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OPTIMAL ROBUST M-ESTIMATES OF LOCATION

By Ricardo Fraiman1, Víctor J. Yohai2 and Ruben H. Zamar3

University of San Andrés, University of Buenos Aires and CONICET and
University of British Columbia

We find optimal robust estimates for the location parameter of n inde-
pendent measurements from a common distribution F that belongs to a
contamination neighborhood of a normal distribution. We follow an asymp-
totic minimax approach similar to Huber’s but work with full neighbor-
hoods of the central parametric model including nonsymmetric distribu-
tions. Our optimal estimates minimize monotone functions of the estimate’s
asymptotic variance and bias, which include asymptotic approximations for
the quantiles of the estimate’s distribution. In particular, we obtain robust
asymptotic confidence intervals of minimax length.

1. Introduction. In his seminal paper, Huber (1964) initiated two main
approaches of modern robustness theory: variance robustness and bias robust-
ness. He considered the location model and introduced the family of location
M-estimates. In this context he found that the median minimizes the max-
imum asymptotic bias over contamination neighborhoods among translation
equivariant estimates. He also found theM-estimate that minimizes the max-
imum asymptotic variance over contamination neighborhoods which include
only symmetric distributions.

Hampel (1974) made a first step toward considering variance and bias
simultaneously: he found theM-estimate that minimizes the asymptotic vari-
ance at the central model, subject to a bound on the gross error sensitivity
(GES). Observe that the GES is the slope of the linear approximation (at zero)
for the maximum asymptotic bias over ε-contamination neighborhoods. Martin
and Zamar (1993) improved Hampel’s result by minimizing the variance at the
central model subject to a bound on the actual maximum asymptotic bias.

Hampel (1974) and Martin and Zamar (1993) take into account the effect of
asymmetric contaminations on the bias of the estimate but ignore their effect
on the variance. Samarov (1985) attempts to integrate asymptotic bias and
variance under infinitesimal contaminations by minimizing a linear approx-
imation to the maximum asymptotic mean squared error (in the regression
set-up). Samarov used the linear approximation based on the influence and
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change of variance functions, which is valid only for vanishingly small ε. For
other infinitesimal approaches, see Rieder (1994).

We wish to take into account the simultaneous effect of asymmetric con-
tamination on the asymptotic bias and variance of a location M-estimate,
µ̂n, for nonvanishingly small fractions of contamination. To achieve this goal
we consider general monotone functions of the asymptotic bias and variance
of µ̂n and derive the corresponding minimax estimate over ε-contamination
neighborhoods. In particular, our theory leads to robust confidence intervals
of minimax length.

The rest of the paper is organized as follows. In Section 2 we introduce
some definitions and technical background. We also give some asymptotic
results and define a general minimax problem for locationM-estimates which
includes Huber’s minimax bias problem and an extension of Huber’s minimax
variance problem as particular cases. In Section 3 we discuss the problem of
robust confidence intervals and show that our general theory yields robust
confidence interval of minimax length. In Section 4 we solve the general min-
imax problem posed in Section 2. In Section 5 we consider the case when the
scale parameter is unknown. All the proofs are collected in the Appendix.

2. Some definitions and technical background. Suppose that y1� � � � �
yn are independent identically distributed random variables with common
distribution F in the contamination neighborhood

� �F0� ε� = �F� F = �1− ε�F0 + εH�H arbitrary	�(2.1)

where F0�y� = 
��y − µ0�/σ0�, 
 is the standard normal distribution and
0 < ε < 0�5. We will first assume that the scale parameter σ0 is known and
consider location M-estimates, µ̂n� satisfying the equation

∑
ψ

(
yi − µ̂n
σ0

)
= 0�(2.2)

where ψ is an appropriate score function [see (A1)–(A3) below].
Let

η�t�F�ψ� = −
∫ ∞

−∞
ψ

(
y− t

σ0

)
dF�y��(2.3)

Then under very general conditions [see Huber (1981)] µ̂n converges to the
value T�F�ψ� satisfying η�T�F�ψ��F�ψ� = 0.

We will consider the following assumptions on ψ:

A1. ψ is continuous, non-decreasing, odd and bounded with limy→∞ψ�y�
> 0.

A2. ψ has an uniformly continuous derivative ψ′.
A3. There exists a constant c > 0 such that (a) ψ�y� is constant outside �−c� c�;

(b) ψ has a derivative ψ′ on �−c� c�; (c) ψ has a left (right) derivative at c
�−c� denoted ψ′�c��ψ′�−c��; (d) the function ψ′ is continuous on −c� c�.
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Let �1 be the class of score functions ψ that satisfy A1 and A2, let �2 be
the class of score functions ψ that satisfy A1 and A3 and set � = �1 ∪ �2.

Let ψ ∈ � and let c be the constant introduced in A3 for functions in �2. If
ψ is differentiable everywhere set c = ∞. Define

v�F�ψ� = σ2
0

EFψ2��y−T�F�ψ��/σ0�
EFψ′��y−T�F�ψ��/σ0�I�−c�c���y−T�F�ψ��/σ0���2

�(2.4)

Notice that v�F�ψ� is well defined for all ψ ∈ � and all F ∈ � �F0� ε�. Part (a)
of the following lemma shows that T�F�ψ� is uniquely defined on � �F0� ε�.
Parts (b) and (c) show that T�F�ψ� and v�F�ψ� are bounded on � �F0� ε�.

Lemma 1. Assume that ψ satisfies A1 and either A2 or A3. Then:

(a) The equation η�t�F�ψ� = 0 has an unique solution T�F�ψ� for all F ∈
� �F0� ε�.

(b) supF∈� �F0� ε� �T�F�ψ� − µ0� = limy→∞T��1− ε�F0 + εδy�ψ� − µ0 <∞.
(c) supF∈� �F0� ε� �v�F�ψ�� <∞.

Part (a) of the following theorem shows that if ψ ∈ �1 then µ̂n is asymptoti-
cally normal with variance v�F�ψ�, uniformly on � �F0� ε�. Part (c) establishes
a similar result for ψ ∈ �2, but now the uniformity holds on some restricted
class �k�F0� ε� of distributions F = �1− ε�F0 + εH, where H has its support
outside the interval −k� k�. Part (b) shows that v�F�ψ� has a sound interpre-
tation even if µ̂n fails to be asymptotically normal.

Theorem 1. Let µ̂n be an M-estimate satisfying �2�2�.
(a) Suppose that ψ ∈ �1. Then

lim
n→∞ sup

F∈� �F0�ε�

∣∣∣∣PF

(√
n�µ̂n −T�F�ψ��√

v�F�ψ� ≤ a

)
−
�a�

∣∣∣∣ = 0�(2.5)

uniformly in a.
(b) Suppose that ψ ∈ �2. Then

lim
n→∞ inf

F∈� �F0�ε�
PF

(∣∣∣∣
√
n�µ̂n −T�F�ψ��√

v�F�ψ�

∣∣∣∣ ≤ a

)
≥ 2
�a� − 1�(2.6)

uniformly in a.
(c) Suppose that ψ ∈ �2. Let �k�F0� ε� be the set of distribution functions

F = �1− ε�F0 + εH, such that H has its support outside the interval −k� k�.
Then there exists 0 < k <∞ such that

lim
n→∞ sup

F∈�k�F0�ε�

∣∣∣∣PF

(√
n�µ̂n −T�F�ψ��√

v�F�ψ� ≤ a

)
−
�a�

∣∣∣∣ = 0�

uniformly in a.
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General optimality problem. The asymptotic bias of µ̂n forF ∈ � �F0� ε�
is given by

b�F�ψ� = T�F�ψ� − µ0�(2.7)

One expects robust estimates to have relatively small asymptotic bias and
variance as F ranges over � �F0� ε�. Therefore, the overall performance of µ̂n
can be assessed in terms of the maximum asymptotic bias (maxbias) Bψ�ε� =
supF∈� �F0�ε� �b�F�ψ�� and the maximum asymptotic variance (maxvariance)
Vψ�ε� = supF∈� �F0�ε� v�F�ψ�. It can be shown [see Martin and Zamar (1993)]
that Bψ�ε� = limy→∞ b��1− ε�F0 + εδy�ψ� and Bψ�ε� satisfies the equation

η�t+ µ0�F0� ψ� =
εψ�∞�
1− ε

�(2.8)

The performance of µ̂n on � �F0� ε� can be assessed by

Lg�ψ� = sup
F∈� �F0�ε�

g

(
b�F�ψ�� v�F�ψ�

n

)
�(2.9)

where g�x1� x2� has the following properties:

C1. g is lower semicontinuous.
C2. g is nonnegative.
C3. g�−x1� x2� = g�x1� x2�.
C4. g is nondecreasing in �x1� and x2.
C5. g�σx1� σ2x2� = σmg�x1� x2� for some m > 0.

