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The kind of calibration problem considered may be roughly described
as follows: There are two related quantities ” and 7 such that % is rela-
tively easy to measure and " relatively difficult, requiring more effort or
expense; furthermore the error in a measurement of 7" is negligible com-
pared with that for 27. A distinguishing feature of the problem is, that
from a single calibration experiment, where measurements are made on a
number of pairs (%, 77), we wish subsequently to estimate the unknown
values of 7" corresponding to a very large number of measurements of 7.
The problem is solved by a procedure of interval estimation, whose operat-
ing characteristic is expressed in terms of a reformulation of the law of
large numbers. Some idea of the contents of the article may be obtained
from the table of contents.
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1. General idea of the solution of the calibration problem. (Many portions of
this article are enclosed in parentheses, like this one. You should treat these
with your attitude toward footnotes. The parentheses are boldface to facilitate
skipping to the end.) If you are interested only in the mathematical derivation
of the theory you may skip the material in parentheses and also Section 10.
At the other extreme, if you have no interest in the mathematical derivation
you may read the text up to Condition 1 in Section 4, then skip to Section 10,
and perhaps omit Appendix B.

The kind of calibration problem treated in this article is characterized by a

Received February 16, 1971; revised September 30, 1971.
! This research was partially supported by the Office of Naval Research, Contract Nonr
N00014-69-A-0200-1038.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )z
The Annals of Statistics. RIK@J:Y

WWw.jstor.org



2 HENRY SCHEFFE

statistical relation between two quantities 7/ and 27" such that 7/ is relatively
easy to measure and 7 relatively difficult, requiring more effort or expense.
(My treatment seems to have little connection with the previous work on the
problem included in a review by E. J. Williams [9]. Not included there is an
important article by Lieberman, Miller, and Hamilton [4]: My treatment shares
with theirs the use of two specified probabilities, as in Wilks’ tolerance intervals
[10]. Their two methods are limited to the case of linear calibration curves,
and the generally more efficient method of the two is based on the application
of the Bonferroni inequality to a confidence band for a regression line and a con-
fidence interval for a standard deviation. Their “Bonferroni intervals” are com-
pared with mine in Section 10.) If a measurement u of 7/ is made when &~
has the value v, it is assumed for v in an interval [v?, v'»] that u is a normal
random variable with mean m(v, 8) = Y;2_, B,9,(v) and variance ¢?, where the
{B,} are unknown parameters and the {g,;(v)} are known functions. Ina calibra-
tion experiment &, n measurements U, - - -, U, of %/ are made at known values
Vis -+, ¥V, of 770 (It may be argued that it suffices to know ¥, with an error
small compared with ¢/m(V,, 8), where m, (v, ) = dm(v, 8)/9v.) We will denote
by & also the outcome of the calibration experiment. After the calibration
experiment, measurements u; of 7/ are made at unknown values v, of %7, for
i=1,2,.... Finally, it is assumed that the random variables v,.---,U,,
Uy, Uy, -+ - are independent. A more detailed statement of the assumptions may

be found in Section 2. The problem is to construct and interpret interval esti-
mates of the v;.

(“Measurements” of the values of 77" need not necessarily be possible in the
usual sense; for example, suppose 77" is the concentration of a certain chemical
in a “sample.” In some cases one might get an accurate but difficult measure-
ment of 77 in a given sample by separation and weighing, but in other cases
it might happen that, given a sample with an unknown value of 7, an accurate
measurement is impossible or practically so. The ¥, might then be known con-
centrations in samples specially prepared for the calibration experiment with
known amounts of the pure chemical. We might then say that the values ¥,
are measurements on 7~ but the values v; cannot be measured.)

First I shall explain the idea of the proposed statistical procedure in very
general terms with no details to divert attention from the probabilistic structure
of the inferences. For each measurement u;, an interval estimate is made of the
corresponding unknown v;. This interval will depend on u; and also on the
outcome & of the calibration experiment; we shall denote it by I(;, ). The
construction of the intervals I(x; &) is described in Section 4. For each v,, the
statement .&; is made that v, € I(4;, ). In terms of a relation called “in the
long run greater than or equal,” defined in the next paragraph, we seek a pro-
cedure for which for given « and 4, and for every possible sequence of constants
{v:}, the probability is = 1 — 4 that the proportion of statements ., that are true
is in the long run > 1 — a.
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If the probabilities of a sequence {;} of independent events satisfy Pr{<;; > =
we shall say “the proportion of events ; that occur is in the long run > z.” The
frequency interpretation of this statement is discussed in Appendix B.

Now let &, be the event that the above statement .~ is true. In the condi-
tional distribution, given &, the events

&, el(u, &)

are independent, since the u; are. Hence if for all sequences of constants {v,},
Pr{Z,| &} > 1 — a, then in the conditional distribution, given Z, the pro-
portion of correct statements .~/ is in the long run > 1 — a. We note that
Pr{#;| 7} is a function of &, and also in general of v;, 8, and 6. Let .Z2(p, o)
be a set in the &-space where Pr{&;| £} = 1 — a forall v;. If Pr{& e S2(8,0)} =
1 — o for all B, g, then our estimation procedure has the property italicized
above.

2. Assumptions 1-4. We now proceed to a more detailed statement of the
assumptions.

AssUMPTION 1. The measurements U,, ---, U,, u,, 4,, --- on 7/ are statis-
tically independent, and their distributions depend respectively on the values
Vi - +vy Vo, Uy 0y, ++ - of 77

Let ¥ = min, V,, v® = max; V,. The closed interval T = [v*, v¥] will be
called the ‘“calibration interval” of %7; it is a known interval, assumed to be

nondegenerate.

ASSUMPTION 2. U, is N(m(V;, B), ¢%), and if v; € T, u; is N(m(v;, B), %), where
forveT,

(1) m(v, B) = 2151 B;9;(v) 5

8= (B -+, B,) the {8,} are unknown parameters, and the {g,(v)} are known
functions with continuous derivatives. The n x p matrix whose i, j-element is
g,(V;) is of rank p.

The variance ¢? is unknown, unless the contrary is stated. A case of unequal
variance is treated in Appendix A. We shall make no assumption about the
“fine structure” of the distribution of »; for v, outside the calibration interval
T, the following will suffice.

AssuMPTION 3. For all constants CV, C®,

Pr{u; < C% when v, < vW} = Pr{u; < C¥ when v, = v}
and
Pr{u; > C®» when v, > v?®} = Pr{y; = C*® when v, = v®}.

