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ON A MINIMAX ESTIMATE FOR THE MEAN OF A NORMAL
RANDOM VECTOR UNDER A GENERALIZED
QUADRATIC LOSS FUNCTION

By TAMER BASAR! AND MAX MINTZ?

Yale University

An admissible minimax estimate for the mean of a normal random
vector with known covariance is derived for a generalized quadratic loss
function. This loss function is quadratic in both the estimation error and
the unknown mean. The estimate is derived using the method of least
favorable prior distributions. The decision rule is linear, and the least
favorable prior distribution for the unknown mean is normal with zero
mean. The covariance of this least favorable normal distribution is deter-
mined by the solution of a certain nonlinear algebraic matrix equation.

1. Introduction. A minimax location parameter estimation problem is posed
as follows:

Let z denote a single observation of a random vector, where z ¢ N[6,X]. 1t
is assumed that X is known, where X > 0, and that 6 is an unknown element of
E". We wish to determine a minimax estimate d(z) for § with respect to the
generalized quadratic loss function L(d, ¢) defined by

(1) L(3,0) = [6 — O'C[6 — 6] — 6'D6 ,

where C > 0,and D > 0 (i.e. C is a symmetric nonnegative definite matrix and
D is a symmetric positive definite matrix).

The second term in the generalized quadratic loss function defined by (1),
places a quadratic cost on nature’s choice of 4. This loss function, as compared
with the usual quadratic loss function, forces nature to compromise between a
gain due to estimation error and a loss which is equal to the square of the norm
of 6 weighted by D. This choice of loss function is motivated by the general
problem of tracking an evasive target which is under the control of an intelligent
adversary, who must balance a gain due to estimation error against a loss due
to energy consumed in evasive maneuvers.

The conditional risk of d(z) given ¢ will be denoted by r[d, 0] i.e.,

2) r[é, 0] = E[L(d, 6)|0] .
2. A minimax estimate. Define I'(A) by
(3a) I'(A) = [A + Z]72CE[A + 27— D,
with
(3b) A=0.
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Let A* denote any solution to the matrix equation

(4a) IF'A¥A* =0,

such that

(4b) ras<o.
THEOREM 1.

() If T'(A) is defined by (3a) and (3b), then there exists at least one covariance
matrix A*, which satisfies (4a) and (4b).

(ii) If 0*(z) is defined by
%) 0*(z2) = A¥[A* + X'z,
then 0*(z) is an admissible minimax estimate for 6.

A proof of part (i) of Theorem 1 is given in Appendix 1. A proof of part (ii)

of Theorem 1 is developed by using Lemma 1, which is stated in Section 3.
The admissibility of the estimate is established in Section 4.

3. A least favorable prior distribution for 6. The following lemma provides us
with a useful relationship between a minimax estimate for # and a corresponding
least favorable prior distribution. This lemma will be used in the proof of part
(ii) of Theorem 1.

Let 2 denote a prior probability measure for 6. Further, let 9,(z) denote a
Bayes estimate for # with respect to 4, and the loss function defined by (1).

LEMMA 1. Assume that max,. z» r[0,, 0] exists, and denote its value by F;,. Let
7, = {0: r[0;, 0] = F;}.

If A[t;] = 1, then the Bayes estimate §,(z) is a minimax estimate for 0, and 2 is
a least favorable prior probability measure for 6.

A proof of Lemma 1 can be found in Lehmann [4] and Wald [6].

Lemma 1 is used as follows:
Let 4, denote a prior probability measure for ¢ such that 6 € N[o, A]. For

this choice of 2., a Bayes estimate d, (z) is
(6) 0,(2) = E[0]2) = A[A + 2]z,
and the corresponding conditional risk.is
7 ;.. 0] = 0'T(A)0 + tr [(A + Z)*ACA(A + Z)7'X],
where I'(A) is defined as before by
(3a) I'(A) = [A + Z]72CZ[A + 2] — D.
In the proof of part (i) of Theorem 1, it is shown that a covariance matrix

A* always exists such that relations (4a) and (4b) are satisfied. In what follows,
we shall show that the pair

(8a) A* = Nlo, A*]
(8b) 0:(2) = AM[A* + Iz



MINIMAX ESTIMATE FOR THE MEAN 129

satisfies the sufficiency conditions of Lemma 1, and hence prove part (ii) of
Theorem 1.