These properties will imply that

Lg�ψ� = σm0 sup
F∈� �
�ε�

g

(
b�F�ψ�� v�F�ψ�

n

)
�(2.10)

A score function ψ∗ minimizing Lg�ψ� is called optimal. The function Lg�ψ�
as well as the optimal score function ψ∗ depend on n. However, for simplicity,
this dependence will be omitted from the notations.

The special cases g�x1� x2� = �x1� and g�x1� x2� = x2 were considered by
Huber (1964). In fact, he showed that the median, that is, theM-estimate with
score function ψ�y� = sign�y�, minimizes Bψ�ε�, for all ε, among all transla-
tion equivariant location estimates. Huber also considered the restricted max-
imum asymptotic variance

Ṽψ�ε� = sup
F∈�̃ �F0�ε�

v�F�ψ��

where

�̃ �F0� ε� = �F� F = �1− ε�F0 + εH�H symmetric	�(2.11)

and showed that the M-estimate with score function

ψHc �y� = max�min�y� c	�−c	(2.12)
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minimizes Ṽψ�ε� among all M-estimates satisfying certain mild regularity
conditions.

More realistic loss functions take into account the combined effect of con-
tamination on the asymptotic bias and variance of µ̂n. For example,

g�x1� x2� = x21 + x2

gives a kind of asymptotic mean squared error. Another interesting family of
g-functions is

g�x1� x2� = JK�x1� + x2�(2.13)

where JK�x1� = 0 if x1 ≤K (for someK > 0) and JK�x1� = ∞ otherwise. The
corresponding optimal estimates minimize the maximum asymptotic variance
subject to a bound K on the maximum asymptotic bias. An interesting choice
for the function g is given by (3.1) below, which yields asymptotic quantiles.
This case is studied in detail in the next section.

The results of Theorem 4 in Section 3, with g�x1� x2� = x2 [K = ∞ in
(2.13)] improve Huber’s (1964) minimax variance result as the maximum is
now taken over unrestricted neighborhoods instead of only symmetric ones
[see (2.1) and (2.11)]. For the same reason, taking K < ∞ we improve the
result of Martin and Zamar (1993).

We close this section with a few remarks on the class � of ψ functions
and Theorem 1. As pointed out by Davies (1998), to have a more meaning-
ful asymptotic optimality theory we need that the asymptotic normality of µ̂n
hold uniformly over � �F0� ε�. Theorem 1(a) proves that for ψ ∈ �1 [see also
Huber (1981) and Davies (1998)]. However, if we restrict attention to �1 our
optimality problems do not have solution because, as we will see later on, the
optimal ψ belongs to �2. To remedy this problem we consider the larger class
� . But enlargement of class � brings along a new problem. If ψ ∈ �2 is non-
differentiable at its truncation point c andF = �1−ε�F0+εH, whereH places
positive mass at T�F�ψ� ± σ0c, then the estimate is not asymptotically nor-
mal. Theorem 1(b) shows that in such a case the asymptotic distribution of the
estimate has tails thinner than those of a N�T�F�ψ�� v�F�ψ�/n), uniformly
over � �F0� ε�. That is, v�F�ψ� still provides in this case a normal probability
bound for the estimation error. Theorem 1(c) shows that for ψ ∈ �2 the asymp-
totic normality of µ̂n holds uniformly for distributions F which do not place
positive mass inside a closed interval. This is particularly important because,
as we will see later on, we will work with this type of distribution to obtain a
lower bound for Lg�ψ�.

3. Robust confidence intervals. The need for robust confidence inter-
vals is illustrated by the following small Monte Carlo simulation. We gener-
ated ten thousand normal samples of different sizes and containing various
fractions of contamination. The contaminating distribution is a point mass
distribution at x = 4�0. Similar results were found for other asymmetric,
outlier generating, distributions. For each sample, we calculated the location
M-estimate with Huber ψ-function (2.12) and the corresponding asymptotic 95
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Table 1

Percentage of coverage and average length for 10,000 asymptotic 95% confidence intervals based
on Huber’s locationM-estimate with truncation constant c = 1�345∗

� n % of coverage Average length

0.05 20 92% 0.91
50 92% 0.60

100 88% 0.44
200 82% 0.31

0.10 20 91% 1.05
50 84% 0.68

100 67% 0.49
200 39% 0.35

0.15 20 88% 1.19
50 72% 0.76

100 35% 0.56
200 5% 0.40

0.20 20 82% 1.41
50 45% 0.92

100 8% 0.66
200 0% 0.47

∗The simulated data are normal samples containing various fractions of point mass contamination
at x = 4�0.

confidence interval based on the empirical asymptotic variance. The coverage
and average length of these intervals are given in Table 1.

The poor coverage of these intervals based on highly robustM-estimates is
because they ignore the important issue of asymptotic bias. See also Exhibit
4.2.2 on page 76 of Huber (1981).

Huber (1968) broke new ground on this problem by establishing a remark-
able finite sample optimality result. He considered intervals of fixed length 2a
and minimized the quantity

max
F∈� �F0�ε�

max�PF�µ0 < µ̂n − a��PF�µ0 > µ̂n + a�	�

Notice that although Huber’s objective function is not exactly equal to the
maximum level

max
F∈� �F0�ε�

�PF�µ0 < µ̂n − a� +PF�µ0 > µ̂n + a�	�

it is closely related to it. In principle, the value of a could be varied to obtain
the desired maximum level for each n and ε. But the implementation of this
idea is by no means straightforward. Huber–Carol (1970) proposed an asymp-
totic solution under the additional assumption that the fraction of contamina-
tion tends to zero at rate 1/

√
n.

We wish to derive optimal asymptotic confidence intervals with a warranted
maximum level over � �F0� ε�. In order to find robust confidence intervals,
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we propose to use the function g�x1� x2� implicitly defined by

1− α = 


(
g�x1� x2� − x1√

x2

)
+


(
g�x1� x2� + x1√

x2

)
− 1�(3.1)

For this choice of g we have that

qα�n�F�ψ� = g

(
b�F�ψ�� v�F�ψ�

n

)
(3.2)

[see (2.7) and (2.4)] is an asymptotic �1−α�-quantile for �µ̂n−µ0�. On the other
hand, the finite sample �1− α�th-quantile, Qα�n�F�ψ�, satisfies the equation

PF��µ̂n − µ0� ≤ Qα�n�F�ψ�� = 1− α�(3.3)

The following theorem establishes that the asymptotic quantile (3.2) consti-
tutes a good (conservative) approximation for the finite sample quantile (3.3)
uniformly on � �F0� ε�.

Theorem 2. Let 0 < α < 0�5 and 0 < ε < 0�5 be fixed.

(a) Suppose that ψ ∈ �1. Then

sup
F∈� �F0� ε�

�qα�n�F�ψ� −Qα�n�F�ψ�� = o

(
1√
n

)
�

(b) Suppose that ψ ∈ �2. Then qα�n�F�ψ� are “conservative” asymptotic
�1− α�-quantiles of �µ̂n − µ0�. More precisely,

sup
F∈� �F0� ε�

Qα�n�F�ψ� − qα�n�F�ψ��+ = o

(
1√
n

)
�

where f�+ is the positive part of f.
(c) Suppose that ψ ∈ �2 and let �k�F0� ε� be as defined in Theorem 1(c).

Then there exists 0 < k <∞ such that

sup
F∈�k�F0� ε�

�qα�n�F�ψ� −Qα�n�F�ψ�� = o

(
1√
n

)
�

Since F is only assumed to be an unspecified member of � �F0� ε�� it seems
appropriate to consider the conservative robust quantile

q̄α� n�ψ� = sup
F∈� �F0� ε�

qα�n�F�ψ� = σ0 sup
F∈� �
� ε�

qα�n�F�ψ� = Lg�ψ��(3.4)

and the corresponding 1−α robust confidence interval µ̂n± q̄α�n�ψ�. The next
theorem shows that, under mild regularity conditions, the coverage of inter-
vals based on q̄α� n�ψ� is correct for all ψ ∈ � , uniformly on � �F0� ε�.
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Theorem 3. Let g�x1� x2� and q̄α� n�ψ� be defined by �3�1� and �3�4�, respec-
tively. Then�

(a) If ψ ∈ �1, then

lim
n→∞ inf

F∈� �F0� ε�
PF��µ̂n − µ0� ≤ q̄α� n�ψ�� = 1− α�(3.5)

(b) Assume now that ψ ∈ � and that supF∈� �F0� ε� v�F�ψ� = limy→∞ v��1 −
ε�F0 + εδy�ψ� ≡ v�F∞� ψ�, where δy is the point-mass distribution at y. Then
�3�5� holds and q̄α� n�ψ� = g�Bψ�ε�� v�F∞� ψ�/n�.

In view of (3.4) a natural goal at this point is to find the optimal score
function ψ∗ which minimizes Lg�ψ�. The general theory in the next section
achieves this goal.