The estimates of the {8,} are calculated from the calibration experiment by
the method of least squares. The calculation is assumed to be made as usual
by minimizing

@) Ui — D2 B 0;(V)P
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by varying the {§;} freely over the entire Euclidean p-space of §, and may lead
to f lying outside the parameter space to which later assumptions restrict j.
Nevertheless, 8 = (3,, - - -, f,) will denote the estimates obtained by the unre-
stricted minimization process, and they will then be unique by the rank assump-
tion on the matrix (g;(V;)), and jointly normal with means (8,, ---, 8,) and
covariance matrix (¢%b;;), where the b;; are known constants. We denote by 4

an estimate of ¢* satisfying

AssUMPTION 4. §* is independent of 3 and distributed as a®y*(v)/v, where x*(v)
denotes a chi-square variable with v df.

The estimate 6° may be pooled from other experiments besides the calibration
experiment. In that case it will not be a statistic formed from 2’; we now change
the notation so that henceforth & will denote the (p + 1)-dimensional statistic
(B, ). (This is one of the details glossed over in the general description of the
procedure in Section 1. I remark here also that in practice v = n — p, but in
our derivations we will not restrict v, because we shall see that this suggests
approximations for certain constants we shall need to calculate.)

3. The calibration chart. I shall describe the construction of a “calibration
chart” and explain how the intervals I(u;, ") are read from the chart; their
analytical definition which this implies will be clear. On the calibration chart we
shall take u as abscissa and v as ordinate. The regression curve of u on v has the
equation u = m(v, 8), where m(v, 8) is given by (1); the fitted regression curve
has the equation u = m(v, §), where

3) m(v, ) = 231 8;0;(v) -

The calibration curve, defined for ve T, is identical with the fitted regression
curve, but we think of it as determining the inverse of the fitted regression func-
tion u = m(v, §), namely, v as a function of u and §. (The analytic inversion
may not be practicable, and is not needed, as the calibration curve is easily
plotted from its abscissa u = m(v, §). A similar remark applies to the upper
and lower calibration curves defined below. As indicated in Fig. 1, for any u,
in the “calibration interval” [u®, u®] of 7/, where u*) = m(v'¥), ), we can
read from the calibration curve a point estimate 9, of the corresponding v,,
namely, 7, is the ordinate at ¥ = ;. For this reason the user of the calibration
chart is probably interested at least as much in the calibration curve as in our
intervals I(u;, &). Although I do not treat the problem of point estimation of
the v;, I remark that the interval I(x;, &), no matter how small we made it by
increasing a or 6, would always contain 9, in its interior. It is obviously es-
sential for practical reasons that 9; be a single-valued function of u;. Necessary
for this is the condition that the derivative m (v, ) be of constant sign, which
we may as well assume positive, so m,(v, §) = 0; sufficient is the following
condition.)

ConbiTioN 1. Forall ve T, my(v, §) > 0, where m,(v, §) = dm(v, f)/dv.
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Under Assumption 2 and our definition of the {3,} as unrestricted minimizing
values, there is a positive probability of Condition 1 being violated for all 8, o;
however, it will be a consequence of the later Assumption 5 that this probability
is negligible. This negligible probability must then be subtracted from the
nominal probability 1 — o for the procedure. (We might think of “negligible”
meaning ‘“‘small compared with 4,” perhaps of the order of 2. I remark that a
negligible probability of violation of Condition 1 implies that the regression
function has the property m,(v, 8) > 0 for all ve 7, since m,(v, f5) is normal
with mean m,(v, B): Suppose m,(v,, 8) < 0 for a particular v,e 7. Then
Pr{m,(v, f) < 0 for some ve T} = Pr{m,(v,, f) < 0} = 4, which is not negligible.
The condition m,(v, 8) > 0 for all ve T restricts 3 to the convex set which is
the intersection of the half-spaces {8: > 7_, 8,9,/(v) > 0} for ve T. Some dis-
cussion of the Assumption 5 implying all this is offered in Section 12.)

The intervals I(u;, ) may be read from the upper and lower calibration
curves, which are constructed as follows: They are to the left and right of the
calibration curve at a horizontal distance éw(v, c¢), where w(v, ¢) is a positive
function, to be specified later, and depending on one or more constants ¢, which
will be determined to give the desired @ and d. The upper calibration curve
has the equation

@) u = m(v, &, &) = m(v, f) — (v, ),
the lower calibration curve,
5) u=m2v, &, c) = m, f) + dw(,c),

and they are to be constructed only between the horizontal lines v = v and
v = v®. The intercepts with these lines might be denoted by

U = W (ph) &, ¢) (h k=1,2),
but it will be more convenient to write
(6) ull — u(21) s u12 — u(l2) s uOl — u(ll) s uOZ — u(22) R

as indicated in Fig. 1. The intervals [#", «’*] and [4", »**] may be called respec-
tively the “inner and outer calibration intervals” of Z.

4. The estimation sets /(x;, & ). We shall define the sets I(x;, &), and calculate
Pr{&,;| &} = Pr{v, € I(u;, &)| &}, without assuming they are intervals. (Sets
which are not necessarily intervals might be acceptable in some other problems,
as in Fieller’s problem of estimating a ratio, or in estimating the slope of an
unknown line when the fitted line is nearly vertical, but never in a calibration
problem. The construction of the I(x;, &) will give intervals if the m™ (v, &, c)
defined by (4) and (5) are strictly increasing functions of v, and a sufficient
condition for this will be the following, since under our eventual choice of
w(v, ¢) the m™(v, &, ¢) will have continuous derivatives with respect to v.)
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ConpiTtioN 2. Forallve T, and for h = 1, 2, m,""(v, &, ¢) > 0.

Again we can only require that this condition be violated with negligible
probability, and this will follow from our later Assumption 5. We note, by
adding for £ = 1, 2 in Condition 2, that it implies Condition 1.

After the sets I(u;, ') have been shown to be intervals, they will have the
following structure in terms of the calibration chart: If u, is in the inner calibra-
tion interval [u”, u’*], the statement .> is that the corresponding v; lies between
the ordinates of the lower and upper calibration curves at ¥ = u,, that is, I(y;, &)
is the interval between these curves on the line # = u;, as shown for this case
in Fig. 1. In every case the interval I(u;, &) will be closed. If u; does not lie
inside the inner calibration interval, the treatment of the edge effects is some-
what finicky: There are four cases, and the corresponding statements .&*; are
given in Section 10; in every case the interval is the vertical section at u = u,
of the shaded set ./(&, ¢) in Fig. 1.