The determination of A* is dependent on the signs of the eigenvalues of the
matrix [C — D]. There are three cases to consider:

Casel. C — D =0.

Case2. C — D <0.

Case 3. C — D has at least one positive and at least one negative
eigenvalue.

Case 1. When C — D = 0, a suitable choice of A* is
%) A* = [DY D ZCZDP DA — X

AsserTION. The pair 2* and 6,.(z) defined by (8a), (8b), and (9) satisfies
Lemma 1.

This assertion is verified as follows. If A* is defined by (9) and C — D = 0,
then I'(A*) = 0, and A* > 0. [See Appendix 2 for further discussion of this
point.] Now since I'(A*) = 0, it follows from (7) that the conditional risk
r{0;., 0] is constant for all . Hence r,, = E", and 4*[r,,] = 1. An estimate
with constant conditional risk is often referred to as an equalizer decision rule.

Case 2. When C — D < 0, a suitable choice of A* is
(10) A*x=0.

AsserTION. The pair 4* and 6,.(z) defined by (8a), (8b), and (10) satisfies
Lemma 1.

This assertion is verified as follows. Note that
(11a) roy=c—-ng<o,
and further that
(11b) r[d;., 0] = 0'[C — D]6 .

The conditional risk function defined by (11b) attains its maximum value if and
only if # is in the null space of [C — D]. Hence the set r,, is defined by

7w ={0:0enull épace of C — D}.

The one-point probability measure 2* defined by (8a) and (10) assigns probability
one to any set in E” which contains the point § = o. Now since o € 7, it follows
that 2*[r,,] = 1.

Case 3. When C — D has at least one positive and one negative eigenvalue,
a suitable choice of A* is made by picking any matrix A* > 0 that satisfies the
following relations:

(42) T(A*A* =0,
(4b) T'(A*) <0.
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The existence of at least one such A* is proved in Appendix 1.

AsserTION. The pair 2* and d,.(z) defined by (8a), (8b), (4a) and (4b) satisfies
Lemma 1.

This assertion is verified as follows. If (4a) is satisfied, then all of the eigen-
vectors of A* with nonzero eigenvalues are in the null space of I'(A*). Thus
the null space of I'(A*), which is a Borel set in E™, receives probability one from
the measure A*. Further, if (4b) is satisfied, it follows from (7) that r,, is the
null space of I'(A*). Hence 1*[r,.] = 1.

Since the relations (4a) and (4b) are satisfied in all three cases, the argument
pertaining to Case 3 is sufficient to prove part (ii) of Theorem 1. In conclusion,
we note that in Case 1 we obtained a minimax estimate which was an equalizer
rule, and in Case 2 we obtained a minimax estimate which was degenerate.

4. Admissibility. The admissibility of the Bayes estimate d,,(z) is a consequence
of the fact that all Bayes estimates for 6, with respect to the prior distribution
N[o, A], have identical conditional risk functions. Hence, any Bayes estimate
for ¢ is admissible. (See Ferguson [3] page 60.)

5. A wide sense property. The estimate 6*(z) exhibits a wide sense property:

In particular, if 5 [0, Z] denotes the class of all distributions F (for z) with
mean 6 and covariance X, then it follows from the linearity of d,.(z) and the
quadratic nature of the loss function that r[d,., 6] is independent of F e . [6, Z].
Thus if the distribution for z is an unknown element of & [0, X] then d,.(2) is
an admissible minimax estimate for #. In summary, the distribution N[@, X] is
least favorable for the statistician in the class & [0, X]. This Gaussian result
reminds us of the familiar maximum entropy result.