4. Minimaxity on VVV �F0���. The main result of this section is to find the
function ψ∗ that minimizes Lg�ψ�, for a given 0 < ε < 0�5. We will show
that ψ∗ belongs to the family

ψa�b� c� t�y� =


aλt�−c� + bδt�−c�� if y < −c,
aλt�y� + bδt�y�� if �y� ≤ c,
aλt�c� + bδt�c�� if y > c,

(4.1)

where

λt�y� =
1− e−2yt

1+ e−2yt
and δt�y� = y− tλt�y��(4.2)

The function λt�y� is strictly increasing with limy→∞ λt�y� = 1, for all t > 0.
The function δt�y� is also strictly increasing for all 0 < t < 1 and limy→∞
δt�y� = ∞, for all t > 0.

For ψ1� ψ2 ∈ � , let

�ψ1� ψ2�t =
∫ ∞

−∞
ψ1�y− t�ψ2�y− t�φ�y�dy

=
∫ ∞

0
ψ1�y�ψ2�y�.t�y�dy�

(4.3)

where φ = 
′ and

.t�y� = φ�y+ t� +φ�y− t��(4.4)

After noticing that

δt�y� = −φ
′�y+ t� +φ′�y− t�
φ�y+ t� +φ�y− t� = −φ

′�y+ t� +φ′�y− t�
.t�y�

�

it is easy to show that

�ψ� δt�t = −
∫ ∞

−∞
ψ�y�φ′�y+ t�dy = �∂/∂t�η�t�
�ψ�(4.5)

[see (4.2) and (4.3)].
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Let Fy = �1 − ε�F0 + εδy, and denote by v�F∞� ψ� = limy→∞ v�Fy�ψ�
and b�F∞� ψ� = limy→∞ b�Fy�ψ�. Similarly we define b�
∞� ψ� and v�
∞� ψ�
replacing F0 by 
. Thus by (2.4), (4.3) and (4.5) we have

v�F∞� ψ� = σ2
0

�1− ε��ψ�ψ�µ + εψ2�∞�
�1− ε��ψ� δµ�µ�2

�(4.6)

where µ = b�
∞� ψ�.
Moreover, let t̄�ε� be implicitly defined by the equation (in t)

�λt� λt�t = ε/�1− ε��(4.7)

Remark 1. Since
∫∞
0 ψ�y�φ�y − t� − φ�y + t��dy is strictly increasing in

t for all ψ ∈ � , and λt�y� is nondecreasing in t for all y > 0,

�λt� λt�t =
∫ ∞

0
λt�y� φ�y− t� −φ�y+ t��dy

is also strictly increasing in t. Since �λt� λt�t → 1 as t→ ∞, (4.7) has a unique
solution, t̄�ε�. In addition, define

µ̄�ε� = min�t̄�ε��1	(4.8)

and

v�ε� = 1
�1− ε� +

ε

�1− ε�2
1

φ�µ̄�ε�� +φ�0��2 �(4.9)

As we will see in Lemma 7, if the bias of anM-estimate at a standard normal
contaminated distribution exceeds µ̄�ε� then the corresponding asymptotic
variance is bounded below by v�ε�.

The function

lg�ψ� = g

(
b�F∞� ψ�� v�F

∞� ψ�
n

)
= σmg

(
b�
∞� ψ�� v�


∞� ψ�
n

)
(4.10)

plays an important role in our derivations. Notice that Lg�ψ� ≥ lg�ψ�.
Theorem 4 gives sufficient conditions for the existence of a minimax M-

estimate with ψ-function in the family (4.1).

Theorem 4. Assume that g satisfies C1–C5. Then there exists ψ∗ =
ψa∗� b∗� c∗� t∗ such that

lg�ψa�b� c� t� ≥ lg�ψ∗� for all a ≥ 0� b ≥ 0� c ≥ 0� t ≥ 0�

where ψa�b� c� t is given by �4�1� and �4�2�. If in addition

g

(
µ̄�ε�� v�ε�

n

)
≥ lg�ψ∗�(4.11)

and

Lg�ψ∗� = lg�ψ∗��(4.12)

then Lg�ψ� ≥ Lg�ψ∗�, for all ψ ∈ � .
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Table 2
Smallest n for the validity of minimaxity property of minimum quantile

Level

� 0.01 0.05 0.10

0.05 3 3 3
0.10 3 3 3
0.15 3 3 3
0.20 3 3 3
0.25 4 3 3
0.30 7 4 4
0.35 16 9 6

To illustrate the application of Theorem 4 we shall obtain M-estimates
with minimax quantiles. First we find ψ∗ defined in Theorem 4. According
to Lemmas 3, 4, 5 and 6 in the Appendix, it is only necessary to search for
�a∗� b∗� c∗� t∗� in the compact set C = C1 ∪C2, where C1 and C2 are defined as
follows. Let I�µ� be the closed interval with endpoints c1�µ� and c2�µ� given
by (A.42) and (A.43), respectively. Then

C1 = ��ã�c�� b̃�c�� c� t�� c ∈ I�t�� µ�ε� ≤ t ≤ µ̄�ε�	(4.13)

and

C2 = ��0�1� c� t�� 0 ≤ c ≤ c2�t�� µ�ε� ≤ t ≤ µ̄�ε�	�(4.14)

where µ�ε�, ã�c� and b̃�c� are given by (A.34), (A.45) and (A.46), in the
Appendix.

We computed the optimal score functions ψ∗ for intervals of level 0�99�0�95
and 0�90, for several values of n and ε. For each ε we numerically found the
value n�ε� such that ψ∗ satisfies (4.11) for all n ≥ n�ε�. The values n�ε� are
shown in Table 2 for several values of ε.

In all considered cases, the function ψ∗ is extremely well approximated
by the function ψHc∗ given by (2.12) with the same truncation point c∗ as the
optimal ψ∗. The corresponding maximum quantiles are also extremely close
(identical up to the fourth decimal place).

It remains to check condition (4.12). Fortunately, this condition can be ana-
lytically verified for the functions ψHc∗ which are optimal from a practical point
of view. See Lemma 7 in the Appendix. We have also numerically verified this
condition for ψ∗, for all the considered cases.

Table 3 displays the values of c∗ and q̄α� n�ψHc∗ � for several values of n and ε.
As one expects, c∗ approaches zero (and the corresponding estimate approaches
the median) as n and ε increase. Naturally, q̄α�n�ψHc∗ � decreases with n and
increases with ε.
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Table 3

Maximum quantiles and truncation points for the optimal Huber-type
score function when σ is known

� = 0�01 � = 0�05 � = 0�10

n � c∗ q∗
��n��

H
c∗ � c∗ q∗

��n�ψH
c∗ � c∗ q∗

��n��
H
c∗ �

20 0.05 1.174 0.681 1.158 0.519 1.151 0.436
0.10 0.829 0.808 0.786 0.622 0.762 0.525
0.15 0.641 0.956 0.583 0.747 0.547 0.637
0.20 0.515 1.132 0.457 0.898 0.416 0.773
0.25 0.420 1.349 0.366 1.083 0.328 0.941

40 0.05 1.064 0.500 1.031 0.382 1.015 0.322
0.10 0.737 0.614 0.669 0.480 0.626 0.409
0.15 0.568 0.745 0.496 0.595 0.444 0.515
0.20 0.452 0.898 0.388 0.731 0.343 0.641
0.25 0.365 1.083 0.310 0.894 0.270 0.793

100 0.05 0.908 0.342 0.838 0.265 0.798 0.224
0.10 0.621 0.444 0.533 0.357 0.472 0.310
0.15 0.468 0.557 0.392 0.461 0.340 0.410
0.20 0.367 0.688 0.304 0.581 0.260 0.524
0.25 0.292 0.846 0.238 0.726 0.202 0.661

500 0.05 0.654 0.193 0.552 0.157 0.481 0.137
0.10 0.416 0.279 0.336 0.239 0.281 0.218
0.15 0.297 0.375 0.235 0.331 0.196 0.308
0.20 0.227 0.486 0.176 0.438 0.145 0.412
0.25 0.175 0.619 0.135 0.564 0.110 0.535

Theorem 3 lends practical relevance to the above minimax results when the
“loss function” g is given by (3.1). In addition, let �k�
� ε� be as in
Theorem 1(c). Then,

sup
F∈� �
� ε�

Qα�n�F�ψ� ≥ sup
F∈�k�
� ε�

Qα�n�F�ψ�

≥ sup
F∈�k�
� ε�

qα�n�F�ψ� − o�1/√n� by Theorem 2(c)

≥ qα�n�F∞� ψ� − o�1/√n�
≥ qα�n�F∞� ψ∗� − o�1/√n�� by Theorem 4

= sup
F∈� �
� ε�

qα�n�F�ψ∗� − o�1/√n��

≥ sup
F∈� �
� ε�

Qα�n�F�ψ∗� − o�1/√n�� by Theorem 2(b).

In words, the finite sample minimax quantiles (which would be very hard to
derive) can only be marginally smaller than qα�n�F∞� ψ∗�. Moreover, one can
expect that the optimal finite sample score function ψ can be only marginally
different from ψ∗. Finally, supF∈� �
�ε�Qα�n�F�ψ∗� can be well approximated
by qα�n�F∞� ψ∗�, with an error of order o�1/√n�. In summary, Theorems 2, 3
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and 4 justify the use of the minimax interval µ̂∗
n ± qα�n�F∞� ψ∗�, where µ̂∗

n is
given by equation (2.2) with ψ = ψ∗.

