�s� r�h�s�
s

ds
h�r�
r

dr

)
= 1+ o�1�

γ20

∫ cn
0
h2�t�dt −→ �h�2

γ20
!

(5.7)



RISK BOUNDS IN EXTREME VALUE THEORY 287

Next we check that the Lindeberg condition∫ ∞

1
g2
n�x����gn�x�� ≥ δn1/2�f0�x�dx

= nd2
n

cnγ
2
0

∫ cn
0

(∫ cn
t

h�s�
s

ds− h�t�
)2

×��� ∫ cnt h�s�/sds− h�t�� ≥ δγ0/dn� dt −→ 0

(5.8)

is satisfied for all δ > 0. Since � ∫ cnt h�s�/sds−h�t�� is bounded on (0,1] by the
square integrable function �h�2 + sup0<t≤1 �h�t���� log t� + 1�, one has

∫ 1

0

(∫ cn
t

h�s�
s

ds− h�t�
)2

��� ∫ cnt h�s�/sds− h�t�� ≥ δγ0/dn� dt −→ 0!

From (5.1) and dn → ∞ it follows that eventually �� ∫ cnt h�s�/sds − h�t�� ≥
δγ0/dn� ∩ �1�∞� ⊂ ��h�t�� ≥ δγ0/�2dn�� ∩ �1�∞�. Consequently,

∫ cn
1

(∫ cn
t

h�s�
s

ds− h�t�
)2

��� ∫ cnt h�s�/sds− h�t�� ≥ δγ0/dn�dt

≤ 2
∫ cn
1

(∫ cn
t

h�s�
s

ds

)2

���h�t�� ≥ δγ0/�2dn�� dt

+2
∫ cn
1
h2�t����h�t�� ≥ δγ0/�2dn�� dt

≤ 2

(∫ cn
1

(∫ cn
t

h�s�
s

ds

)4

dt
∫ cn
1

���h�t�� ≥ δγ0/�2dn�� dt
)1/2

+o�1�

≤ 2�h�2
(∫ cn

1
s−2 ds

)1/2

�h�2dn
δγ0

+ o�1� −→ 0�

where in the last two steps we have used the Cauchy-Schwarz and the Cheby-
chev inequality. Therefore, the conditions of Proposition A.8 of van der Vaart
(1988) are satisfied, which gives the approximation (2.2). ✷

Proof of Theorem 2.1. Check that, for h1� ! ! ! � hm ∈ � , analogously to
(5.7) and (5.8),

∫ ∞

1
gn�hj�x�gn�hk�x�f0�x�dx −→ �hj� hk�

γ20
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and the multivariate Lindeberg condition∫ ∞

1

m∑
j=1

g2
n�hj

�x���∑m
j=1 g

2
n�hj

�x� ≥ δ2n�f0�x�dx

≤
m∑

j�k=1

∫ ∞

1
g2
n�hj

�x����gn�hk�x�� ≥ δn1/2/m�f0�x�dx −→ 0

hold true for all δ > 0. Hence the multivariate central limit theorem yields

�

(n−1/2
n∑
i=1

gn�hj�pri�
)
1≤j≤m

∣∣∣∣∣Pn
0

 −→ �

0�( �hj� hk�
γ20

)
1≤j�k≤m

(5.9)

where pri denotes the projection on the ith coordinate. According to the fa-
mous Girsanov formula, one has

log
dQh

dQ0
�x� = 1

γ0

∫
hdx− �h�2

2γ20
�(5.10)

where under Q0 the stochastic integral �∫ hdx�h∈� is a centered Gaussian
process with covariance function ��h� h̄��h�h̄∈� . A combination of (2.2), (5.9)
and (5.10) proves the assertion. ✷

Proof of Corollary 2.1. Apply Strasser [(1985), Corollary 62.6 and The-
orem 43.5] to the convergence established in Theorem 2.1. ✷

Proof of Corollary 2.2. The assertion is an immediate consequence of
Corollary 2.1, since �ρ ⊂ � and, for all γ0 ∈ �γ1 − ε� γ1 + ε� and h ∈ �ρ,
eventually Fn�h�γ0

∈ � �γ1� ε� u�. ✷

Proof of Theorem 3.1. Let ϕ denote the standard normal density.
First recall that it suffices to consider functions hξ as defined in (3.3) such

that τhξ > ahξ (see discussion below Theorem 3.1). Using

�hξ�2 =
2ρ2

�ρ+ 1��2ρ+ 1�ξ
2+1/ρ(5.11)

and

�τh + ah�ϕ
(τh + ah

ch
− τh

)
= �τh − ah�ϕ

(τh − ah
ch

− τh

)
[Drees (1999), proof of Theorem 1], one obtains by straightforward calculations
that

∂

∂ξ
Raff �hξ� =

2τhξahξ
ξ�τhξ − ahξ�

(
1
chξ

− 2ρ+ 1
2ρ

)
ϕ

(
τhξ + ahξ

chξ
− τhξ

)
!