Now without assuming they are intervals I will define the one-dimensional
sets I(u;, &) from the following two-dimensional set %" = o/(&, ¢) in the u, v-
plane. For the set /(& ¢), shaded in Fig. 1, the upper-or-left boundary is the
upper calibration curve extended by the half of the line u = u? above v = v®
and the half of the line v = v to the left of u = u; the lower-or-right boundary
is the lower calibration curve extended by the half of the line u = u* below
v = v and the half of the line v = v® to the right of ¥ = #*. Both boundaries
are included in .&7. The sets I(u;, &) are the vertical sections of . by the lines
u=u,.

5. Calculation of Pr{&’; | £}. Since for any v;, v, is in the vertical section of
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7 by u = u; if and only if u; is in the horizontal section of % by v = v;, we
may calculate Pr{&’; | £} as the conditional probability, given &, that u; is in
the horizontal section of .o/(&, ¢) by v = v;, which horizontal section will al-
ways be an interval.
Ifv,eT,

() Pr{#,| %) = Prim®(v,, &, ¢) < u; = m¥(v,, %, ¢) | £},
where u; is N(m(v;, 8), ¢*) by Assumption 2. If in the double inequality we
subtract m(v;, 8) and divide by g, we get by (4), (5), (1), (3),

Pr{&;| &} = Prim(v;, f) — dw(v;, ¢) < 2(v;)

< m(v;, B) 4 aw(v;, ©)| £},

where

B:(IBI""’BP)’ ;Bj:(‘éj“‘ﬁj)/‘f’ d = dfo,

2(v;) = [u; — m(v;, B)lfo
is N(0, 1). Hence sufficient conditions for Pr{&’;| &} = | — « are that

and

(8) m(vi’ lé) - (?W(’U,;, C) = —Zg s
©) m(v;, B) 4 ow(vi, ¢) = z,
where z, is the two-tailed a-point of N(0, 1).

If v; > v®,

Pr{Z&;|&} = Pr{u, = u”|&}.
Now if & is given, u’? is fixed, and we may use Assumption 3 to conclude
Pr{&,| &} = Pr{u; = u'®> when v, = v®|&}.

Using the definition (6) of #’?, and calculating as in the preceding paragraph,
we then find

Pr{#]| £} 2 Pr{z(v®) = m(u®, f) — ow(v®, ¢)| £},

and hence that Pr{&;| &} = 1 — la if condition (8) is satisfied for v, = v®.
Similarly we find for v; < v® that Pr{&;| &} = 1 — }a if condition (9) is satisfied
for v; = v™. (It would be correct later to make the following stronger assertion
than that italicized at the end of the third paragraph of Section 1: Divide the
statements .~ into two classes, the first, those made when w; lies inside the inner
calibration interval [u”!, »?], and the second, when u; lies outside. Then the
probability is > 1 — d that the proportion of true statements in the first class
is in the long run > 1 — &, while that in the second class is in the long run
> 1 — La. However, it hardly seems worthwhile to complicate in this way the
statement of the operating characteristic of the method, especially since in
practice relatively few of the u; should be outside the inner calibration interval.)

We have now established that for all v;,, Pr{&;|&} =1 — a if forallve T

m(v, f) — ow(v,¢) < —z, and  m(v, f) + w(v, ¢) = z,,
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or
(10) [m(v, B)| < dw(v, ¢) — z, forall veT.

(At this point the following remarks may be helpful: The random variables
involved in the inequality (10) are (f, ) = &, as is seen by writing it
|>2:(8; — B;)9,;(v)| < 6w(v, ¢) — oz,. The preceding probability calculations
were conditional for fixed &, but the succeeding ones are based on the distribu-
tion of the random variable &.)

6. Choice of w(v, ¢). In our remaining calculations we shall encounter the
function S(v) defined as

(11) S(v) = SD(m(v, B))/o for veT,

where “SD” denotes “the standard deviation of.” A formula for S(v) is given
below by (13).

We now derive an inequality for |m(v, )| by matrix calculus: In this para-
graph boldface type will indicate a vector or matrix. The p-dlmens10nal column
vector B is N(0, B), where B = (b;;). Hence x = (B"B-1B)t is x(p). Since B is
positive definite there exists a nonsingular A such that A’BA =1, the identity
matrix; hence B = A-""A-* and B-! = AA”. Write m(v, f) = g”g for allve T,
where the components of g = g(v) are g,(v). Then applying the Schwarz in-
equality to m(v, f) = (A~'g)"(A”B), we get

(12) Im(v, B)| < ||Ag|| - |A7 B,

where for a vector y, ||y|]| = (y*y):. Now S(v) = SD(g”B) = (g”Bg)t, which we
record here in nonmatrix notation for later use,

(13) S(v) = [274=1 0495 (0)9: (V)]
and then continue:
S(v) = (8"A"A7'g)t = ||A7g|| .
Also, R .
x = (B'B'B)t = (B"AATB)t = A" .
Substitution in (12) gives the desired inequality
(14) |m(v, B)| £ xS(v) forall veT,

where x = (B7B~'B)t is x(p), does not depend on v, and is independent of &
since B is, while 4 is v=iy(v).

From here on our probability calculations will be made not in the (p + 1)-
dimensional probability space of & = (B, ) but in the induced 2-dimensional
probability space of (x, &), where (x, ¢) has the distribution just stated. Because
of (14), the condition (10) will be satisfied if

aw(v, ¢) — z,
S(v)

(15) x forall veT.

A
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The distribution in the (x, 6)-space does not depend on the unknown (8, ¢), but
the probability of the set where (15) is satisfied still depends on v, so let us “inf
it out.” Let

(16) G, ¢, a) = inf,., %%2});2 ,

The event (15) will happen for all v e T if
a7 - x < G(6, ¢, a) .

Denote by 22 the set in the (x, §)-space where (17) is satisfied. We shall now
choose w(v, c) so that Pr{(x,d)e &£} = 1 — 5. Then the probability will be
= 1 — ¢ that

Pr{Z;|€} =1 —«a for all w,.

(On contemplating (16) it seems to me that the only hope of obtaining relatively
simple and general results in calculating Pr{(x, } € 52} is to choose w(v, ¢) to
be a linear function of S(v).)

