ON EQUAL DISTRIBUTIONS

BY MOSHE POLLAK

The Hebrew University of Jerusalem

It is shown that two distributions both of which have a finite expectation are equal if and only if for every $n \ge 1$ there exists $1 \le k \le n$ such that the kth order statistics from samples of size n of each distribution have equal expectations.

Similarly, it is shown that a distribution with finite expectation is symmetric about zero if and only if for every $n \ge 0$ there exists $0 \le k \le 2n + 1$ such that the sum of the expectations of the kth smallest and the kth largest observations in a sample of size 2n + 1 is zero.

The object of this paper is to give a characterization of distributions of random variables whose expectations exist and are finite.

In this paper, $(X_{(1)}^n, \dots, X_{(n)}^n)$ will denote the order statistic (in increasing order) of n independent observations of the random variable X.

THEOREM 1. Let X, Y be random variables whose expectations exist and are finite, and let F, G denote their respective distributions. A necessary and sufficient condition for F to equal G is that for every positive integer n there exist a k_n , $1 \le k_n \le n$, such that

(1)
$$EX_{(k_n)}^n = EY_{(k_n)}^n.$$

PROOF. The necessity of the condition is clear. The sufficiency will be proved by the following two lemmas.

LEMMA 1. Let X, Y be defined as in Theorem 1. If for every positive integer n there exists a k_n , $1 \le k_n \le n$, such that (1) holds, then for every n and every $1 \le i \le n$.

$$EX_{(i)}^n = EY_{(i)}^n.$$

PROOF. By induction on n and i. (2) clearly holds for n = 1, i = 1. Suppose that (2) holds for all $1 \le i \le n$, $n \le r$. It suffices to prove that $EX_{(i)}^{r+1} = EY_{(i)}^{r+1}$ for all $1 \le i \le r+1$. By hypothesis, $EX_{(k_{r+1})}^{r+1} = EY_{(k_{r+1})}^{r+1}$.

Let

$$A_j^n = \text{ the set of all subsets of } \{1, \cdots, n\} \text{ which contain exactly } j \text{ different elements}$$

$$(S_{(1)}^\sigma, \cdots, S_{(j)}^\sigma) = \text{ the order statistic (in increasing order) of } \{X_{(i)}^n \mid i \in \sigma, \ \sigma \in A_j^n\}$$

$$(T_{(1)}^\sigma, \cdots, T_{(j)}^\sigma) = \text{ the order statistic (in increasing order) of } \{Y_{(i)}^n \mid i \in \sigma, \ \sigma \in A_j^n\}$$

$$V_i^{r+1} = \sum_{\sigma \in A_r^{r+1}} S_{(i)}^\sigma$$

$$W_i^{r+1} = \sum_{\sigma \in A_r^{r+1}} T_{(i)}^\sigma$$

Received June 3, 1971; revised April 25, 1972.

By the induction hypothesis, $ES_{(i)}^{\sigma} = ET_{(i)}^{\sigma}$ for each $\sigma \in A_r^{r+1}$, $1 \le i \le r$; and so for every $1 \le i \le r$:

$$EV_{i}^{r+1} = EW_{i}^{r+1}.$$

Clearly, for $1 \le i \le r + 1$

(4)
$$V_{i}^{r+1} = (r+1-i)X_{(i)}^{r+1} + iX_{(i+1)}^{r+1}$$

(5)
$$W_i^{r+1} = (r+1-i)Y_{(i)}^{r+1} + iY_{(i+1)}^{r+1}.$$

If $1 \le k_{r+1} < r+1$, then taking $i = k_{r+1}$ in (3), (4) and (5), one gets that

$$iE(X_{(k_{r+1}+1)}^{r+1}-Y_{(k_{r+1}+1)}^{r+1}=E(V_{k_{r+1}}^{r+1}-W_{k_{r+1}}^{r+1})-(r+1-i)E(X_{(k_{r+1})}^{r+1}-Y_{(k_{r+1})}^{r+1})=0$$

and so $EX_{(j)}^{r+1}=EY_{(j)}^{r+1}$ for $j=k_{r+1}+1$ and inductively for $j=k_{r+1}+2,\ldots,r+1$.

For $1 < k_{r+1} \le r+1$, taking $i = k_{r+1} - 1$ in (3), (4) and (5) in the same way gives $EX_{(j)}^{r+1} = EY_{(j)}^{r+1}$ for $j = k_{r+1} - 1$, and inductively for $j = k_{r+1} - 2, \dots, 1$. Therefore (2) holds for $n \le r+1$, $1 \le i \le n$, and by induction for all n, $1 \le i \le n$, proving Lemma 1.