5. Unknown scale. In practice, the scale parameter σ0 is usually
unknown and must be robustly estimated from the data. In this case the
estimating equation (2.2) becomes

n∑
i=1

ψ

(
yi − µ̂n
σ̂n

)
= 0�(5.1)

where σ̂n is a robust estimate of σ0. If the underlying distributionF of the data
is symmetric, under mild regularity conditions, the asymptotic distribution
of µ̂n is normal with asymptotic variance given by (2.4) and σ0 replaced by
S�F�, where S�F� = limn→∞ σ̂n, almost surely F�. On the other hand, if
F is asymmetric the asymptotic distribution is still normal (under suitable
regularity conditions) but the asymptotic variance is much more involved and
depends on the particular choice of σ̂n [see Huber (1981), Sections 6.4 and
6.5, and Davies (1998)]. A convenient choice for σ̂n is the scale S-estimate
defined by Rousseeuw and Yohai (1984) as follows: given y1� � � � � yn, let sn�t�
be defined by

1
n

n∑
i=1

χ

(
yi − t

sn�t�
)
= β�(5.2)

where χ is even, nondecreasing for positive values and bounded with χ�0� = 0
and β = E
�χ�u��. Finally the scale estimate is defined by

σ̂n = min
t

sn�t��(5.3)

There is an associated location S-estimate µ̃n defined by

µ̃n = argtmin sn�t��(5.4)

As we will see below, this location estimate appears in the asymptotic vari-
ance of µ̂n through its asymptotic value, T̃�F�. However, since µ̂n has superior
robustness and efficiency properties, we will not use µ̃n as a location esti-
mate. The breakdown point ε∗ of both σ̂n and µ̂n is given by min�β/χ�∞��1−
β/χ�∞��, and thus to achieve ε∗ ≤ 0�5, one uses β = χ�∞� ε∗.

Salibian-Barrera (2000) shows that under regularity conditions, which inc-
lude continuous differentiability of ψ′ and χ′ there exists ε0 such that the
uniform asymptotic result of Theorem 1(a) holds for ε < ε0 and with v�F�ψ�
replaced by

v�F�ψ�χ� = S2�F�
B2

EF�γ2�X�	�(5.5)
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where

γ�X� = ψ

(
X−T�F�ψ�

S�F�
)
−A

[
χ

(
X− T̃�F�
S�F�

)
− β

]
�

A =
EF

{
ψ′(�X−T�F�ψ��/S�F�)(�X−T�F�ψ��/S�F�)}

EF
{
χ′(�X− T̃�F��/S�F�)(�X− T̃�F��/S�F�)}

and

B = EF

{
ψ′
(
X−T�F�ψ�

S�F�
)}
�

Other uniform results for simultaneous location and scale M-estimates are
given by Davies (1998).

Given the complexity of the expression for v�F�ψ�χ�, it would be very dif-
ficult to solve a general minimax problem for the unknown σ0 case. To obtain
an approximate practical solution we introduce the following simplifications:

1. We restrict attention to the important case when g�x1� x2� is the α-quantile
defined by (3.1).

2. We restrict our search for the optimal ψ function to a family of twice dif-
ferentiable approximations to the Huber functions given by (2.12). Notice
that when σ0 is known, the optimal minimax function cannot be practi-
cally distinguished from a Huber-type function. The transition from lin-
early increasing to constant is done in the interval d�1�, with d = 0�8.
Other choices for d between 0�7 and 0�9 produced similar results. The dif-
ferentiable family is obtained as follows. First, define ψD1 by

ψD1 �u� = sign �u�


�u�� if �u� ≤ 0�8,
p4��u��� if �u�0�8 < �u� ≤ 1,
p4�1�� if �u� > 1,

where p4�u� = 38�4 − 175�0u + 300�0u2 − 225�0u3 + 62�5u4, and the coef-
ficients are chosen so that ψD1 �u� is twice continuously differentiable. This
function, which also turns out to be strictly monotone for �u� < 1, is plotted
in Figure 1. Finally for any c > 0 put ψDc �u� = ψD1 �u/c�.

3. The function χ appearing in (5.2) is taken from the Tukey’s bisquare family
χBk �y� = χB1 �y/k� with

χB1 �u� =
{
u2�3− 3u2 + u4�� if �u� ≤ 1,
1� if �u� > 1,

(5.6)

k = 1�988 and β = 0�40. This choice of c which yields a 0.40 breakdown
point for S�F� and 0�15 ≤ ε0 < 0�16 was preferred to c = 1�547 which yields
a 0.5 breakdown point for S�F� and 0�10 ≤ ε0 < 0�11.

4. We restrict the contaminating distributions to the class of point mass distri-
butions. When σ0 is known, the least favorable contaminating distribution
is in this class. We conjecture that this also holds when σ is unknown.
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Fig. 1. Differentiable approximations to Huber’s score function.

Thus, we proceed as follows:

1. Fix ε� n and α.
2. For given y (contamination point) the corresponding asymptotic values of
T̃�Fy� and S�Fy� with Fy = �1 − ε�
 + εδy are numerically computed.

More precisely, we numerically find the value T̃�Fy� which minimizes, in
t�S�Fy� t� defined by

EFy
χBk

(
X− t

S�Fy� t�
)
= 0�4

and set S�Fy� = S�Fy� T̃�Fy��.
3. For each value of c (truncation point of ψDc ) we calculate T�Fy�ψ

D
c � by

solving the equation

EFy
ψDc

(
X−T�Fy�ψ�
S�Fy� t�

)
= 0�

4. Using T̃�Fy�� S�Fy� and T�Fy�ψ
D
c � we calculate v�Fy�ψ

D
c � χ

B
k � given

by (5.5).
5. Using T�Fy�ψ

D
c � and v�Fy�ψ

D
c � χ

B
k � we calculate the approximate

α-quantile qα�Fy�ψ
D
c � given by (3.1), with F = Fy and the given n.

6. Using a thin grid of values of y we approximate the maximum value,
q̄α�ψDc �, of qα�Fy�ψ

D
c �.
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Table 4

Maximum quantiles and truncation points for the optimal Huber-type score function when σ is
unknown

� = 0�01 � = 0�05 � = 0�10

n � c∗ q∗
α�n�ψH

c∗ � c∗ q∗
α�n�ψH

c∗ � c∗ q∗
α�n�ψH

c∗ �
20 0.05 1.17 0.683 1.16 0.521 1.16 0.437

0.10 0.73 0.811 0.70 0.624 0.68 0.527
0.15 0.49 0.962 0.46 0.750 0.44 0.639
0.20 0.36 1.139 0.33 0.902 0.31 0.776
0.25 0.26 1.358 0.23 1.089 0.22 0.945

40 0.05 1.07 0.501 1.04 0.383 1.00 0.322
0.10 0.66 0.616 0.60 0.481 0.56 0.410
0.15 0.45 0.748 0.41 0.597 0.38 0.516
0.20 0.33 0.902 0.30 0.733 0.27 0.643
0.25 0.23 1.088 0.21 0.897 0.21 0.796

100 0.05 0.92 0.342 0.85 0.265 0.81 0.225
0.10 0.56 0.444 0.49 0.357 0.44 0.311
0.15 0.39 0.558 0.32 0.462 0.29 0.410
0.20 0.28 0.690 0.21 0.583 0.21 0.525
0.25 0.19 0.849 0.17 0.727 0.14 0.662

500 0.05 0.66 0.193 0.56 0.157 0.49 0.137
0.10 0.39 0.279 0.35 0.239 0.28 0.218
0.15 0.27 0.375 0.22 0.332 0.18 0.308
0.20 0.19 0.487 0.15 0.438 0.13 0.412
0.25 0.13 0.619 0.13 0.565 0.07 0.536

7. Again, using a thin grid of values of c we minimize q̄α�ψDc � to find the
optimal truncation constant c∗ = c∗�ε� α� n�. The corresponding minimax
quantile will be denoted by q̄∗�ε� α� n�.
Table 4 summarizes the results of our numerical calculations. Observe that

the values of the minimax quantiles are very close to those in Table 2 which
correspond to the known σ0 case. This confirms the appropriateness of restrict-
ing the search to the family ψDc , at least for point mass contaminations. The
fact that σ0 is unknown does not cause a sensible increase in the value of
the minimax quantile because the self-adjustment of the truncation constant
accounts for the possible overestimation of σ̂ .

In applications, the given quantiles must be multiplied by σ̂n, as illustrated
in the examples below.

Example 1. Table 5 gives Newcomb’s measurements of the passage time
of light as reported by Stigler (1977).

