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COVARIANCE STABILIZING TRANSFORMATIONS

By PAuL W. HOLLAND!
Harvard University*

After reviewing the asymptotic variance stabilizing transformations in
one dimension, a generalization of these to multivariate cases is discussed.
Results are given for the uniqueness of solutions when they exist, but unlike

- the one-dimensional case, covariance stabilizing transformations need not
exist. In the two-dimensional case, a necessary and sufficient condition is
given for the existence of solutions. It takes the form of a second-order
partial differential equation that the elements of any square root of the
inverse of the limiting covariance matrix must satisfy. This condition is
applied to three examples with the conclusion that no covariance stabilizing
transformation exists for the trinomial distribution. It is conjectured that
this non-existence of solutions is true for the general multinomial.

1. Review of the one-dimensional variance stabilizing transformations. Let X, be
a real-valued random variable whose distribution depends upon a real parameter,
6. This parameter varies over the parameter space, D, an open interval in R'.
Suppose that for every 6 € D the quantity, n#(X, — ), converges in distribution
to the N(0, ¢%(0)) law, i.e.

(1.1) F[n¥(X, — 6)] > N0, ¢*(0)) .
o*(¢) > 0 and is continuous for all § in D. Let X, denote a random variable and
x,, denote the corresponding possible values.

A ‘“variance stabilizing transformation”, shall mean a 1-1, continuously dif-
ferentiable mapping, f: D — R* such that Z[n(f(X,) — f(6))] — N(O, 1). It
would be more precise to call f an “asymptotic” variance stabilizing transfor-
mation, but because I deal solely with asymptotic distributions this qualification
will be implicit throughout.

Note that X, converges in probability to # and thus X, e D with a probability
that may be as near unity as desired by taking » large enough. Therefore f is
defined for the possible values of X, with a probability that approaches one as
n — oo, so that we may ignore the fact that f may not be defined for all the
possible values of X,.

One proceeds to find f by assuming it exists and has a differential at each point
in D, i.e. if |x, — 6] = O(n~?) then

(1-2) fw) = f0) + (= O D+ o).
But |X, — 0] = O,(n"?) so that
(1.3) X)) = 10) + (X, = O D 1 0,7
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The reader is referred to Pratt (1959) and Rao (1965) page 321 for a justification
of this replacement of o(n~%) by o,(n~*), which is also called the “d-method”.
Thus

(1.4) mA(X) = f0)] = mi(X, — )T 1 0, (1)

and hence,

(1.5) Zw(f(X,) — fo) - N(0, #0) (7).

The problem of finding f is now reduced to solving the differential equation:
dfry 1

(1.6) <@> R0 '

The non-linear, first order differential equation, (1.6) is equivalent to any one of
these linear first-order differential equations:

(1.7) ‘Q{_ — 7(0)
dg a(0)

where y(f) is any function such that y*(f) = 1 (i.e. y(6) only takes on the values
+1 or —1). Only continuously differentiable solutions to (1.7) are acceptable
so that y(f) must be continuous and therefore y(8) = 1 or y(f) = —1 for all
6 e D. In summary, the one-dimensional variance stabilizing problem always
has a 1-1 continuously differentiable solution given by:

(1.8) J6) = f(00) £ §5, (a(2))~ dr .

The solution is unique up to an additive constant and the sign of its derivative.
The only requirement is that ¢(¢) is a continuous nonzero function of ¢ in D.
o(0) need not be 1-1 and in fact may be constant (in which case f may be
chosen to be a linear function).

2. A multivariate generalization: stabilizing the entire covariance matrix. I shall
consider the following generalization of the univariate setup described in Section
1. The random variable, X, of Section 1 is replaced by a p-dimensional random
vector, X,, with coordinates X;,. 6 becomes a p-dimensional parameter with
coordinates, 6;. This vector parameter, ¢, varies over D, an open, simply con-
nected subset of R?. Finally, assume that n}(X, — ¢) has an asymptotic mul-
tivariate Normal distribution with zero mean vector and non-singular covariance
matrix, i.e.

(2.1) L [n¥(X, — 6)] - N0, Z(6))
where X(6) is positive definite for all ¢ D.

A “covariance stabilizing transformation” shall mean a 1-1 continuously dif-
ferentiable mapping f: D — R” such that

(2.2) L (f(X,) — f(O)] — NO, W)
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where W is a p by p covariance matrix that does not depend on 6. It is easy to
show that without loss of generality # may be taken to be the identity matrix,
I. We assume W = [ throughout the rest of this paper.