LEMMA 2. Let X, Y, F, G be defined as in Theorem 1. Let (2) hold for every n and every $i, 1 \le i \le n$. Then F = G.

PROOF. Let $0 < \alpha < 1$ be such that there are unique x_{α} and y_{α} with $F(x_{\alpha} -) \le \alpha \le F(x_{\alpha})$ and $G(y_{\alpha} -) \le \alpha \le G(y_{\alpha})$. To show F = G it is enough to show $x_{\alpha} = y_{\alpha}$ for such pairs. Select integers ρ_n such that $\rho_n/n \to \alpha$. Then if F_n is the empirical distribution function based on n observations of X, $F_n(X_{(\rho_n)}^n) = \rho_n/n \to \alpha$ (if there are ties, F_n may jump above ρ_n/n at $X_{(\rho_n)}^n$ but we give the equation $F_n(X_{(\rho_n)}^n) = \rho_n/n$ the obvious interpretation) so that $X_{(\rho_n)}^n \to a.s.$ x_{α} . Similarly, $Y_{(\rho_n)}^n \to a.s.$ y_{α} . It is easy to see that $EX_{(\rho_n)}^n \to x_{\alpha}$ and $EY_{(\rho_n)}^n \to y_{\alpha}$. But since $EX_{(\rho_n)}^n = EY_{(\rho_n)}^n$ (by hypothesis), this implies that $x_{\alpha} = y_{\alpha}$.

This completes the proof of Lemma 2 and thus the proof of Theorem 1.

REMARK. In particular, F = G if $E \max_{i=1,\dots,K} X_i = E \max_{i=1,\dots,K} Y_i$ for all K (or for $K \ge n_0$, as can be shown by similar methods; this would be enough also if $EX = -\infty$ but $E \max_{i=1,\dots,K} X_i$ is finite for $K \ge n_0$, n_0 arbitrary).

THEOREM 2. Let X be a random variable whose expectation exists. Then the distribution F of X is symmetric about zero if and only if for each nonnegative integer n there exists a k_n , $1 \le k_n \le 2n+1$, such that $E(X_{(k_n)}^{2n+1} + X_{(2n+2-k_n)}^{2n+1}) = 0$.

PROOF. The necessity of the condition is clear. The sufficiency: Denote Y = -X. As in the proof of Theorem 1, one first proves (by induction on n) that

(6)
$$EX_{(i)}^n = EY_{(i)}^n = -EX_{(n+1-i)}^n$$

for every $i, n; 1 \le i \le n$. (6) clearly holds for n = 1, i = 1. Suppose (6) holds for all i, n where $1 \le i \le n, 1 \le n \le 2m + 1$. In particular, $EX_{(m+1)}^{2m+1} = -EX_{(m+1)}^{2m+1} = 0$, and so $EV_{m+1}^{2m+2} = 0$ (where V_i^{r+1} is as denoted in the proof of

Lemma 1). However $V_{m+1}^{2m+2}=(m+1)X_{(m+1)}^{2m+2}+(m+1)X_{(m+2)}^{2m+2}$. Thus (6) holds also for n=2m+2, i=m+1. By reasoning analogous to the proof of Lemma 1, one gets that (6) holds for n=2m+2 and all $i=1,\dots,2m+2$, and likewise, also for n=2m+3 and all $i=1,\dots,2m+3$, and by induction for every i,n,n>0, $1\leq i\leq n$. This shows the conditions of Lemma 2 to hold, and so X and X have the same distribution, completing the proof of Theorem 2.

REMARK. In particular, F is symmetric about zero if and only if

$$E(\max_{i=1,\dots,2n+1} X_i + \min_{i=1,\dots,2n+1} X_i) = 0$$

and likewise if and only if E median_{i=1,...,2n+1} $X_i=0$ for all nonnegative integers n, where $X_1, ..., X_{2n+1}$ are independent observations of X. Using similar methods, one can prove that if the expectation of X does not exist, but the expectations of the medians of large enough samples do and are equal to zero, then the distribution of X is symmetric (about zero).

Acknowledgments. Yosef Rinott helped to bring Theorem 1 to its present form. The referee's suggestions shortened the proof of Lemma 2 and helped bring Theorem 2 to its present form.

DEPARTMENT OF STATISTICS
THE HEBREW UNIVERSITY OF JERUSALEM
JERUSALEM, ISRAEL