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CONVERGENCE OF REDUCED EMPIRICAL AND QUANTILE
PROCESSES WITH APPLICATION TO FUNCTIONS OF
ORDER STATISTICS IN THE NON-LI.D. CASE!

By GALEN R. SHORACK
University of Washington

Any triangular array of row independent rv’s having continuous df’s
can be transformed naturally so that the empirical and quantile processes
of the resulting rv’s are relatively compact. Moreover, convergence (to a
necessarily normal process) takes place if and only if a simple covariance
function converges pointwise. Using these results we derive the asymptotic
normality of linear combinations of functions of order statistics of non-i.i.d.
rv’s in the case of bounded scores.

1. Notation and results. Let «,,, ---, a,,, n = 1 be a triangular array of row
independent rv’s having continuous df’s F,,, - - -, F,,, n = 1. Let [f, denote the
empirical df of a,,,, - - -, a,,. Using the left continuous version of the inverse
of a df, we let

(1‘1) ABWE = n(ani) and Gn’i = Fni ° Fn—l Where Fn =n" Z;‘ Fni .

Then B,; has absolutely continuous df G,; on [0, 1] (in fact |G,;(f) — G,i(s)| £
n|t — s|) and also

(1.2) ntyrGu() =t for 0<r<1.

Let G, denote the empirical df of §8,,, - - -, B,,; we will call G, the reduced em-
pirical df of @, - - -, @,,. Define the reduced empirical process X, by

(1.3) X.(H) = n[G,(1) — 1] for 0<r< 1.
Clearly X, has mean value function 0 by (1.2). Also, if we define

(1.4) K.(s, ) =s ANt —n1371G,u(5)G,.(0) for 0<s5,¢<1,
then K, is the covariance function of the X, process since

Cov[X,(s), Xu()] = 17" Z7 [Gri(s) A Gi(t) — G,i(5)Gi(0)]

= Kn(s, t),.
The reduced quantile process Y, is defined by
(1.5) Y. () = nt[G, (1) — 1] for 0<r<1.

Expressions for the exact mean value and covariance function of Y, would be
difficult; but the asymptotic behavior of Y, is simply related to that of X,.
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We wish to consider the weak convergence (=) of the X, and Y, processes.
Let C denote the collection of all continuous functions on [0, 1]; and let p(x, y) =
sup, |x(f) — y(¢)| for functions x and y on [0, 1] or (— oo, co0). Weak convergence
and relative compactness of processes on (C, p) is as defined in Billingsley (1968).

We will write X, —. 4 X as n — oo if the finite dimensional distributions of the
X, process converge to those of the X process. We will write —, to denote con-
vergence at every point of the probability space; call this everywhere convergence.

For technical reasons it is convenient to define X, to be that process on (C, p)
that equals X, at each ¢ in [0, 1] corresponding to one of 8,,, - - -, $8,, and that
is linear on the intervals between these observations. Note that X, and Y, are
not processes on (C, p).

The theorems below show that convergence of the X, process is equivalent to
pointwise convergence of K, ; and the limiting process must necessarily be nor-
mal. Moreover, X, converges if and only if Y, does, and the limits are simply
related.

THEOREM 1. (i) For any triangular array of row independent tv’s a,,, - -, a,,,,
n = 1 having continuous df’s F,, ..., F,,, n = 1 we have both

n

o(X,, X,)<nt-0 as n— oo
and
{X,: n= 1} isrelatively compact on (C, p) .
(i) If
(1.6) K, (s, t) > K(s, 1) as n—oo forall 0 <s,t <1

for some function K, then there exists a normal process X having sample paths in C
and covariance function K for which

X, =X on (C, p) as n—oo.

(iii) Conversely, if X, —;q. X as n — oo, then X is necessarily a normal process;
and if K denote the covariance function of X, then (1.6) must hold.