Let us choose

(18) w(v, ¢) = ¢, + ¢, 8(v),
where ¢; and ¢, are constants, so
G(6, ¢, a) = ¢,6 + inf,,, 19— Za
( ) 2 + veT S(/U)

Then G(g, c, @) is easily calculated in terms of the constants

S, = inf, ., S(v), S, = sup,.,S(v) ;
-k
g
z | y
a Ay
& - ¢ W
7 |
c, CcA \\ D27 R
g [
- // '
- 7 |
- 7 |
- 4 I
el 7 |
- s |
-7 7~ |
P /,” /// |
h_—~ R - i
— — o} S X
Zq I Zq I €224 B
ST s S,” s, ¢, A

Fi1G. 2. The shaded set is <2, the domain of integration for P(c).
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it is given by the formulas which are the right members of (19) below. (The
needed constants S; are easily obtained graphically, as explained in Section 10.)
if we substitute this for G(d, ¢, ) in (17), (17) becomes

(19) x Z (e + S — 8,7z, if ¢<z)/c,
= (e + Syl — S7'z, if 6= z,/c,

and we now have the problem of calculating constants ¢, and ¢, for which the
probability of the set . defined by (19) is 1 — 4. .Z2is the shaded set in Fig. 2.
It is completely determined by the three points P,, P,, P, whose coordinates
are labeled on the axes in Fig. 2, where we use the first set of labels at this
stage.

7. The case of known ¢. Explicit formulas for the constants ¢, and ¢, which
make the probability of (19) equal to 1 — g are easily found in the important
case where ¢ is known. The case of known ¢ can be included in our treatment
by taking v = oo and putting ¢ = ¢ in the equations (4) and (5) of the upper
and lower calibration curves. All the probability in the x, -plane is then con-
centrated on the line ¢ = 1, where x is y(p). In the case ¢, < z,, the event (19)
is defined by the upper inequality in (19) with ¢ = 1; we then want

Prilx] < e, 4+ SiHe, —z)}=1—34.

This will be true if ¢, + S,7%(¢; — z,) = x;(p), the upper d-point of y(p). Simi-
larly, we treat the case ¢; = z,. The result is

(20) € = x35(p) + S 7z, — ) if ¢,<z2,,
=2:(p) + 87z, —e) i =z,

To choose a pair (c,, ¢,) satisfying the condition (20) we shall minimize w(v, c).
(t is natural to try to minimize the vertical distance between the upper and
lower calibration curves, which, for u; in the inner calibration interval, is the
length of the interval I(u;, ). Since this appears analytically very messy, I
minimize instead the horizontal distance between the curves, namely 2ow(v, c).)
From (18) and (20),

w(v, ¢) = ¢l — S;7\S(v)] + [x?(p) + 87'z,]S(v) if ¢<z2,,
=c[l — 8,75 S()] + [xs(p) + 8.7z, ]S(v) if ¢,=>z,.

For any fixed v, the graph of w(v, ¢) as a function of ¢, thus consists of two
linear pieces with slope < 0 for ¢, < z,, and slope > 0 for ¢, > z,, and is con-
tinuous at ¢, = z,. It follows that w(v, ¢) will be minimized, uniformly for
ve T, by taking ¢, = z,. Then ¢, = y;(p). We choose these values of ¢, and ¢,,

so that

(21) w(v, ) = z, + 1:(P)S(V)
in the case of known ¢. (The following intuitive interpretation may be given to
the two terms in ow(v, ¢) = 0z, + ay,(p)S(v): The horizontal distance aw(w, c)
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allows for the variation of a measurement », made at v, about the unknown
regression curve of u on v; the first term may be attributed to the variation it
would still have if the regression curve were known, and the second term to
the variation of the fitted regression curve about the unknown regression curve.
This interpretation leads to a simplification in the case below where ¢ is unknown,
by suggesting a relation to adopt between ¢, and ¢, which reduces their calcula-
tion to that of a single constant.)

8. Calculation of ¢, and ¢,. Returning now to the case where ¢ is unknown,
we have to calculate values of the constants ¢, and ¢, which make the probability
of the event (19) equal to 1 — 0; they will depend on S, and S, as well as on
a, d, p, v. (Theabove strategy of minimizing w(v, c) over all pairs (c,, ¢,) making
the probability of (19) equal to 1 — d seems to me to lead to a calculation hope-
lessly complicated even for a computer, since the probability of (19) is given by
a double integral. However, the values of ¢, and ¢, we shall adopt will agree
with (21) in the limiting case for v — co. We can get some new information by
considering the limiting case as S, — 0 for fixed v. We might imagine achiev-
ing this by an appropriate sequence of calibration experiments for which 7 — oo,
but for this hypothetical situation we keep the same estimate 4% so that v is not
> n — p, but fixed.)

Let us consider what happens in Fig. 2 when S, and hence S, — 0. Then the
point P, stays to the left of P, while P, recedes indefinitely along the negative
x-axis. The two linear pieces of the right boundary of the shaded region thus
rotate about the fixed point P, into a limiting position which is the half of the
horizontal line ¢ = z,/c, to the right of the g-axis. The limit of the probability
of the set (19) is thus Pr{¢ = z,/c;}. This will equal 1 — 4 if z,/c, is the lower
o-point of ¢, or ¢; = z,4, where

(22) A = A0, v) = vi[y_5(v),

and y,_;(v) denotes the lower d-point of y(»). Thus the limit of ¢, as S, — 0 is
z,4. (In the case of small S, the first term of éw(v, ¢) = d¢, + G¢,S(v) has an
intuitive interpretation similar to that below (21), but é¢; — z,46 now also
allows for the fact that ¢ is unknown, 4é being an upper (1 — d)-confidence
limit for ¢. If we try to give an interpretation similar to the above to the second
term, it suggests directly, or by analogy with my S-method of multiple com-
parison [6, Section 3.5], at least for small §,, the approximation of ¢, by the
upper ¢-point of x/d, namely B = [pF;(p, v)]*. I considered at first defining
¢, = z,4 and then calculating c, to make the probability of (19) equal to 1 — 4,
hoping that B could be used as a first approximation in the computer calcula-
tion of c,, but I decided that this calculation would become very unstable as
S; — 0, since ¢, then multiplies a quantity in (18) that approaches zero, while
¢, remains fixed, so that large changes in ¢, would cause little change in w(v, c),
the quantity of interest. This led me to the following formulation employing a
single constant ¢ whose calculation should not be subject to this instability.
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The preceding intuitive interpretations also led me to hope that ¢ would not
vary much from unity as S; and S, are varied.)
We shall now determine a constant ¢ so that the probability of the event (19)
is1 — gif
¢, = cz, A and ¢, = cB,
where 4 is given by (22), and B by
23 B = B(, p, v) = [pFs(p, V)],

where F;(p, v) denotes the upper d-point of the F distribution with p and v df.
The form of w(v, ¢) is then