The data contains two possible outliers (−44 and −2). Newcomb was trou-
bled by these two “unusual” measurements. Finally he deleted −44 but kept
−2 for the calculation of his estimate of the speed of light in air. We take
ε = α = 0�05 for this illustration and calculate c∗�0�05�0�05�66� = 0�92 and
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Table 5
Newcomb’s third series of measurements of the passage time of light (n = 66)

−44 23 25 27 29 32
−2 23 26 28 29 33
16 24 26 28 30 33
16 24 26 28 30 34
19 24 26 28 30 36
20 24 26 28 31 36
21 24 27 28 31 36
21 25 27 28 32 36
22 25 27 29 32 37
22 25 27 29 32 39
23 25 27 29 32 40

The given values times 0.001 and plus 24.8 are Newcomb’s original measurements, in millionth
of a second.

q̄∗�0�05�0�05�66� = 0�31. The robust estimates of location and scale [using
(5.6)] are 27.32 and 4.98, respectively. The optimal robust confidence inter-
val is 27�32 ± �4�98 × 0�31� or (25.78, 28.86). The corresponding Student’s t
intervals are (23.57, 28.85) using all the data (25.74, 28.84) deleting −44 and
(26.48, 29.02) deleting −2 and −44. The point −44 upsets the length and the
lower end of Student’s t interval. The agreement between the robust interval
and Student’s t interval using 65 points is consistent with Newcomb’s decision
of keeping −2 but deleting −44 for his final estimate.

Example 2. This example is based on the artificial data set Xi = 10+ ηi
where the independent errors ηi are N(0, 1), for i = 1� � � � �180 andN�2�0�01�
for i = 181� � � � �200. The data are presented in Figure 2.

As in Example 1, we take α = 0�05 and compute c∗�0�05�0�05�200� = 0�72
and q̄∗�0�05�0�05�200� = 0�21, for ε = 0�05, and c∗�0�10�0�05�200� = 0�42
and q̄∗�0�05�0�05�200� = 0�3, for ε = 0�10. The robust estimate of location
is 10.16 for both values of ε. The initial scale estimate is 1.08. The optimal
robust confidence intervals are (9.94, 10.38) for ε = 0�05 and (9.83, 10.48) for
ε = 0�10. Student’s t interval using all the data is (10.07, 10.36). The results
of this example are not atypical. In fact, in a small Monte Carlo simulation
of 1000 similar data sets, 83% of the robust intervals for ε = 0�05, 97% of the
robust intervals for ε = 0�10, 38% of Student’s t intervals using all the data
and 34% of Student’s t intervals using the “clean data” (after hard rejection
of outliers) included the true value 10.

APPENDIX

Observe that (2.2) and (2.9) imply that the optimal function ψ∗ is indepen-
dent of µ0 and σ0. Then, in this Appendix we will assume, without loss of
generality, that µ0 = 0 and σ0 = 1. Consequently, from now on we will write

 in place of F0.
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Fig. 2. Artificial data.

Proof of Lemma 1. Without loss of generality we may assume that
supψ = 1. We start proving that

�∂/∂t�η�t�
�ψ� > 0� for all t�(A.1)

For any t we have

�∂/∂t�η�t�
�ψ� = −
∫ ∞

−∞
ψ�y− t�φ′�y�dy =

∫ ∞

−∞
ψ�y− t�yφ�y�dy

=
∫ ∞

0
ψ�y− t� + ψ�y+ t��yφ�y�dy�

and notice that ψ�y− t� + ψ�y+ t� ≥ 0 for all y > 0� and there exists a such
that the inequality is strict on a < y because ψ�y − t� + ψ�y + t� → 2 as
y→ ∞.

To prove (a) notice that the existence of T�F�ψ� follows from the conti-
nuity of η�t�F�ψ� and the fact that, by the dominated convergence theorem,
limt→∞ η�t�F�ψ� = 1 and limt→−∞ η�t�F�ψ� = −1. The uniqueness ofT�F�ψ�
follows from the strict monotonicity of η�t�F�ψ� [notice that η�t�F�ψ� = �1−
ε�η�t�
�ψ�+εη�t�H�ψ� is nondecreasing and η�t�
�ψ� is strictly increasing].

To prove (b) let t1 and t2 be the solutions to �1 − ε�η�t�
�ψ� − ε = 0 and
�1− ε�η�t�
�ψ� + ε = 0, respectively. Then we have t2 ≤ T�F� ≤ t1 because

�1− ε�η�t�
�ψ� − ε ≤ η�t�F�ψ�
≤ �1− ε�η�t�
�ψ� + ε for all F ∈ � �
� ε��
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To prove the “limit” part of (b) notice that

lim
t→∞

T��1− ε�
+ εδy� = lim
t→∞

η−1�εψ�y− t�/�1− ε��
�ψ�

= η−1�ε/�1− ε��
�ψ�
= t1�

where η−1�u�
�ψ� is the inverse of η with respect to t.
Using (A.1) and part (b) we get

inf
F∈� �
�ε�

∂η�t�F�ψ�
∂t

∣∣∣∣
t=T�F�ψ�

≥ inf
t2≤t≤t1

∂η�t�
�ψ�
∂t

> 0�

Then (c) follows from the fact that ψ is bounded. ✷

Proof of Theorem 1. Consider first a fixed real number a and define

tn = tn�F�ψ� = a

√
v�F�ψ�

n
+T�F�ψ��(A.2)

Using the monotonicity and continuity of ψ one has

P

(√
n�µ̂n−T�F�ψ��√

v�F�ψ� ≤a
)
= P

( n∑
i=1
ψ�xi−tn�≤0

)

= P

( n∑
i=1

ψ�xi−tn�+η�tn�F�ψ�√
nσ�tn�F�ψ�

≤An�F�ψ�
)
�

(A.3)

where σ2�t�F�ψ� = VarF�ψ�X− t�	 and

An�F�ψ� =
√
nη�tn�F�ψ�
σ�tn�F�ψ�

�(A.4)

Consider � ⊂ � �
� ε�, then using (A.3) and the Berry–Essen version of the
central limit theorem, to prove

lim
n→∞ sup

F∈�

∣∣∣∣PF

(√
n�µ̂n −T�F�ψ�√

v�F�ψ� ≤ a

)
−
�a�

∣∣∣∣ = 0�(A.5)

it is enough to show that

lim sup
n→∞

sup
F∈� �
�ε�

EF�ψ�X− tn� + η�tn�F�ψ��3
σ3�tn�F�ψ�

<∞(A.6)

and

lim
n→∞ sup

F∈�
�An�F�ψ� − a� = 0�(A.7)
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Suppose that A1 holds, then since ψ is bounded, to prove (A.6) it suffices to
show that the denominator is uniformly bounded away from zero. In fact, by
Chebyshev’s inequality, for all δ > 0,

σ2�tn�F�ψ� ≥ δ2PF��ψ�X− tn� + η�tn�F�ψ�� ≥ δ�
≥ δ2�1− ε�P
��ψ�X− tn� + η�tn�F�ψ�� ≥ δ�
≥ δ2�1− ε�min�P
�ψ�X− tn� ≤ −δ��P
�ψ�X− tn� ≥ δ�	(A.8)

≥ δ2�1− ε�min�P
�ψ�X+ t̄� ≤ −δ��P
�ψ�X− t̄� ≥ δ�	
> 0�

where t̄ = t̄�ψ� ε� = supF∈� �
�ε� �T�F�ψ�� +a supF∈� �
�ε�
√
v�F�ψ�. Notice that

t̄ <∞ by Lemma 1(b) and (c). This proves (A.6).
We will show now that

lim
n→n

sup
F∈� �
�ε�

�σ2�tn�F�ψ� − EF�ψ2�X−T�F�ψ���� = 0�(A.9)

We have

σ2�tn�F�ψ� = EF�ψ2�X− tn�� − η2�tn�F�ψ��(A.10)

According to Lemma 1(c) we have M = supF∈� �
�ε�
√
v�F�ψ� <∞. Then

sup
F∈� �
�ε�

�tn −T�F�ψ�� ≤ aM√
n
�(A.11)

Let δ�u� = supt �ψ2�x − t − u� − ψ2�x − t��. Then, since ψ2 is uniformly
continuous, we have limu→0 δ�u� = 0. Then

lim
n→∞ sup

F∈� �
�ε�
�EF�ψ2�X− tn�� − EF�ψ2�X−T�F�ψ����

≤ lim
n→∞ δ

(
aM√
n

)
= 0�

(A.12)

Similarly we can prove

lim
n→∞ sup

F∈� �
�ε�
supη�tn�F�ψ�

= lim
n→∞ sup

F∈� �
�ε�
�η�tn�F�ψ� − η�T�F�ψ��F�ψ�� = 0�

(A.13)

Then (A.10), (A.12) and (A.13) imply (A.9).
Suppose now that A1 and A2 hold. To prove part (a) we have to show

(A.7) with � = � �
� ε�. Using the definition of T�F�ψ� and the mean value
theorem, we can write

An�F�ψ� =
√
n

σ�tn�F�ψ�
�η�tn�F�ψ� − η�T�F�ψ��F�ψ��

= a
√
v�F�ψ�

σ�tn�F�ψ�
EFψ

′�X− t̃n��
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where t̃n is between T�F�ψ� and tn. Then, since (A.9) holds, to prove (A.7)
with � = � �
� ε�, it suffices to show that

lim
n→∞ sup

F∈� �
�ε�
�EFψ′�X− t̃n� − EFψ

′�X−T�F�ψ��� = 0�(A.14)

which is derived from the uniform continuity of ψ′ and (A.11). This proves
part (a) of Theorem 1.