THEOREM 2. Let F,, ---, F,,, n = 1 be a triangular array of continuous df’s
for which (1.6) holds. Then there exists a triangular array of row independent rv’s
Quyy *+vs Ay, B = 1 having df’s F,,, - - -, F,,, n = 1 and there exists a normal pro-

cess X with sample paths in C and covariance function K for which
o(X,, X) —,0 as n-— oo

and
oY, —X)—,0 as n— oo .

Moreover, all finite dimensional moments (E[ X, (t)™ - -- X (t,)™]with0 < t,, - .-,
t, < land k, my, -- ., m, integers) of X, converge to the corresponding moments of
the limiting X process as n — co.

A Brownian bridge is a normal process on (C, p) having mean value function
0 and covariance function s A t — stfor 0 < s, t < 1.
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CoroLLARY 1. Let F,,, ---, F,,, n = 1 be a triangular array of continuous df’s
for which

(1.7) (X, s )0(Fois Foy) = 0 as n— oo

There there exists a triangular array of row independent tv’s a,, +++, &, n = 1
g y P nl nn

having df’s F,,, ---, F,,, n = 1 and there exists a Brownian bridge X for which
o(X,, X)—,0 and o(Y,, —X)—,0 as n— oo .

REeMARK 1. Koul (1970) uses the methods of Billingsley (1968) to generalize
the usual result on weak convergence of the empirical process of Uniform (0, 1)
rv’s. We use a different technique (the introduction of S, below bypasses The-
orems 12.1 and 12.2 of Billingsley) on a special case of Koul’s problem and
obtain stronger and cleaner results for our X, (we could have considered the
more general problem). The parallel results on Y, are new and should prove
highly useful. Application to the limiting distribution of linear combinations
of functions of order statistics in the non i.i.d. case (see Shorack (1972) for the
i.i.d. case) is discussed in Section 3.

2. Proofs. See pages 33, 34 and 56 of Hajek and Sidak (1967) for useful
properties of F~*.

PrOOF oF THEOREM 1. (i) Let 0 < s <r<1. Let

nnizl_pni if S<48'ni§t
= —Pu if not,

where p,; = G,;(f) — G,;(s). Then using (1.2) we have

E[X,(1) — X,(9)]' = n”’E[ 1} 7]’
=n7[ 207 Emyi + 3 20 2iws Emgi Enyj)
= n[3(21 Exy) + 11 (Emh; — 3E7m3))]
(2.1) = 3[n7 21 pas(1 — pad)]*
+ 170 1 [Pui(l = Pai)(1 — 6pai + 6p3)]
< 3[n7 28 pusl® + n7 07 20T pail
=3t —sP 4+ (t—s)n.

Define S, on (C, p) by setting S,(i/n) = X,(i/n) for 0 < i < n and by letting
S, be linear on the intervals [(i — 1)/n, i/n]. We will demonstrate below that
S, satisfies
(2.2) E|S,(t) — S, (s)|* < 144|t — s|? forall 0<s, <1

foralln > 1. For the time being we take (2.2) to be true. Thus {S,: n = 1} is
relatively compact on (C, p); see page 95 of Billingsley or (better yet for sim-
plicity, and appreciation of S,) page 28 of Varadhan (1968). (The improvement
of (2.2) over (2.1) is the most interesting part of this proof. Note (5.3) of Sen
(1970).)
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Now
(2.3) X, =X —X)+ (X, —S,)+S,.
Note that p(X,, X,) < n~* so that
(2.49) o(X,, X,) —,0 as n— oo .