(24) w(v, ¢) = c[Az, + BS(V)],
the event (19) becomes
(25) x < ce(B+ S,7'z,4)6 — S,7'z, if < (cA)™?,

< co(B + 8,7z, A)g — S, 'z, if 6= (cA)™,
and its probability, which we will denote by P(c), depends also on the six quan-

tities «a, 9, p, v, S, S,. We can suppress the explicit dependence on « by intro-
ducing, for the purposes of computation and tabulation, the quantities

(26) s; = S;/z, i=12).
Then P(c) depends on the five quantities 4, p, v, s,, 5,, besides ¢, as indicated by
the second labeling in Fig. 2 of the coordinates of the points P,, P,, P,, with 4
depending on 4 and v through (22), B on 4, p, and v through (23), while the
probability density of ¢ depends on v, and that of x, on p-

As c increases from 0 to oo, P, and P, remain fixed in Fig. 2 while P, descends
the vertical line x = B/A, its ordinate decreasing from oo to 0, and hence the
probability P(c) in 22 increases from 0 to 1. The value of ¢ which makes
P(c) =1 — 6 will be a function of 9, p, v, s,, 55, say ¢ = ¢(d, p, v, 5y, ;). Knowl-
edge of the following limiting behavior of ¢(d, p, v, s,, 5;) is useful for the tabu-
lation of ¢: (i) ¢ —> 1 as v — oo, for all 4, p, s, 5,; (ii) ¢ — | as s, and hence
8§ — oo, for all d, p, v; (iii) ¢ — 1 as s, and hence s, — 0, for all 4, p, v. (i)
follows from using in (24) the limits 1 for 4 and y,(p) for B as v — oo, so
w(v, ¢) — [z, + x,(p)S(v)], whence ¢ — | from (21). (ii) follows from using in
¢ = ¢/(z,4) the limit z,4 for c,, established below (22), as 5, — 0. (iii) may be
deduced from Fig. 2, where, as 5, — oo, the right boundary of .2 approaches
the ray from O through P;, on which x/6 = ¢B, so P(c) — Pr{x/¢ < c¢B} =
Pr{[pF(p, v)]* < c[pF,(p,v)]}} > 1 — 4 if ¢ — 1. While the values of s, and s,
in a calibration problem always satisfy 0 < s, < s,, it is convenient for tabulat-
ing purposes to extend the definition of ¢(d, p, v, s, s;) to all s,, s, satisfying
0 < s <s, by taking limits.

The probability P(c) = P(c, 3, p, v, s,, 5,) of the event (25) may be calculated
with the aid of Fig. 2 to be

P(C) = Q(C, 5’ P’ y, Sl) + R(C, 6, Ps )J, Sz) )
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where
(27) 0(c, 8, p, v, 51) = §{ctiipep-1 9N §ED f(x) dx} da
(28) R(c, 9, p, v, 5,) = Soou-19(6){§52? f(x) dx} dé

and the limits of integration L,(d) are
L(6) = c(B+ s;7'A)6 — s;7*.
The probability densities f(x) and g(G) are

() = [2772"T(p[2)] 7' exp(—**[2)
9(9) = 2(»[2)[L(v[2)] """ exp(—v3°[2) ,

and the constants 4 and B are given by (22) and (23). The formulas (27) and
(28) are obtained from (25) for 0 < s, < s,, and we extend them to 0 < 5; < s,,.
The value of P(c) for s, = 0, defined as lim P(c) as s, — 0, is needed for tabula-
tion. It is calculated by setting Q = 0 instead of (27), and retaining the defini-
tion of R by (28); this is justified by the limiting behavior of the set 2 as s, — 0
in Fig. 2.

The value of ¢ which makes P(c) = 1 — 4 in the case p = 2 is given in Table
1, and corrections to this for other values of p, in Table 2. Use of the tables
is discussed at the end of Section 10. (I decided, in view of how ¢ would be
used in the construction of the calibration chart, to tabulate it to two decimal
places. The printing of the table was simplified by tabulating instead of ¢ the
integer c*, where ¢ = 1 + (.01)c*, and c is to two decimals. Next I decided that
instead of the solution of P(c) = 1 — 4, I would tabulate the minimum integer
c* for which P(c*) = 1 — 4, where P,(c*) = P(1 4 (.01)c*). This redefinition,
while of some theoretical advantage in ensuring P(c) = 1 — d for a two-decimal
¢, is of no practical importance, except that it eliminates the inverse interpola-
tion problem of determining the solution of P(c) = 1 — d from calculated values
of P(c): The CDC 6400 computer was programmed to move through integer
values of ¢* until it found two successive integer values for which P,(c*) brack-
eted 1 — 6. The result is the same as though the inverse interpolation problem
were solved and the resulting ¢ then rounded up, instead of rounded off, to two
decimals. Finally, I decided on another slight modification, which happened to
make the table of c¢* look a little smoother in some spots: The programmer
believed that the computed value of P,(c*) should be correct within +.0001,
although the complicated derivation of an error bound was not made. Let P,(c*)
denote the computed value of P (c*) rounded off to 4 decimals. Then the tabled
c* is the minimum integer for which Py(c*) = 1 — 0. It should agree within
+1 with the desired minimum integer ¢* for which P,(c*) = 1 — . Besides c*
(actually, ¢) the computer also printed out P,(c*) and Py(c* — 1), respectively
=1—dand <1 —24.)
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9. Proof that the sets /(u;, ) are intervals. Assumption 5. The only remaining
question in the mathematical derivation of the procedure is whether the sets
I(u;, &) are intervals. From (4), (5), and (24),

(29) mm(v, &, ¢c) = m(v, f) + (—1)*éc[Az, + BS®w)] (h=1,2),

where S(v) is given by (13). Thus the m»(v, &, ¢) have continuous derivatives
with respect to v € T since the g,(v) do by Assumption 2, and our task is reduced
to formulating an Assumption 5 which ensures that the probability is negligible
that Condition 2 is violated. From (29),

(30) m,M (v, &, ¢) = m,(v, f) + (—1)*écBS’(v) .