The multivariate extension of equation (1.6) is derived by the multivariate
version of the d-method. As this derivation is analogous to the one-dimensional
case I omit it and merely report the equation that corresponds to (1.6). Let
(9f/06) denote the Jacobian matrix of partial derivatives of fevaluated at x = @
i.e. the (i, j)th element of (9f/d0) is (9f;/0x;)|,=o- [ stabilizes the covariance
matrix of X, if and only if f satisfies the matrix differential equation

(5 (2) ==

Unlike the corresponding equation in one-dimension we shall see that solutions
to (2.3) may not exist in D for some important choices of %(8).

3. Uniqueness of solutions. Before dealing with the question of the existence
of solutions to (2.3), in this section I shall give some results on the uniqueness
of solutions when they exist.

Suppose there are two mappings f and g that satisfy (2.3) then

o1 (o) (59) = Go) (o)

From (3.1) it follows that

62 ()=o)

where I'(6) is orthogonal for every 6 ¢ D. Equation (3.2) may be rewritten as

6 rer= (G Go) = Go) ) = G7)-

Since the right-hand side of (3.3) does not depend on ¢ it follows that I'(f) is
independent of 6, I'(§) = T',. This fact and (3.3) together imply that f and ¢
are related by:

(3.4) 9(0) = T, f(6) + 2

where T, is constant p x p orthogonal matrix and 2 is a constant p-dimensional
vector. In summary then, solutions to the matrix differential equation (2.3) are
unique up to an arbitrary additive constant vector 2 and an arbitrary constant
orthogonal transformation, I'.

4. Existence of solutions: general case. One must now come to grips with the
problem of the existence of solutions to (2.3). I have some partial results for
the general case and this section summarizes them. The case of p = 2 is examined
in detail in the next section.

In the case of p = 1 a considerable simplification occurs in going from (1.6)
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to (1.7). To generalize this for p > 1 we must recognize that since £-(6) is a
symmetric, positive definite matrix, it has many possible square roots. Let
2-#(6) denote any one of them—for example it may be taken to be symmetric
or triangular. If f is a solution to (2.3) then

@.1) (ZY(Z) = @z
and we see that any solution to (4.1) must also be a solution to
(4.2) (%{9) = T(6)2-4(0)

for some choice of I'(#), that is orthogonal for all # ¢ D. Therefore the existence
of a solution to (2.3) is equivalent to the existence of a I'(f), orthogonal, such
that ['(§)Z-#(6) is the Jacobian matrix of some mapping, f, of D into R?.

This leads us to seek conditions that insure that a matrix function of ¢, say
M(6), isa Jacobian matrix. It is well known (assuming that M(#) is continuously
differentiable) that a necessary and sufficient condition for M(6) = (m,;(9)) to be
a Jacobian matrix is that

(4.3) om;; _ om,
a0, 00;

J

for all i, j, k, (see for example, Courant (1936) page 353). In other words, the
Jacobian matrix of each row of M must be symmetric. Therefore, for example,
in the case where p = 2, the matrix

M(a):<1 0102>
0,0, 1

violates om,,/360, = dm,,/00, and hence we have a case where M(f) is symmetric,
positive definite (if —1 < 6,6, < 1) and continuous, but for which the equation

()= w0

does not have a solution.

To find conditions that are necessary and sufficient for the existence of solu-
tions to (4.2) we may proceed by applying (4.3) to the right-hand side of (4.2).
This appears to be a very complicated program except when p = 2, and I shall
not pursue the general case, here. The next section executes this plan for the
two-dimensional case.

5. Existence of solutions: case of p = 2. When p = 2, the orthogonal matrices,
T'(6), whose elements are continuous functions of ¢ have one of two forms de-
pending on the value of det (I'(9)). If det (I'(¢)) = 1, or = —1, then

(5.1 I‘(ﬂ):( Cf)SSD Slng0>, or :<c9s¢ Slngo)
—sing cos¢o sing —cosg
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respectively for some continuous real-valued function ¢ = ¢(6). To simplify
our notation we shall let 4(¢) = Z-#(¢) be a given square root of Z-(¢), and the
argument 6 will be suppressed whenever possible.

The following theorem solves the problem of the existence of covariance
stabilizing transformations when p = 2. Observe that the square root of X,
A, is not assumed to be symmetric because the useful square roots of a sym-
metric matrix need not themselves be symmetric, e.g. the triangular square root
is often easier to compute than the symmetric one.

THEOREM 1. Let A(0) be a given 2 by 2 matrix function of 0.