Consequently, the maximum is attained if chξ = 2ρ/�2ρ+ 1�, which in turn is
equivalent to (3.2). This equation has a unique solution as its left-hand side
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is a strictly increasing function of ξ which converges to 0 as ξ tends to a from
above and to infinity as ξ tends to infinity.

According to Donoho [(1994), Theorem 1], the minimax affine estimator for
h�0� in the full model equals λ̂hξ�0� = γ0chξYhξ

/�hξ�; that is, ĥ�0� defined
in (3.4). (In fact, it is not difficult to verify the minimaxity of this estimator
directly using Anderson’s lemma.) Plugging (5.11) and chξ = 2ρ/�2ρ+ 1� into
the formula for the risk Raff �hξ�, one arrives at the last assertion. ✷

Proof of Theorem 4.1. Since the arguments follow the lines of Drees
(1998a,b), we just give a sketch of the proof. Let ηi, i ∈ �, be i.i.d. standard ex-
ponential random variables (defined on some abstract probability space), Si �=∑i

j=1 ηj, i ∈ �, the pertaining partial sums and Q̃n�kn�F
�= F−1�1−S�knt+1/n�,

0 ≤ t ≤ 1. According to Theorem 5.4.3 of Reiss (1989), the variational distance
between the distribution of Qn�kn

under Pn
n�h and the distribution of Q̃n�kn�Fn�h

vanishes uniformly as n tends to infinity:

�� (
Qn�kn

�Pn
n�h

)−� �Q̃n�kn�Fn�h
�� −→ 0

$⇒
∣∣∣� (

γ̂locn �Pn
n�h

)
−�

(
Tloc�Q̃n�kn�Fn�h

�
)∣∣∣ −→ 0

(5.12)

uniformly for h ∈ �ρ ∩� �n� with Tloc defined in (4.2).
The arguments of Drees [(1998a), proof of Theorem 2.1] show that there

exists a standard Brownian motion W such that for all δ ∈ �0�1/2�,

sup
h∈�ρ∩� �n�

sup
t∈�0�1

tγ0+1/2+δ
∣∣∣∣∣ Q̃n�kn�Fn�h

F−1
n�h�1− kn/n�

−
(
t−γ�Fn�h� − γ�Fn�h�t−�γ�Fn�h�+1�W�knt�

kn

+t−γ�Fn�h�
∫ 1

t

dn�h�scnkn/n� − h�0��
s

ds

)∣∣∣∣∣
= o�k−1/2

n � a.s.

and thus a.s.,

sup
h∈�ρ∩� �n�

sup
t∈�0�1

tγ0+1/2+δ
∣∣∣∣∣ Q̃n�kn�Fn�h

F−1
n�h�1− kn/n�

−
(
t−γ0 − γ0t

−�γ0+1�W�knt�
kn

+dnt−γ0
∫ 1

t

h�ξ1/ρs�
s

ds

)∣∣∣∣ = o�k−1/2
n �!

(5.13)
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Next check that the functional Tloc is differentiable at zγ0 � t  → t−γ0 in the
following sense. As λn → 0 the convergence

Tloc�zγ0 + λnyn� − γ0

λn

−→ T′
loc�y� �=

ρ+ 1
ρ

∫ 1

0
tγ0�1− �ρ+ 1�tρ�y�t�dt

(5.14)

holds uniformly for all functions yn with supt∈�0�1 tγ0+1/2+δ�yn�t�� ≤ 1 such that
zγ0 + λnyn is a nondecreasing function. This can be verified in a similar way
as the differentiability of the Hill functional in Example 3.1 of Drees (1998b)
using the representation

zγ0�t� + λnyn�t�
zγ0�1� + λnyn�1�

= t−γ0
(
1+ λn

tγ0yn�t� − yn�1�
1+ λnyn�1�

)
�

which implies

log
zγ0�t� + λnyn�t�
zγ0�1� + λnyn�1�

= −γ0 log t+ λn�tγ0y�t� − y�1�� + o�λn�

and

(
zγ0�t� + λnyn�t�
zγ0�1� + λnyn�1�

)−ρ/γ0
= tρ

(
1− λn

ρ

γ0
�tγ0y�t� − y�1��

)
+ o�λn�!(5.15)

Since Wn � t  → −k−1/2
n W�knt� is a standard Brownian motion, too, and Tloc

is scale invariant [i.e., Tloc�az� = Tloc�z� for a > 0], it follows from (5.13) and
(5.14) by the well-known δ–method that

sup
h∈�ρ∩� �n�

∣∣∣∣∣Tloc�Q̃n�kn�Fn�h
�

−
(
γ0 + k−1/2

n γ0T
′
loc�zγ0+1Wn�

+dnT′
loc

((
t−γ0

∫ 1

t

h�ξ1/ρs�
s

ds

)
t∈�0�1

)) ∣∣∣∣∣
= o�k−1/2

n � a.s.