Suppose now that A1 and A3 hold. Because of Lemma 1(b) we can choose
k0 > c+ supF∈� �
�ε� �T�F�ψ��. Since (A.6) holds, to prove (c) it will be enough
to show that (A.7) holds with � = �k0�
� ε� and since (A.9) holds, it will be
enough to show that if we define Cn�F�ψ� by

Cn�F�ψ� =
√
n�η�tn�F�ψ�−η�T�F�ψ��F�ψ��

−a
√
v�F�ψ�EF�I�−c�c��X−T�F�ψ��ψ′�X−T�F�ψ����

(A.15)

then

sup
F∈�k�
�ε�

�Cn�F�ψ�� = 0�

Suppose this is not true; then there exists γ > 0 and a sequence Fn ∈
�k0�
� ε�� n ≥ 1, such that

lim
n→∞ �Cn�Fn�ψ�� > γ(A.16)

and without loss of generality we can assume that limn→∞T�Fn�ψ� = t0. Let
Fn = �1−ε�
+εHn, whereHn assigns probability 0 to the interval −k0� k0�.
Then, since ψ′�x� = 0 outside −c� c�, we have

lim
n→∞

√
n�−EHn

�ψ�X− tn�Fn�ψ�� + EHn
�ψ�X−T�Fn�ψ����

− a
√
v�Fn�ψ�EHn

ψ′�X−T�Fn�ψ�� = 0�
(A.17)

On the other hand, for all x �= �t0 ± c�, (A.11) and the mean value theorem
yields

lim
n→∞

√
n�−�ψ�x− tn�Fn�ψ�� + ψ�x−T�Fn�ψ���

−a
√
v�Fn�ψ�ψ′�x−T�Fn�ψ��

= lim
n→∞a

√
v�Fn�ψ��ψ′�x− t̃n�Fn�ψ�� − ψ′�x−T�Fn�ψ��� = 0�

where t̃n�Fn�ψ� is between T�Fn�ψ� and tn�Fn�ψ�.
Using that �ψ�x� − ψ�y�� ≤K�x− y�, where K = supψ′ we also have∣∣∣∣√n�−�ψ�x− tn�Fn�ψ�� + ψ�x−T�Fn�ψ��� − a

√
v�Fn�ψ�ψ′�x−T�Fn�ψ��

∣∣∣∣
≤ 2aK sup

F∈� �
�ε�

√
v�F�ψ��
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Then the dominated convergence theorem implies

lim
n→∞

√
n�−E
�ψ�X− tn�Fn�� + E
�ψ�X−T�Fn�ψ���

−a
√
v�Fn�ψ�E
ψ′�X−T�Fn�ψ�� = 0�

(A.18)

Since (A.17) and (A.18) contradict (A.16), part (c) is proved.
Assume A1 and A3. Since (A.3) and (A.6) hold, to prove (b) it is enough to

show that

lim
n→∞ inf inf

F∈� �
�ε�
An�F�ψ� ≥ a if a ≥ 0(A.19)

and

lim
n→∞ sup sup

F∈� �
�ε�
An�F�ψ� ≤ a if a < 0�(A.20)

The proofs of (A.19) and (A.20) are completely similar, so, we will only prove
(A.19). Since (A.6) holds, to prove (A.19) it is enough to show that

lim inf
n→∞ inf

F∈� �
�ε�
Cn�F�ψ� ≥ 0�(A.21)

whereCn�F�ψ� is defined in (A.16). Sinceψ is nondecreasing and tn ≥ T�F�ψ�,
for all δ > 0 we have

Cn�F�ψ� =
√
nEF�−ψ�X− tn� + ψ�X−T�F�ψ���

≥ √
n�EF�I−�c−δ���c−δ���X−T�F�ψ���−ψ�X− tn�

+ ψ�X−T�F�ψ����
(A.22)

Since supF∈�k�
�ε� �T�F�ψ�−tn� → 0 and ψ is differentiable in �−c� c�, by the
mean value theorem there exist n0 such that for all n ≥ n0 and F ∈ � �
� ε�,

√
n�EF�I−�c−δ�� �c−δ���X−T�F�ψ���−ψ�X− tn� + ψ�X−T�F�ψ���

= av�F�ψ�EF�I−�c−δ�� �c−δ���X−T�F�ψ���ψ′�X− t̃n���

where t̃n is between T�F�ψ� and tn. Using the uniform continuity of ψ′ and
the fact that by Lemma 1(c) supF∈�k�
�ε� v�F�ψ� <∞ we have that

sup
F∈� �
�ε�

av�F�ψ��EF�I−�c−δ���c−δ���X−T�F�ψ��

×�ψ′�X− t̃n� − ψ′�X−T�F�ψ���� = 0
(A.23)

and

lim
δ→0+

sup
F∈� �
�ε�

v�F�ψ��EF��I−�c−δ�� �c−δ�� − I�−c�c���ψ′�X−T�F�ψ�� = 0�(A.24)

(A.22)–(A.24) imply (A.21), and then part (b) is proved. ✷
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Proof of Theorem 2. (a) Using Theorem 1(a), (3.1), (3.2) and (3.3) we get

1− α = 


(√
n�qα�n�F�ψ� − b�F�ψ��√

v�F�ψ�

)

+

(√

n�qα�n�F�ψ� + b�F�ψ��√
v�F�ψ�

)
− 1

= P��µ̂n� ≤ Qα�n�F�ψ��

= P

(
−
√
n�Qα�n�F�ψ� + b�F�ψ��√

v�F�ψ�

≤
√
n�µ̂n −T�F�ψ��√

v�F�ψ� ≤
√
n�Qα�n�F�ψ� − b�F�ψ��√

v�F�ψ�

)

= 


(√
n�Qα�n�F�ψ� − b�F�ψ��√

v�F�ψ�

)

+

(√

n�Qα�n�F�ψ� + b�F�ψ��√
v�F�ψ�

)
− 1+R1� n�F�ψ�

(A.25)

with

lim
n→∞ sup

F∈� �
�ε�
�R1� n�F�ψ�� = 0�(A.26)

Let

h�t� = 

[√
n�t− b�F�ψ��

/√
v�F�ψ�

]
+


[√
n�t+ b�F�ψ��

/√
v�F�ψ�

]
− 1�

Then

Qα�n�F�ψ� = h−1�1− α−R1� n�F�ψ��
= h−1�1− α� − �h−1�′�1− α∗

n�R1� n�F�ψ�
= qα�n�F�ψ� − �h−1�′�1− α∗

n�R1� n�F�ψ��
with 1 − α∗

n between 1 − α and 1 − α − R1� n�F�ψ�. Let q∗α�n = h−1�1 −
α∗
n�, An = √

nh−1�1 − α∗
n� − b�F�ψ��/√v�F�ψ� and Bn = √

nh−1�1 − α∗
n� +

b�F�ψ��/√v�F�ψ�. The result follows now because �h−1�′�1−α∗
n� = O�1/√n�.

In fact,

�h−1�′�1− α∗
n� =

1
h′q∗α�n�

= 1√
n

√
v�F�ψ�

φ�An� +φ�Bn��
and the second factor on the right side below is uniformly bounded. To see
that, notice that, since φ�An� + φ�Bn� − 1 → 1− α uniformly on � �
� ε�, we
have that 0 ≤ min��An�� �Bn�	 ≤ K < ∞, for large n, uniformly on � �
� ε�.
Then φ�An� + φ�Bn� is uniformly bounded away from 0. The proofs of parts
(b) and (c) of the theorem are similar. ✷
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Proof of Theorem 3. (a) Let An = −q̄α� n�ψ�+b�F�ψ��/
√
v�F�ψ�/n and

Bn = q̄α� n�ψ� − b�F�ψ��/√v�F�ψ�/n. By Theorem 1(a) and the definition of
qα�n�F�ψ�,

PF��µ̂n� ≤ q̄α� n�ψ�� = PF

(
An ≤ √

n
µ̂n −T�F�ψ�√

v�F�ψ� ≤ Bn

)

= 
�Bn� −
�An� + rn�F�
≥ 
�bn� −
�an� + rn�F� = 1− α+ rn�F��

where supF∈� �
�ε� �rn�F�� → 0� an = −qα�n�F�ψ� + b�F�ψ��/√v�F�ψ�/n and
bn = qα�n�F�ψ� − b�F�ψ��/√v�F�ψ�/n. Then

lim inf
n→∞ inf

F∈� �
� ε�
PF��µ̂n� ≤ q̄α� n�ψ�� ≥ 1− α�(A.27)