(The question is whether (30) is positive. On contemplating (30)at first it seemed
to me that even though the slope m,(v, ) of the fitted regression curve were
comfortably positive, S(v) might vary so wildly that the contribution of S’(v)
to (30) could still drag it to negative values. This possibility is ruled out by the
following Lemma, which relates S’(v) to the distribution of m,(v, f).)

LEMMA. S'(v) = p(v) SD(m,(v, B))/o, where p(v) is the correlation coefficient
between m(v, B) and m,(v, f).

To prove the Lemma we differentiate (13) to get

(31) S'(v) =[SO Ziw=1 £395(0)9 (V) -

The double sum in (31) may be recognized as the covariance between m(v, f)
and m,(v, f), divided by ¢%, and writing this as p(v) SD (m(v, f)) SD (m,(v, f))/d*,
and using the definition (11) of S(v), we obtain the Lemma.

Applying the Lemma in (30) we find that a necessary and sufficient condition
for both the m, ™ (v, &, c) to be positive is that

m,(v, B) > cBlo(v)|3 SD (m,(v, §)) ,

and that hence the probability of Condition 2 being violated will be negligible
under

AssumpTION 5. The probability is negligible that for some ve T, m,(v, §) <
¢Ba SD (m,(v, f)). '

(We may notice that ¢ SD(m,(v, f)) is a statistic, and is in fact the estimate
of SD (m,(v, f)) formed by replacing ¢ by 4 in the formula for SD (m,(v, B))-
Thus Assumption 5 says that there is a negligible probability that for some
ve T, m,(v, B) be negative or fall within c¢B estimated standard deviations of
zero. There is some further discussion of Assumption 5 in Section 12.)

10. Resumé of construction and use of calibration chart; use of tables. The
numerical values of the least-squares estimates {3,}, the estimate 42, and the
coefficients {b,,} must be calculated, where b;, is the covariance between j; and
Bi divided by ¢°. The calibration chart is constructed by plotting, with a
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horizontal u-axis and a vertical v-axis, the calibration curve u = m(v, f§) =
>.7_, B;9;(v), the lower calibration curve u = m(v, §) + d[c, 4 ¢,S(v)], and the
upper calibration curve u = m(v, ) — é[c, + ¢,S(v)], where the calculation of
¢, ¢y, and S(v) is reviewed in the next three paragraphs. The three curves are
to be drawn only in the horizontal strip which intersects the v-axis in [0, v®],
the calibration interval of 777, that is, the range of the values of 7" used in the
calibration experiment. A schematic diagram of the calibration chart is the
horizontal strip in Fig. 2 between the lines v = v* and v = v"®; the diagram
is schematic because in practice the three calibration curves would be closer
together. It may be convenient to plot all three curves at the same time, plot-
ting the three abscissas for each value of v. If any of the three curves should
fail to be the graph of a single-valued everywhere-increasing function of u the
calibration chart cannot be used: If no computational error can be found, nor
a gross error in the calibration experiment, my method cannot be applied, pre-
sumably because of a violation of Assumption 5, which implies that there is
a negligible probability of this disaster. (Assumption 5 might be violated be-
cause for some v the slope m,(v, §) of the true regression curve is negative or
too close to zero, or because n is too small, causing too large an error in the
estimated slope m,(v, §) or in its estimated standard deviation & SD(m,(v, f))
appearing in Assumption 5.)

The function S(v) defined by (11) is calculated from (13). Its minimum and
maximum values S; and S, in the interval [v™, ¥®] must now be determined:
This will generally not be possible analytically, but S, and S, can be obtained
from a graph of S(v); they need not be determined very precisely, because the
values of ¢, and ¢, are not very sensitive to changes in S, and S,. The table of
values of S(v) calculated for this graph should be saved for plotting the upper
and lower calibration curves.

At this point, if not before, the choice of probability levels « and 4 has to be
made. The choice of a physical scientist or engineer who determines physical
or chemical constants in a form like 3280 + 40, where 40 is the “probable error,”
could be formulated as a = .50. Experimenters accustomed to conventional
statistical methodology might choose @ = .10 or .05. Next, 6 must be chosen;
my own choice would usually restrict 6.< a. Tables 1 and 2, needed next for
determining ¢ allow the four choices 6 = .01, .05, .10, .25.

The value of ¢ is found by entering Tables 1 and 2 as explained below, with

s, = Sy/z, and s, = S,/z,, where z, is the two-tailed a-point, that is, the upper
a/2-point, of the standard normal distribution. Finally, ¢, and ¢, are calculated as
(32) o=z, e = pFi(p, )1,

where yi_;(v) is the lower d-point of the chi-square distribution with v df, and
Fy(p, v) is the upper d-point of the F-distribution with p and v df. The three
calibration curves can now be plotted.

In order to explain the use of the calibration chart we need to define three
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nested intervals on the u-axis. The endpoints of the intervals are the abscissas
of the six points of intersection of the three calibration curves with the two
lines v = v™ and v = v™®, and we denote them by the notation used in Fig. 1
for the labels on the u-axis: The calibration interval of %/ is [u?, u®], the
inner calibration interval is [«#’!, »?], and the outer calibration interval is
[ucn’ u02]‘

Corresponding to an observation u; falling in the calibration interval of 7/,
a point estimate ¥, of v; may be read as the ordinate of the calibration curve at
U= u;.

An interval estimate of v; is provided by the following statement .&: If g,
falls in the inner calibration interval of 7/, that is, ™ < u;, < u, the statement
& is that v; lies in the closed interval between the ordinates read from the
lower and upper calibration curves at u = u,. If u; falls outside the inner cali-
bration interval—which should not occur often in practice—there are four pos-
sibilities, depending on how u; relates to the outer calibration interval [u", 4?].
If u" < u, <u", 7 states that v; is < the ordinate of the upper calibration
curve; if u? < u, < u*, &, states that v, is > the ordinate of the lower cali-
bration curve; if u, < u", .& states that v, < v®; if u, > u®, &, states that

v; = v®. In every case the statement .&; is that v; lies in the vertical section
by the line u = u; of the shaded set in Fig. 1.

Some discussion about what can be done if the calibration chart gives intervals
for the v; which are too wide to be useful may be found at the end of Section 12.