Also for n > (4/¢)* we have n|t — i/n| < ¢/4 for all |t — i/n| < 1/n; hence (recall
(1.3) with G,, increasing)
P(p(X,, S,) > €) = P(MaX,g;g, (SUPi-y/msesin) | Xa() — Sa(0)] > €)
< P(MaXogign [SUP|i—i/misym | Xa(?) — Xo(ifn)| > ¢)
< P(max,gig, n}Gy(ifn) — G, ((f — 1)/n)[ > 3¢/4)
< P(maX,gg, [X,(i/n) — Xu(( = Dn)| > ¢/2)
< 27 P(IXu(ifm) — Xu((E — D)/m)| > ¢[2),
where the first inequality depends on the linearity of S, in that
[Xa(1) — Sa()] = | Xu(1) = Su(ifm)| V [ Xo() — Su((F — 1)/m)]
for all (i — 1)/n < t < i/n. Thus by (2.1) we have
P(p(X,, S,) > ¢) = 16 333 E[X,(i[n) — X,((i — 1)/m)]'/e*
=< (16/¢*)n(4/n*) — O .
Thus
(2.5) o(X,, S,)—,0 as n— oo .

Let ¢ denote a bounded real functional on C that is uniformly continuous in
the p-metric. Then on any subsequence n’ where S,, converges weakly (let S
denote the limit) we have

|EG(X,) — E(S)| < Elp(X,) — ¢(Xo)| + El¢(X,) — $(Sw)l
+ [E(Sw) — E¢(S)|
—-04+04+0=0 as n’' — oo ;
here (2.4), (2.5) and the uniform continuity of bounded ¢ yield the first two
zeroes. Thus X, — S on (C, p) as n’ — oo by page 12 of Billingsley. Thus
{X,: n = 1} is relatively compact on (C, p).
To complete the proof of (i), it remains only to establish (2.2). Letn > 1
and 0 < s, t < 1, be arbitrary, but fixed. Choose the integers i and j so that
i—Dm<s<Ziln and G=—1Dmst<Zjin.
Let A,,, = |S,(m/n) — S,(k/n)| for integers k and m; and note from (2.1) that

EAL, < [3|(m — K)/nf* + |(m — k)/n|[n] < 4[(m — k)/n]*.

km =

Let e,, = 4[(m — k)/n]*. We also let A,, = |S,(v) — S,(u)|.
Case 1. i <j— 1. Then

A, <A,

8t = 4,51

VA; VA a0V B,
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so that
EA;, < €t e te e, Sde,;
= 16[(j — (i — 1))/n]* < 144(¢ — s)*.

Case 2. i = j. Since the change of a linear function on an interval of length
t — s equals the slope times t — s we have

A, <nA;_ (t—5),

st = %

so that
EAY, < n'(t — s)'e;_,; < 4nP(t — s5)* < 4(t — 5)°.

Case 3. i=j— 1. Then

A = Aa,i/n + Ai/n,t é Z(A

8t =

\ Ai/n,t) ’

8,1/n
so that by Case 2 we have

EN, < 2(EA; ) + EAY, ) < 2140 — ) + 4t — ifn)’]

8,1/n

< 2(t — ).

Thus (2.2) is established.

(ii) Suppose K, — K. The limit of covariance functions is necessarily a co-
variance function (page 468 of Loéve (1963)); and since K is real there is a nor-
mal process X (we do not know yet that it has continuous sample paths) having
covariance function K (page 467 of Loéve). Thus forfixedk, 0 < ¢, .-+, 1, =1
and real a,, - .., a, the variance of the rv 6, = > ¥ a, X, (s,) converges to the
variance (denote it by ¢) of the rv 0 = ¥ a, X(¢;) as n— co. If ¢ = 0, then
trivially 6, —,0 as n—oco. If ¢ >0, then 6, —, N(0, ¢) as n— co by the
Liaponov central limit theorem (this is again trivial since the summands are
uniformly bounded and the sum of their variances goes to o). We have shown
that X, —;, X as n — oo (see page 49 of Billingsley). Hence by (2.4) we have
X, >4 Xasn— oco. But{X,: n > 1} is relatively compact by (i); and if X,, = Z
on (C, p) as n’ — oo for some subsequence n’, then X must have the same finite
dimensional distributions as Z. Thus X, — X on (C, p) as n — oo.