On the other hand, for each n, let �Fn�m	 be a sequence in � �
� ε� such that
q̄α� n�ψ� = limm→∞ qα�n�Fn�m�ψ�. LetAn�m,Bn�m� an�m and bn�m be defined as
the correspondingAn�Bn, an and bn, withF replaced byFm�n. By Theorem 1(a)
we have

inf
F∈� �
�ε�

PF��µ̂n� ≤ q̄α� n�ψ�� ≤ PFn�m
��µ̂n� ≤ q̄α� n�ψ��

= 
�Bn�m� −
�An�m� + rn�Fn�m��
(A.28)

For each n we can find mn such that 
�Bn�mn
� − 
�An�mn

� − 
�bn�mn
� −


�an�mn
�� ≤ 1/n. Then


�Bn�mn
� −
�An�mn

� ≤ �
�bn�mn
� −
�an�mn

�� + 1
n

= 1− α+ 1
n
�

(A.29)

From (A.28) and (A.29) we get

lim sup
n→∞

inf
F∈� �
� ε�

PF��µ̂n� ≤ q̄α� n�ψ�� ≤ 1− α�(A.30)

and (a) follows now from (A.27) and (A.30).
(b) We will first show that g�x1� x2� is nondecreasing in x1 and x2. Differ-

entiation of (3.1) gives

∂

∂x1
g�x1�x2�=

φ�g�x1�x2�−x1�/
√
x2/n�−φ�g�x1�x2�+x1�/

√
x2/n�

φ�g�x1�x2�−x1�/
√
x2/n�+φ�g�x1�x2�+x1�/

√
x2/n�

(A.31)

and
∂

∂x2
g�x1�x2�=

1
2x2

×
φ
[
�g�x1�x2�−x1�/

√
x2/n

]
�g�x1�x2�−x1�+φ

[
�g�x1�x2�+x1�/

√
x2/n

]
�g�x1�x2�+x1�

φ
[
�g�x1�x2�−x1�/

√
x2/n

]
+φ

[
�g�x1�x2�+x1�/

√
x2/n

] �

(A.32)
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Since the right side of (A.31) has the same sign as x1 for all real x1 and all
x2 > 0� g�x1� x2� is nondecreasing in �x1�. If �x1� > g�x1� x2� then �g�x1� x2� −
x1��g�x1� x2� + x1� < 0 and the right side of (3.1) is less than 0.5. Since the
left side of (3.1) is larger than or equal to 0.5, we must have �x1� ≤ g�x1� x2�.
Hence, g�x1� x2� + x1 ≥ 0 and g�x1� x2� − x1 ≥ 0 for all real x1 and all x2 > 0.
Therefore, the right side of (A.32) is nonnegative.

Equation (A.27) can be obtained for any ψ ∈ � in the same way as in the
proof of part (a), using Theorem 1(b) instead of Theorem 1(a), if necessary. In
a similar way, (A.30) can be proved as in part (a) using Theorem 1(c) instead
of Theorem 1(a). For this, observe that the sequence Fn�m can be taken of
the form �1 − ε�
 + εδym , with ym → ∞. This follows from the following
facts: g�x1� x2� is monotone in �x1� and x2 by part (a), B�ε� = limy→∞ b��1 −
ε�
+εδy�ψ� [see Lemma 1(c)] and we are assuming that supF∈� �
�ε� v�F�ψ� =
limy→∞ v��1− ε�
+ εδy�ψ�.

The rest of the Appendix is devoted to the proof of Theorem 4.
Let ε > 0 be fixed. For each µ > 0 andK > 0 let �µ�K be the family of score

functions ψ ∈ � satisfying [see (4.3)]

B1. �ψ�λµ�µ = ψ�∞�ε/�1− ε�.
B2. ψ�∞� =K.
B3. �ψ� δµ�µ = 1.

Since the asymptotic variance and bias of estimates with score functions ψ
and kψ (k > 0) are the same (actually, the estimates themselves are the same)
B3 entails no loss of generality.

Remark 2. It is easy to verify that λt�y� = φ�y− t�−φ�y+ t��/.t�y� and
so, by (2.3) and (4.3),

η�t�
�ψ� = −
∫ ∞

−∞
ψ�y− t�φ�y�dy = �ψ�λt�t�(A.33)

By (2.8), then, B1 is equivalent to Bψ�ε� = µ.

Remark 3. By Huber (1964), the median, with maxbias

µ = µ�ε� = 
−1
(

1
2�1− ε�

)
�(A.34)

minimizes the maxbias among all translation equivariant estimates. There-
fore,

Bψ�ε� ≥ µ for all ψ ∈ � �(A.35)

Remark 4. B3 implies that (see the proof of Lemma 7)

ψ�∞� ≥ φ�0� +φ�µ��−1 ≡K0�µ� for all ψ ∈ �µ�K�(A.36)
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By Remarks 2, 3 and 4, we can restrict attention to

� ∗ = ⋃
µ<µ

⋃
K≥K0�µ�

�µ�K�

For technical reasons we will also consider the family

� ∗∗ = ⋃
µ<µ≤µ̄

⋃
K≥K0�µ�

�µ�K�(A.37)

where µ̄ is given by (4.8).
Consider now the special score functions

ϕc�µ�y� =
{
λµ�y�� if �y� ≤ c,
λµ�c� sign �y�� if �y� > c,(A.38)

and

γc�µ�y� =
{
δµ�y�� if �y� ≤ c,
δµ�c� sign �y�� if �y� > c.(A.39)

Lemma 2. Let µ ∈ �µ�ε�� µ̄�ε�� be fixed. Then�
(a) There exists c1 = c1�µ� such that b�
∞� ϕc1� µ� = µ. Therefore, ϕ̄c1� µ =

ϕc1� µ/�ϕc1� µ� δµ�µ ∈ �µ�K1
with

K1�µ� =
ϕc1� µ�c1�

�ϕc1� µ� δµ�µ
�(A.40)

(b) There exists c2 = c2�µ� such that b�
∞� γc2� µ� = µ. Therefore, γ̄c2� µ =
γc2� µ/�γc2� µ� δµ�µ ∈ �µ�K2

with

K2�µ� =
γc2� µ�c2�

�γc2� µ� δµ�µ
�(A.41)

Proof. To prove part (a) it suffices to show that the equation (in c, with
fixed µ)

H1�c� ≡
�ϕc�µ� λµ�µ
ϕc�µ�c�

= ε

�1− ε�(A.42)

has a (unique) solution. This follows because

lim
c→0

H1�c� = 2
�u� − 1 > 2
�µ�ε�� − 1

= 2

−1�0�5/�1− ε��� − 1 = ε/�1− ε�
and limc→∞H1�c� = �λµ� λµ�µ < �λµ̄�ε�� λµ̄�ε��µ̄�ε� = ε/�1−ε�. The last inequal-
ity follows by Remark 1. The proof of part (b) follows from a similar analysis
of the equation

H2�c� ≡
�γc�µ� λµ�µ
γc�µ�c�

= ε

�1− ε� �(A.43)

In fact, limc→0H2�c� = 2
�u� − 1 > ε/�1− ε� and limc→∞H2�c� = 0. ✷
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Lemma 3. Suppose that ψa�b� c� µ given by �4�1� belongs to �µ�K, for some
positive constants a, b and c and that g satisfies C1–C5. Then lg�ψ� ≥
lg�ψa�b� c� µ� for all ψ ∈ �µ�K.

Proof. Since ψ and ψa�b� c� µ belong to �µ�K it suffices to show that

�ψ�ψ�µ ≥ �ψa�b� c� µ� ψa� b� c� µ�µ�
Let

C�µ�K� = a2�δµ� δµ�µ + b2�λµ� λµ�µ − 2a− 2bKε/�1− ε� + 2ab�δµ� λµ�µ�
Since ψ�y� ≤K on 0�∞�, by the definition of ψa�b� c� µ,

�ψ�ψ�µ +C�µ�K� =
∫ ∞

0
ψ�y� − aδµ�y� − bλµ�y��2.µ�y�dy

≥
∫ ∞

0
ψa�b� c� µ�y� − aδµ�y� − bλµ�y��2.µ�y�dy

= �ψa�b� c� µ� ψa� b� c� µ�µ +C�µ�K��
and this proves the lemma. ✷

Lemma 4. Suppose that g satisfies C1–C5. Let 0 ≤ ε < 0�5 and µ ∈
�µ�ε�, µ̄�ε�� be fixed. Let c1 = c1�µ�, K1 = K1�µ� and ϕ̄c1� µ be as given
by Lemma 2(a). Then

lg�ψ� ≥ lg�ϕ̄c1� µ� ∀ψ ∈ �µ�K with K ≥K1�

Proof. To prove the lemma it suffices to show that

�ψ�ψ�µ ≥ �ϕ̄c1� µ� ϕ̄c1� µ�µ�
Let ψ̂�y� = ψ�y�/ψ�∞� = ψ �y�/K and ϕ̂c1� µ�y� = ϕ̄c1� µ�y�/ϕ̄c1� µ�∞� =
ϕ̄c1� µ�y�/K1. Noticing that �ψ̂� λµ�µ = �ϕ̂c1� µ� λµ�µ = ε/�1 − ε�, that λµ�y�
is strictly increasing in y and using the definition of ϕ̂c1�µ , we have