APPENDIX 1
The following observations and lemmas are used to prove part (i) of Theorem 1.

OBSERVATION 1. Let Q denote the space of all n X n real symmetric matrices.
Further define a metric (W, M): Q x Q — E* by

(12) oW, M) = [ X1 Ty Wy — M
=)
With these definitions, the metric space (R, p) is isomorphic to Ein+D,

OBSERVATION 2. Define sets T and T,(a) as follows:

(13a) T,=,{AeQ: A =0},

(13b) Tya) =,{AeQ: p(A,0) < a}.

With these definitions the set S(«a) defined by

(14) S(@) =, T, n Ty(@) = {AeQ: A >0, (A, 0) < a}

is both compact and convex in (Q, o) .
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LemMMA 2. Consider the following abstract game:

Define

(15) J(Ay, Ay) =, tr [CKZK'] + tr [([I — K] C[I — K] — D)A,],
where

(16) K=, AJ[A, + 2]

then

minAleS(a> max,,ese) J(Av Az) = MaAX e 50a) MINy ¢ 5 J(Av Az) .
ProoF. The proof of this lemma is in two parts:

(I) Since the kernel J(A,, A,) is continuous in the pair (A,, A,), and since
S() is compact; there exist two probability measures on S(a) denoted by w*(AY),
#2*(A;) which are optimal mixed strategies for this game. (See Owen|[5] page 88.)

(I) It will be demonstrated in what follows that the probability measures
#*(Ay) and p,*(A,) referred to in (I) are one-point; that is, the game has a solu-
tion in pure strategies:

OBSERVATION 3. Let A, be any fixed element of T, which is defined by (13a).
Then J(A,, A,) is minimized when A, = A,.

Proor. The proof follows by identifying this minimization problem with a
particular Bayesian estimation problem. Let 6 be a normal random vector with
zero mean and covariance A,. The Bayes estimate d(z) for § under the loss
function L(d, #) defined by (1) is given by

(17a) 0(z2) = K,z,
where
(17b) K, =, AJJA, + 27

(Refer to Anderson [1] page 28.)

The Bayes risk is equal to J(A,, A,). Comparing K, with K defined by expres-
sion (16), it can then be concluded that J(A,, A,) is minimized for fixed A eT,
when A, = A,. .

Now consider the lower value of the game over (g, »,). That is, first fix Hs
and then minimize with respect to . Further, let

(18) Tl ) =4 B, (A A)] 2
Since J defined by (15) is linear in A,,
(19) Ty ) = J(A,, B, [A)) -

A measure g, that minimizes E #l[f(Al | #£:)] is the measure that assigns probability
one to the element A, = E, [A,]. [This follows from Observation 3.] Hence for

3 “E, -] is “expected value of [+] with respect to measure ;.
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any u,, the related minimizing measure s, is one-point. To complete the evalu-
ation of the lower value of the game with respect to the mixed strategies (1,, y,),
it is sufficient to compute

(20) J, =, max,, J(Eﬁz[Az], E#2[A2]) .
OBSERVATIONS.

(a) Since g, is a probability measure on S(a), and since S(a) is convex,
E,[A] € S(a).

(b) The max, ., J(A, A) exists since J(A, A) is continuous in A and S(a) is
compact.

Let A* maximize J(A, A) over S(«). A maximizing measure y, defined by (20)
is given by the measure which assigns probability one to the element A*. Hence
there exists a one-point maximizing measure p, associated with the lower value
of the game. -

Let (4, 1,) denote the measures associated with the upper value of the game.

From (I) it follows that 4, = g, and g, = g,. Butsince (g, p,) are one-point,
this completes the proof of the lemma. -

In addition to proving Lemma 2, it has been shown that the solution to the
game is given by A; = A, = A* where A* maximizes J(A, A) over S(a).