(a) An orthogonal matrix, I'(0), exists such that I'(0)A(0) = (9f/20) for some
mapping f: D* — R* if and only if the elements of A satisfy the following partial
differential equation:

0 [ 1 <8a oa ) (6(1 8a22>]
52 - 1 12 Y%
2 56 Laetcay G0, ~20,) T \%0, 70,
_i[ ! (?a__a_a_> (%_%)]
= 90, Ldet (1) “*\30, ~30,) T =G0, ~ 38,/

(b) If I'(0) exists, then, ¢(0) may be found by integrating the equations

9 (ai _ 91)

a6, | 1 36, 96,
(-3) dp | T det(A) A (8(121 _ aa22>

a0, a6, a6,

Before proving Theorem 1 we state a corollary giving this result in a special
case needed in the next section.

CoroLLARY 1. If A is diagonal then (5.2) becomes

0 [1 da ] ad |:1 aan:l
5.4 =2 — | ==11=0
-4 a0, La,, 06, + a0, La,, a0,

and (5.3) becomes

dp 1 da
5.5a A = 1t
( ) a0, . a, 00,
and

0¢p 1 oa
5.5b = —_ 2,
( ) a0, a, 00,

The remainder of this section is devoted to proving Theorem 1 and may be
ignored by the reader only interested in the result. Theorem 1 and Corollary 1
are applied to some examples in the next section. As this proof does not appear
to generalize to p > 2 we only indicate the essential computations.

ProOF OF THEOREM 1. We assume det (I'(¢)) = 1; a similar computation works
ifdet (I'(#)) = —1. Let B(¢) = I'(0)A(¢). Now apply the condition (4.3) to each
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row of B. This sets the ,-derivative of the first element of each row of B equal
to the 6,-derivative of the second element of each row of B, and produces two
equations which by some algebraic manipulation may be expressed in matrix
form as:

<8au _ %) 0p
a0, a0,/ | A
(5.6) ') (aim B 8a22> = I'(6) det (A4)(A) 20

ae, a0, a0,

Solving (5.6) for (3¢ /00) yields (5.3). At this point it is worth summarizing what
has been established. First of all, the existence of I'(f) is equivalent to the
existence of ¢(¢) satisfying (5.3). Secondly, if ¢ exists then it may be found in
terms of the elements of 4 via (5.3). Thirdly, (5.3) has the interpretation that
the two components of the vector obtained by carrying out the implied multi-
plications on the right-hand side of (5.3) are, respectively, the ;- and 6,-partial
derivatives of some function, ¢. But now apply the condition (4.3) to (5.3) to
insure that ¢ does, indeed, exist. This leads to equation (5.2) and proves the
theorem. []

6. Three examples. In this section I examine three examples. The first two
illustrate that covariance stabilization can be impossible. The third illustrates
how to find a covariance stabilizing transformation when one exists.

EXAMPLE 1. The sample mean and variance from a normal distribution. Let X
and $? be the sample mean and variance from a sample of n independent obser-
vations from the N(y, ¢%) distribution. Let ¢, = ¢ and 0, = ¢*, 6 = (6,, 0,)',
T, = (X, $?'. It is easy to show that

FL[n¥T, — 0)] — N0, Z(9))

where 2(0) = diag (0,, 26,%).

Let 4 = X-%, then 4 = diag (6,7, (20,5)~%). If these functions are substituted
into the left-hand side of (5.4) the result is (26,)~% which is never zero. Thus,
this choice of X(#) cannot be stabilized. This is not too surprising, since other-
wise we could find rwo asymptotically independent statistics, f; and f,, such that
the asymptotic distribution of f,(X, $?) — f,(#, ¢*) is independent of ¢* (and ).
Log (S?) is one such statistic that does exist.

EXAMPLE 2. The trinomial distribution. Let nT, have a trinomial distribution.
The parameter space, D, is given by:

D ={(6,,0,): 6, >0 and 6, + 6, < 1}.
Standard theory implies that
ZL[n¥(T, — 0)] — N, Z(0))

_ (0,1 —6) —06,0,
20) = ( —0,0, 0,1 — 02)>'

where
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This choice of %(f) may be attacked directly but I choose to diagonalize the
problem and apply Corollary 1 as follows. Set

(6.1) Y., = hy(T,) = sin~* (T}) + sin~* (T4,) and
Y, = hy(T,) = sin~* (T},) — sin~* (T4,) .
Let Y, = i(T,) = (h(T,), hy(T,)). Reparametrizing in terms of ¢ = A(¢), the
parameter space, D, is transformed to
D* = {(¢1,¢2): 0< ¢, < 77/2’ -9 < ¢, < ¢1}

The covariance matrix, X, is transformed into

(6.2) A(¢) = diag (6%(¢), 1 — o*(¢))
where
(6.3) a*(¢) = (cos ¢,)/(cos ¢, + cos ¢&y) .