0 ≤
∫ ∞

0
ψ̂�y� − λµ�y�/λµ�c1��2.µ�y�dy

−
∫ ∞

0
ϕ̂c1� µ�y� − λµ�y�/λµ�c1��2.µ�y�dy

= �ψ̂� ψ̂�µ − �ϕ̂c1� µ� ϕ̂c1� µ�µ�
Therefore, �ψ�ψ�µ ≥K2�ϕ̄c1� µ� ϕ̄c1� µ�µ/K2

1 ≥ �ϕ̄c1� µ� ϕ̄c1� µ�µ. ✷

Lemma 5. Suppose that g satisfies C1–C5. Let 0 ≤ ε < 0�5 and µ ∈ �µ�ε�,
µ̄�ε�� be fixed. Let c2 = c2�µ� and K2 = K2�µ� be the constants given by
Lemma 2(b). Then for each ψ ∈ �µ�K with K ≤K2 there exists c ≤ c2 such that

lg�ψ� ≥ lg�γ̄c� µ��
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Proof. Let γ̄c� µ�y� = γc�µ�y�/�γc�µ� δµ�µ and notice that K2 = γ̄c2� µ�∞�.
It is not difficult to show that γ̄c� µ�c� is nondecreasing in c and therefore
there exists c∗ ≤ c2 such that γ̄c∗�µ�c∗� = K. To simplify the notations, set
γ∗ = γ̄c∗� µ. By definition, γ∗ satisfies B2 and B3. Furthermore, since c∗ ≤ c2,
µ∗ = b�
∞� γc∗� ≤ µ. Therefore, it suffices to show that

�ψ�ψ�µ ≥ �γ∗� γ∗�µ∗ �(A.44)

Noticing that �ψ� δµ�µ = �γ∗� δµ�µ = 1, δµ�y� is strictly increasing in y and
using the definition of γ∗ and a reasoning similar to the proof of Lemma 3
gives

�ψ�ψ�µ ≥ �γ∗� γ∗�µ
and the lemma follows from the monotonicity (in µ) of �ψ�ψ�µ. ✷

Lemma 6. Suppose that g satisfies C1–C5. Let 0 ≤ ε < 0�5 be fixed and
let ψ ∈ �µ�K, with µ ∈ �µ�ε�, µ̄�ε�� and K between K1�µ� and K2�µ�. Then
there exists c between c1�µ� and c2�µ�, a and b such that lg�ψa�b� c� µ� ≤ lg�ψ�.
Moreover, a = ã�c� and b = b̃�c� depend only on c and are given by (A.45) and
(A.46).

Proof. Since v�
∞� ψ� ≥ 1 and gµ�ε�� �2�1 − ε�φ�µ�ε��−1� = lg�sign�,
we only need to consider score functions with b�
∞� ψ� = µ and µ�ε� ≤ µ <
µ̄�ε�−δ. Let K = ψ�∞� and let c1 = c1�µ� and c2 = c2�µ� as defined by (A.42)
and (A.43). In addition let K1 = K1�µ� and K2 = K2�µ� be given by (A.40)
and (A.41). Let

A11�c� =
∫ c

0
δµ�y�δµ�y�.µ�y�dy+ δµ�c�

∫ ∞

c
δµ�y�.µ�y�dy�

A12�c� =
∫ c

0
λµ�y�δµ�y�.µ�y�dy+ λµ�c�

∫ ∞

c
δµ�y�.µ�y�dy�

A21�c� =
∫ c

0
δµ�y�λµ�y�.µ�y�dy+ δµ�c�

∫ ∞

c
λµ�y�.µ�y�dy− δµ�c�ε/�1− ε��

A22�c� =
∫ c

0
λµ�y�λµ�y�.µ�y�dy+ λµ�c�

∫ ∞

c
λµ�y�.µ�y�dy− λµ�c�ε/�1− ε��

The function ψa�b� c� µ satisfies B1 and B3 if and only if there exist a ≥ 0 and
b ≥ 0 satisfying

bA11�c� + aA12�c� = 1�

bA21�c� + aA22�c� = 0�

that is, if and only if

ã�c� = −A21�c�
A11�c�A22�c� −A12�c�A21�c�

≥ 0�(A.45)

b̃�c� = A22�c�
A11�c�A22�c� −A12�c�A21�c�

≥ 0�(A.46)
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Clearly A11�c� and A12�c� are positive. Suppose first that c1 < c2 since earlier
truncations produce smaller maxbiases, A21�c� ≤ 0 and A22�c� ≥ 0 and so
ã�c� ≥ 0 and b̃�c� ≥ 0. The cases c1 = c2, c2 < c1 can be analyzed in a similar
way. Set ψã�c�� b̃�c�� c� µ�∞� =K�c�. Clearly,K�c� is continuous and takes all the
values between K�c1� =K1 and K�c2� =K2. This proves the lemma. ✷

Lemma 7. Let 0 ≤ ε < 0�5 and suppose that b�
∞� ψ� ≥ µ̄�ε�. Then
v�
∞� ψ� ≥ v�ε�, where v�ε� is given by �4�9�.

Proof. Let µ = b�
∞� ψ�. It is easy to see that

�ψ� δµ�µ = −
∫ ∞

−∞
ψ�x�φ′�x+ µ�dx =

∫ ∞

−∞
ψ�x��x+ µ�φ�x+ µ�dx�

Therefore, by the Cauchy–Schwarz inequality,

�ψ� δµ�2µ =
[∫ ∞

−∞
ψ�x��x+ µ�φ�x+ µ�dx

]2

≤
∫ ∞

−∞
ψ2�x�φ�x+ µ�dx

∫ ∞

−∞
�x+ µ�2φ�x+ µ�dx(A.47)

=
∫ ∞

−∞
ψ2�x�φ�x+ µ�dx = �ψ�ψ�µ�

On the other hand,

�ψ� δµ�µ = −
∫ ∞

0
ψ�x�φ′�x+ µ� +φ′�x− µ��dx

=
∫ ∞

0
ψ�x��x+ µ�φ�x+ µ�dx+

∫ ∞

0
ψ�x��x− µ�φ�x− µ�dx

≤
∫ ∞

0
ψ�x��x+ µ�φ�x+ µ�dx+

∫ ∞

µ
ψ�x��x− µ�φ�x− µ�dx(A.48)

≤ ψ�∞�
[∫ ∞

µ
xφ�x�dx+

∫ ∞

0
xφ�x�dx

]
= ψ�∞�φ�µ� +φ�0���

The lemma follows now from (4.6), (A.47) and (A.48). ✷

Proof of Theorem 4. For each µ ∈ �µ�ε�, µ̄�ε��, let I2�µ� be the closed
interval with endpoints K1�µ� and K2�µ�. Consider the set

� ∗∗∗ = ⋃
µ<µ<µ̄

⋃
K∈I2�µ�

�µ�K�

and let C = C1 ∪C2, where C1 and C2 are given by (4.13) and (4.14), respec-
tively. Since the function lg�ψa�b� c� µ� is lower semicontinuous and C is com-
pact, there exists ψ∗ = ψa∗� b∗� c∗� µ∗ such that

lg�ψa�b� c� µ� ≥ lg�ψ∗� ∀�a� b� c� µ� ∈ C�
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By Lemma 6,

lg�ψ� ≥ lg�ψ∗� ∀ ψ ∈ � ∗∗∗�

and by Lemmas 4 and 5,

lg�ψ� ≥ lg�ψ∗� ∀ ψ ∈ � ∗∗�

By Lemma 7 and (4.11), if b�
∞� ψ� ≥ µ̄�ε�,
lg�ψ� ≥ g�µ̄�ε�� v�ε�� ≥ lg�ψ∗��

Therefore,

lg�ψ� ≥ lg�ψ∗� ∀ ψ ∈ � ∗�

Finally, by (4.12),

Lg�ψ� ≥ lg�ψ� ≥ lg�ψ∗� = Lg�ψ∗� ∀ ψ ∈ � ∗�

Lemma 8. Let ψHc be given by �2�12�. Then

sup
F∈� �
�ε�

v�F�ψHc � = v�
∞� ψHc ��

Proof. First notice that

sup
F∈� �
�ε�

�T�F�ψHc �� ≤ T�
∞� ψHc ��

The contamination part in the numerator of v�F�ψHc � is bounded above by εc2

and the contamination part in the denominator of v�F�ψHc � is bounded below
by 0. The lemma follows now because the normal parts in the numerator and
denominator of v�F�ψHc � are monotone functions of �t�, with E
�ψHc 2�X− t�	
being nondecreasing in �t� and E
�ψHc ′�X − t�	 = 
�c + t� − 
�c − t� being
nonincreasing in �t�. ✷
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