DiscussioN oN LEmMMA 2. The solution (A, = A*(a), A, = A*(a)) to the game
defined in Lemma 2 will depend in general on the value @ which defines S(«).
In what follows it will be shown that the solution (A*(a), A*(a)) will be inde-
pendent of a for sufficiently large @. Hence, it will be possible to replace S(«)
with T, and insure the existence of a solution to the game in pure strategies over
T,.

When A, = A, = A, and the expression for K given by (16) is substituted into
(15), the expression for J(A,, A,) simplifies to:

1) JA, A) = tr[CZ] — tr [CZ(A + 2)-5] — tr [DA].
Since tr [CZ(A + 2)7'X] = O,
(22) JA, A) < tr[C3] — tr [DA] forall AeT,.

It follows from inequality (22) that there exists a finite real number » > 0 such
that ||[A|| > » implies J(A, A) < 0. A suitable choice of 7 is

(23) p* = tr[CZX]
dmln
where d,,;, denotes the minimum eigenvalue of D > 0.

Since J(0,0) = 0, it follows that if a > »* then A*(a)e S(*). Thus A*(a)
is independent of @ when a > »*. Hence S(a) can be replaced by T, in the hy-
pothesis of Lemma 2.
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LeEmMA 3. The matrix,
(24) L(A*) =, [A* + Z]1ZCZ[A* + X7t —D

is nonpositive definite where A* denotes a solution to the game defined in Lemma 2
with S(a) replaced by T,.

Proor By CoNTRADICTION. Write J(A,, A,) as
(25) J(Ay, Ay) = tr [CKZK'] + tr [T(A)A,]

with K defined by (16) and I'{A,*) defined by (24). Let A,* be an optimal choice
for A, and further assume that I'(A,*) has at least one positive eigenvalue. Then
it is possible to find a A,;* e T, that will make J(A,*, A,) arbitrarily large. But
this is a contradiction since the upper value of the game is bounded. Therefore
['(A,*) cannot have any positive eigenvalues.

LEMMA 4. Let A* denote a solution to the game defined in Lemma 2 with S()
replaced by T,. Then,

(26) T(A*)A* = 0.

PrOOF. J(A, A;) = tr [CKZK'] + tr [['(A,)A,] as defined by (25). Let A,*
denote an optimal choice of A, and A,* denote an optimal choice of A,. Assume
F(A*)A* # 0. ButI'(A,*) < 0 by Lemma 3 and further A,* > 0 by definition.
Note that tr [4B] = 0 if and only if AB = 0 when 4 < 0 and B > 0; hence it
follows that tr [['(A,*)A,*] < 0. This contradicts the optimality of A,* since
then

J(A*,0) > J(A*, A¥).
Hence, I'(A*)A,* =0. But A* = A,* = A* by Lemma 2. Therefore
F(A*)A* = 0.

Proor oF PART (i) oF THEOREM 1. If T'(A) is defined by (3a) and (3b), then
there exists at least one matrix A* > 0, which satisfies (4a) and (4b).

Lemmas 3 and 4 prove this part of Theorem 1 by making use of the abstract
game defined in Lemma 2 with S(a) replaced by T,.

APPENDIX 2
FURTHER DISCUSSION OF CASE 1.

LemMA 5. If C — D = 0, then T'(A*) = 0, and A* = 0, when
(27) A* =, [DH[DIZCEDIHP[D}]™ — 3 .4

Proor. We verify that A* > 0 as follows: Note that, C — D > 0 implies
(28) Z(C—-D)X =0,

4 D% denotes the unique symmetric nonnegative definite square root of the matrix D, where
D =0.
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where
>0, D>0, cC>0.

And further, (28) implies that:
(29) D}ECZID} > DZIDID? = (DEDY)?.

But since it is well known that 4 > B > 0 implies 4* > B} (e.g. see Bellman
[2]), it follows that (29) implies that A* defined by (27) is nonnegative definite.

It can be shown by substitution that I'(A*) = 0.
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