Thus, the trinomial problem may be put into the equivalent form of
LY, — ¢)] - N0, A(¢))
where A is given by (6.2). If 4 = A-%, then A is given by
A = diag (s(¢)7 (1 — a%(¢))7H) -
If we now apply Corollary 1, a straightforward calculation reveals that (5.4) is

not satisfied for any value of ¢ and thus the trinomial distribution does not
possess a covariance stabilizing transformation.

EXAMPLE 3. The joint Poisson-Gamma distribution. Let X and Y be two jointly
distributed random variables. X is Poisson with mean ¢ and Y| X = x is Gamma
with parameters 1 and x, i.e.

(6.4) friz(y]x) = (L(x))1A-=y="le-v/A if x=1, y>0 and
PlY=0|X=0}=1.
We let §, = ¢ and 6, = Ax. The mean vector of (X, Y) is § = (6, 6,) and the

covariance matrix is

(6-3) (0 = (z:, 20222/0) '

The parameter space D = {(6,, 6,): 6, > 0}. Let T, be the sample mean of n
i.i.d. random vectors each distributed as (X, Y). Then Z[n¥T, — 6)] —
N(0, Z(0)) where X(0) is given in (6.5). If 4 = X~} then 4 may be taken to be

@) -
G

A straightforward calculation reveals that the differential equation (5.2) with

1
(6.6) A= 012
9,
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this choice of 4 becomes

0 0
6.7 —[(20)™] = — [(—26,)*
(6.7) a9, [0 = 57 1(=20)71]
which is true so that 4 satisfies (5.2) and we may conclude that covariance sta-
bilization is possible in this example. It remains to find the stabilizing trans-
formation. First we solve equation (5.3) to find ¢(6). This yields

(6.8) ¢(0) = L(0) 4+ ¢, where L(0) = 2-'log (6,/6,)
and ¢, is an arbitrary constant.

Next we use this choice of ¢(f) and solve (4.2) for f, and f,. The equations one
obtains for f; and f, by this procedure may be expressed as

(6.9) fi(6) = 26.* sin (L(6))
f0) = 26;} cos (L(6)) .

It is easily verified that these choices of f and f, do, in fact, satisfy (2.3) and
stabilize the covariance matrix of 7,,. In terms of the original parameters, ;2 and
4, the new parameters may be expressed as

(6.10) fi(p, 2) = —22%sin (log p?)
filps 2) = 222 cos (log p?) .

7. Discussion. Of the examples in Section 6, the trinomial is the most inter-
esting from a practical point of view. My result states that it is impossible to
transform a set of trinomial random variables so that they all have a common
known asymptotic covariance matrix for all values of the unknown parameters.
Such a transformation would have generalized the arcsine-squareroot transform
for sets of binomial proportions and might have proved useful in the multivariate
analysis of variance of multiply-indexed sets of trinomial variables.

A negative result for the trinomial is an ominous sign for the possibilities in
higher dimensions. I conjecture that covariance stabilization is impossible for
the general multinomial distribution, but I do not believe that the elementary
techniques I used for p = 2 will give this result for p> 2.

One attitude towards the trinomial example is that there are three functions
of §—two variances and one covariance—to be stabilized but only two func-
tions—f; and f,—to do the stabilizing. Thus on the surface it looks as if the non-
existence of a solution is due, roughly, to a situation with “too few unknowns
and too many equations.” However, this intuition must be wrong because the
transformation (6.1) produces an entirely equivalent problem with a covariance
matrix that is completely determined by a single function of the two parameters
(6.3). Now there are “too many unknowns and too few equations.” Example 1
finishes out the cases. That situation has two variances to be stabilized and no
covariances, i.e., there are the “same number of unknowns and equations.”
Evidently, the impossibility of covariance stabilization in these cases is due to
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the way the variances and covariances are related to each other rather than
merely to their number.

One important application of the asymptotic solutions to the variance stabiliz-
ing problem is to provide a guide for finding useful preasymptotic solutions—
i.e. those that approximately stabilize the variance in small samples. For ex-
ample, see Freeman and Tukey (1950) for a discussion of transforming Binomial
and Poisson variates. My negative asymptotic results for the trinomial do not
mean that approximate covariance stabilization is impossible in finite samples.
However, by not having an asymptotic solution the way towards a reasonably
good approximate solution (if it exists at all) for finite samples is still unclear.
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