(iii) It is easy that forall n > 1 and all 0 < r < 1 we have EX,™(f) < M,
for each m > 1, where M,, is a constant. The Cauchy-Schwarz inequality can
be used to bound any finite dimensional moment by a product of powers of one
dimensional moments. Application of the Corollary on page 184 of Loéve then
establishes convergence of the finite dimensional moment. In particular, K,
converges pointwise to K as n — oo. Thus X is a normal process by (ii). [

Proor oF THEOREM 2. Using Theorem 1 (ii) and Item 3.1.1 of Skorokhod
(1956) it is easy to construct the required a,;’s and X for which p(X,, X) —,0
as n — oco. Now

(2.6) Y, = —X,(G,™) + n¥G, o G, — I,
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where I denotes the identity function; so that

p(Y,, —X) < p(X(G,™), X) + ntp(G, o G, 7%, 1)
= o(X(G 7, X(G,7Y) + p(X(G,™), X) + nt
= p(X,, X) + o(X(G,7Y), X) + n7¥;
and thus it suffices to show that o(X(G,™), X) —, 0 as n — co. But since all
sample paths of X are uniformly continuous on [0, 1], it suffices to show that
(G, % I) —,0 as n —» co. But by symmetry
p(G. 7% 1) = p(Gas I) = n7?p(X,,, 0) < nHp(X,, X) + (X, 0)] >, 0
as n — oo, since every sample path of X is bounded. Thus p(Y,, —X) —,0 as
h — oo.

For the moment convergence, see the proof of Theorem 1 (iii). []

Proor or CoroLLARY 1. Condition (1.7) implies (max,;<,)o(F,: F,) — 0 as
n— oo. Hence (max,.,)o(G,;, ) —0 as n— co. Hence (1.6) holds with
K(s, f) = s A t — st. Now apply Theorem 2. []

3. Asymptotic normality of linear combinations of functions of order statistics in
the non i.i.d. case. We use the notation of Section 1. Consider

(3'1) Tn = n_l ?—1 cnihn(”'rbi) + Zz=1 d'nkh'n(vn,['npk]+1)

where 7,, < -+ < 7,, are the ordered values of «,,, - -, a,,, where the &,’s
are known functions, where 0 < p; < --- < p, < land [ ]denotes the greatest
integer function and wherec,,, -- -, ¢,,, n = landd,,, ---,d,,, n > 1 are known
constants. Let g, = #,(F,™"). Then

(3‘2) Tn = Sé gn(Gn_l(t))',n(t) dt + Zi:l dnkgn(Gn_l(pk)) ’

where J, on [0, 1] is defined by J,(f) = ¢,; for i — 1)/n < t<ijnand 1 i< n
with J,(0) = ¢,,. Let

(3-3) tn = $09.()a(0) dt + i1 digu(pi)

for given constants d,, - .-, d,.

THEOREM 3. Suppose that for functions g and J either Assumptions 1, 2, 3, 4 or
Assumption 1, 2', 3', 4 of Shorack (1972) are satisfied; where b, = b, = 0 in As-
sumption 1 (thus J is a bounded function). Then

m(T, — 1) =4 —$3IX dg — T dg'(p)X(p) a5 n— oo

The limiting tv is (N(0, o®) where the formula for o* is (3) of Shorack (1972) with
s At — st replaced by the covariance function K(s, t) of our present X process.

Proor. Replace U,, U, §,; in the proofs of Theorem 1 and Corollary 2 of [6]

by X,, X, 8,,. For bounded J, Lemma A3 of [6] is not used to obtain a domi-

nating function. [J
The restriction to bounded J could be removed if an analog of Lemma A3 of
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[6] could be proved for triangular arrays of continuous rv’s; for some special
triangular arrays such results are possible by deterministic manipulations of the
G,;’s. Many of the most interesting J’s are bounded (those corresponding to

trimmed, Winsorized and linearly weighted means for example).
Results similar to Theorem 3 obtained by the projection method appear in
Stigler (1972).
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