The rest of this section explains the use of Tables 1 and 2 to find the value
of ¢. For compactness of the tables the value of the integer c* is tabled in-
stead of the value of ¢, where ¢ = 1 + (.01)c* to two decimals. Steps in the
tabled values of the variables s,, s,, v with which the tables are entered are
sufficiently small so that interpolation will generally not be necessary for the
following reasons: The change of c* between these tabled values of the variables
is small considering the way changes of c* affect the calibration chart, and the
larger value of c* at the two bracketing tabled values of the variable would be
used. For example, an increase of 2 in c* increases the width of the interval
estimate of v; by 2 percent, which would hardly be perceptible on the chart.
With very few exceptions the changes |Ac*| > 2 occur only in the steps v = 120
to oo, 5, = 0 to .05, and s, = 4 to oo, intervals in which the values of v, s,, or
s, will very rarely lie. ‘

Suppose first that v has one of the tabled values 4, 8, 15, 30, 60, 120, co. In-
terpolation on s, and s, may be avoided because it can be proved for all 4, p, v
that c* is nonincreasing in s, and nondecreasing in s,. Hence a conservative
value of ¢* is obtained by entering with the largest tabled value of s, < its actual
value, and the smallest tabled value of s, > its actual value. If p = 2, the c*
thus read from Table 1 is the value to be used. If p =1, 4, or 6, Table 1 is
first entered in the same way as above, and then the correction to be added to
the value of ¢* found there is obtained by entering Table 2 in exactly the same
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place that Table 1 was entered, and using respectively the first, second or third
digit or the 3-digit number listed in Table 2 as the correction. For p = 3, use
the larger of the values of ¢* for p =2 and 4; for p = 5, the larger of the values
of ¢* for p = 4and 6. For p =7, 8,9, 10, add 1 to the value of ¢* found for
p = 6. (The last prescription is based on a computer calculation of ¢* for p = 10
and all (s, s,, v, 0) with s, and 5, = 0, .1, .3, .8, 2, oo (5, < 5,); v = 2, 15, 120;
6 = .01, .05, .10, .25. Nowhere did the value of c* for p = 10 exceed that for
p = 6 by more than 1.) Finally, for v not one of the tabled values use the larger
of the c* found by the above method for the two bracketing tabled values of v.

(If you nevertheless wish to interpolate on s, and s, the 4-point bivariate
interpolation formula may be used, except when (s, s,) is too close to the diagonal
s, = 5, to allow a fourth point, in which case the 3-point formula may be used.
However, if s, > 4, a case that should arise very rarely, the 4-point formula
fails because one of the tabled bracketing values of s, is co; in this case before
using the 4-point formula first transform from s, to 1 — (4/s,), since for large
sy, ¢ is almost linear in 1/s,. Graphical interpolation may be used on v, or on
1/v if v is large, and on p.)

11. The use of linear calibration curves. As an illustration I consider how my
general method applies in the frequently assumed case of linear regression. It
is assumed that the regression curve is a straight line not necessarily passing
through the origin, so p = 2. All the following equations or inequalities con-
taining the symbol v are for v in the calibration interval [v", v*]. The form
of the regression function is assumed to be

m(v, f) = a + bv,

where 8 denotes the pair (a, b). In the least-squares estimates d, b, and their
covariance matrix, we have to replace the x, y of the usual notation by V, U,
respectively, and we can then calculate that

(33) SW) = [t + k(v — V),
where _ _
k=131, (V; = V), V=7xrVin.

This seems to be one of the relatively few cases where we can explicitly solve
the equation of the calibration curve for v, namely v = (u — d)/b, and where
we can determine S, and S, without resorting to numerical or graphical methods.
Indeed, by inspection of (33) we see that S, = n~*and S, = [n~' + kM*]}, where
M is the larger of ¥V — v and v® — V. After ¢ has been obtained from Table

1, ¢, and ¢, are given by (32) with p = 2, and the upper and lower calibration
curves are found to be the two branches of hyperbolas

(34) u=d+ bv+ (—1)é{c, + c)[n" + k(v — V)*]})

for h = 1 and 2, respectively.
A nongraphical application of my method is possible in this case. First I
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remark that Condition 2, ensuring that the estimation sets I(x;, &) be intervals,
may be shown to be equivalent to /¢ > c,kM/S,. Next we need to solve for v
the equations of the three calibration curves. The calibration curve satisfies

(35) v=(u—d)b;

the upper (lower) calibration curve is given for 2 = 1(2) by
(36) v =V + C[bD, — (—1)récy(n'C + kD,»?],
where

C = b* — (dcy)k
D, =D,u) =u—d— bV — (—1)c,.

To use equations (35) and (36) we need the endpoints of the three calibration
intervals of Z7: For k=1, 2, u® = 4 + bv'*); u"(u'?) is found by putting
v = vP(v?) in (34) with & = 2(1); u®(¥), by putting v = v*?(v'?) in (34) with
h=1(2). Then for u™ < u; < u", the point estimate 9; of v, is given by putting
u = u; in (35). For " < u; < "(u" < u; < ), the upper (lower) endpoint of
the interval estimate for v; is given by putting u = u; in (36) with £ = 1(2).

(For u; € [u", u®] the““Bonferroni method” of Lieberman, Miller, and Hamilton
[4] may be shown to be equivalent to using the vertical intervals at u = u; be-
tween two curves (34) if ¢, and ¢, are defined by (32) with p equated to 2, ¢
replaced by 1, and ¢ by 0/2; these intervals are generally longer—certainly if
c< 1)

The rest of this section consists of some practical considerations peculiar to
the case of linear regression; the considerations of Section 12 for the general
case are of course also pertinent.

The use of the calibration chart with the preceding construction is valid in
the case when departures of the regression function from linearity are small
compared with ¢, under our other underlying assumptions. The hypothesis for-
mulating this case could be tested with sufficiently high power if it were feasible
in the development stage of the calibration method to obtain enough suitable
known values ¥; in a calibration-type experiment. It is also conceivable that
in some calibration situations there might exist a structural theory of the rela-
tion of 77 and 7 implying linearity of the regression. Examples of instruments
for which linear calibration curves are not used are thermometers and ammeters.
A few examples of calibration problems in which the authors evidently consider
linear regression adequate are: In [8, Section 2.2] 7/ is the scale reading of a
flame photometer designed to measure sodium concentration, and {V;} are the
concentrations in n samples made up with preassigned sodium concentrations.
In [2, Fig. 4] 77 is the log concentration of a certain kind of serum immu-
noglobulin in a sample, 7/ is the ring-diameter of the precipitate formed when
a sample is introduced and incubated, with a specified technique, in a plate of
antibody-agar, while the {¥;} are the log concentrations in specially prepared
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samples with known amounts of the purified immunoglobulin. In [7, Fig. 1]
the problem is the measurement of body density in obese adolescent girls, 2~
is the body density measured by underwater weighing of the girl, while Z/ is
the log thickness of a skinfold measured with a sliding and spreading caliper
device applied to the triceps. (I am indebted to Professor Lila Elveback for
finding [2] for me, and Professor Ruth L. Huenemann for [7].)