(5.16)
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with

� �T′
loc�zγ0+1Wn��

= �

(
ρ+ 1
ρ

∫ 1

0
t−1 �1+ �ρ+ 1�tρ�Wn�t�dt

)

= �

(
0�
(
ρ+ 1
ρ

)2 ∫ 1

0
�st�−1�1+ �ρ+ 1�sρ�

× �1+ �ρ+ 1�tρ�min�s� t�dsdt
)

= � �0�2�ρ+ 1�/�2ρ+ 1��

(5.17)

[cf. Drees (1998b), Theorem 3.1] and

T′
loc

((
t−γ0

∫ 1

t

h�ξ1/ρs�
s

ds

)
t∈�0�1

)
= ρ+ 1

ρ

∫ 1

0
�1− tρ�h (ξ1/ρt) dt�(5.18)

where for the last equation we used integration by parts.
In view of k−1/2

n ∼ ξ−1/�2ρ�dn and γ�Fn�h� = γ0 + dnh�0�, we conclude from
(5.12) and (5.16)–(5.18) that

sup
h∈�ρ∩� �n�

sup
x∈�

∣∣∣Pn
n�h

{
γ̂locn − γ�Fn�h� ≤ dnx

}
−� �µh� σ2

h� �−∞� x
∣∣∣ −→ 0�

so

sup
h∈�ρ∩� �n�

Pn
n�h

{∣∣γ̂locn − γ�Fn�h�
∣∣ > dna

}
−→ sup

h∈�ρ

�
(
µh� σ

2
h

) �−a� ac�(5.19)

where

µh = ρ+ 1
ρ

∫ 1

0
�1− tρ��h�ξ1/ρt� − h�0��dt and σ2

h = 2�ρ+ 1�γ20
�2ρ+ 1�ξ1/ρ !

According to Anderson’s Lemma, the supremum on the right-hand side is
attained at that h ∈ �ρ which maximizes � ∫ 10 �1− tρ��h�ξ1/ρt�−h�0��dt�. This
leads to the maximal risk

�

(
ρ+ 1
ρ

∫ 1

0
�1− tρ��ξ1/ρt�ρ dt� σ2

h

)
�−a� ac = �

(
ξ

2ρ+ 1
� σ2

h

)
�−a� ac�

which equals (3.5). ✷

Proof of Theorem 4.2. First note that there exist constants 0 < m <
M <∞ such that

sup
F∈� �γ1�ε�u�

Pn
F

{
m < k̂nn

−2ρ/�2ρ+1� <M
}
−→ 1�(5.20)
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because γ̄n is uniformly consistent on � �γ1� ε� u� and ξ defined in (3.2) is a
continuous function of γ0 ∈ �γ1−ε� γ1+ε�. Moreover, it is easily seen that the
following uniform analog to (5.13) holds for δ ∈ �0�1/2�:

sup
m<knn

−2ρ/�2ρ+1�<M
sup

F∈� �γ1�ε�u�
sup
t∈�0�1

tγ0+1/2+δ
∣∣∣∣∣ Q̃n�kn�F

F−1�1− kn/n�

−
(
t−γ�F� − γ�F�t−�γ�F�+1�W�knt�

kn
+ t−γ�F�

∫ 1

t

η�s�
s

ds

) ∣∣∣∣∣
= o�n−ρ/�2ρ+1�� a.s.

(5.21)

Next observe that γ̂n = Tglob�Qn�k̂n
� where

Tglob�z� �= THill�z� +THill�z�
(
ρ+ 1
ρ

)2
(∫ 1

0

(
z�t�
z�1�

)−ρ/THill�z�
dt− 1

ρ+ 1

)
�

THill�z� �=
∫ 1

0
log

z�t�
z�1� dt!

Define γn �= THill�zγ0 + λnyn� with zγ0 , λn and yn as in the proof of Theorem
4.1. Analogously to (5.15), one obtains(

zγ0�t� + λnyn�t�
zγ0�1� + λnyn�1�

)−ρ/γn
= tργ0/γn − λn

ρ

γ0
tρ �tγ0y�t� − y�1�� + o�λn�

uniformly for γ0 ∈ �γ1 − ε� γ1 + ε�. Therefore, again one may verify by the
methods used in Drees [(1998b), Example 3.1] that �γn−γ0�/λn → ∫ 1

0 �tγ0y�t�−
y�1��dt and

Tglob�zγ0 + λnyn�

= γ0 + λn

∫ 1

0
tγ0y�t� − y�1�dt

+γn
(
ρ+ 1
ρ

)2 ( 1
ργ0/γn + 1

− 1
ρ+ 1

− λn
ρ

γ0

∫ 1

0
tρ�tγ0y�t� − y�1��dt

)
+o�λn�

= γ0 + λn
ρ+ 1
ρ

∫ 1

0
tγ0�1− �ρ+ 1�tρ�y�t�dt+ o�λn�

= λnT
′
loc�y� + o�λn�

uniformly for γ0 ∈ �γ1 − ε� γ1 + ε�, that is, Tglob is uniformly Hadamard differ-
entiable at zγ0 with the same derivative as Tloc.
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Due to (5.20) and the uniform approximation (5.21) of Q̃n�kn�F
, one can

conclude the proof in the same way as the proof of Theorem 4.1. ✷
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