The upper and lower calibration curves (34) will be closest to the calibration
line if k£ has its minimum value, which is attained for even = if half the observa-
tions in the calibration experiment are taken at the value v* of 27" and half at
v®. I should almost never recommend this design, but rather a more or less
uniform distribution of the V; on the calibration interval [v®, ], with perhaps
some of the V; being duplicated if possible. A plot of the n points (U;, ;) might
then indicate some suspicious departures from the calibration line. Also, if the
regression actually is nonlinear, the resulting calibration line will generally tend
to be a better approximation to the regression curve than the above two-point
determination of the line—consider for example the case where the regression
function is convex.

12. Discussion of the assumptions. Some of the assumptions made in deriving
statistical inferences are adopted in order to facilitate the mathematical deriva-
tion, and may not be realistic; in the analysis of the effects of such assumptions
on the validity of these inferences we cannot in general expect a degree of rigor
and completeness comparable to that possible in the mathematical derivation.

Concerning Assumption 1, I have nothing to add to the usual warning that
lack of independence can be disastrous to the validity of the statistical inferences,
and concerning Assumption 2, I shall consider only the effects of nonnormality
and of unequal variance, offering nothing on the more difficult question of the
adequacy of the assumed functional form of the regression function.

If one regards the second term in éw(v, ¢) = ¢,6 + ¢,dS(v) as due to the varia-
tion of the abscissa u of the fitted regression curve about that of the regression
curve, one might expect the effect of nonnormality of the {U;} on the correct
value of ¢, to be not very serious, for the following reason: If ¢ =1, ¢,dS(v) =
[pF;(p, v)]}6S(v) is the half-width of the interval estimate for the abscissa u =
m(v, B) = 317 B;9;(v) given by the S-method, and this has the same robustness
against nonnormality as the corresponding F-test [6, Section 10.6]. But the effect
of nonnormality of the {«;} on the correct value of ¢, can be extremely serious: The
effect enters our probability calculations when we proceed from (7) to (8) and
(9), where z, would have to be replaced by the two-tailed a-point of o[, — E(u;)],
which might differ greatly from z,, and also in general might depend on ¢; by
“two-tailed a-point” I mean here the upper a-point of ¢7'u; — E(w;)|. If a =
.05 or .10, instead of .50, say, the experimental determination of this replace-
ment for the constant z, would require a very large number of observations.
However if these were made, we might then consider that we have the relatively
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simple case of known ¢, and this would have two further advantages: First, it
would replace by unity the constant A(d, v) defined by (22), which enters c,,
and whose product with ¢ may be regarded as an upper (1 — d)-confidence limit
for ¢, a quantity known to be very sensitive to nonnormality. Second, it would
eliminate the need of Assumption 4. I am thinking here of a very large number
of observations, perhaps on different instruments of the same type as that to be
calibrated, made to determine o, before a calibration experiment with a rela-
tively small number » of observations, so that (21) would be used with a nonzero
S(v) and the replacement for z,; however, the use in (21) of the coefficient y,(p)
calculated from the normality assumption would be justified by the remark at
the beginning of this paragraph. (In the light of the preceding interpretation
the constant ¢, benefits from a sort of generalized central-limit-theorem effect
because the distance m(v, §) — E[m(v, )] with which it is associated is linear
in the observations {U;}, whereas ¢, enjoys no such benefit, being associated
with the distance u; — E(u;) for a single observation.)

Concerning violation of the assumption of equal variance, if you believe that
SD(u), the standard deviation of a measurement u of 727 made at a value v of
7, depends on v, you might try to estimate it where you believe it is largest,
and use this estimate for ¢ in my method, since you must guard against the
case where most of the v; might lie in that neighborhood. I think a better
strategy would be this: Try to get a rough idea of how SD(u) varies with v,
from prior knowledge of the calibration situation, or from the scatter of the n
points (¥;, U;,) about the fitted regression curve. Express this idea in the form
SD (u) = ¢F(v), where F(v) is an appropriately chosen function, and ¢ is a con-
stant. If you now pretend that SD(u) really is of this form, with ¢ a parameter
to be estimated from the data, you can apply the generalization of my method
given in Appendix A.

Obviously if Assumption 3 is violated in certain ways the inferences would
be grossly invalidated; for example, if a v; can occur outside the calibration
interval T = [v, v'?] such that the distribution of the corresponding u; assigns
little probability to the half of the u-axis where the interval estimate covers v;.
Assumption 3 is in a very convenient form for the mathematical derivation of
my procedure, since, as we have seen, it reduces the proof to the case ve T. It
says that the graph of the cdf of u; for v; < v™(v; > v*) is nowhere to the right
(left) of that for v; = v (v; = v®). (Perhaps you can find an intuitive justifica-
tion for it directly, or a heuristic path less circuitous or more persuasive than
the following: Let us consider the situation, given &, so that the interval
[w', u] is fixed. If v, ¢ T we do not want a “large” probability of an “on-scale”
reading, that is, of u; € [u"!, u”], for we then infer v;€ T. But we want more
than this: Suppose v; < v*; then not only do we not want a “large” probability
of an “on-scale” reading, but we do not want a large probability of an “above-
scale” reading, for in either case our interval estimate does not cover v;, that
is, we do not want a “large” probability that u, > u". Let us specify this to
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mean that we do not want the probability of the event u;, > u* when v; < v
to be larger than that when v; = v™. But under the normality assumption on
the {U,}, u’* is a random variable with possible value anywhere on the real line,
and identifying its value with C'V, we are led to make the first part of Assump-
tion 3; similarly for the second part.)

Assumption 4 is of a different character from the other assumptions; it was
formulated in order to get into the problem more quickly. If 4 is the residual
mean-square of the calibration experiment, that is, the minimized value of (2)
divided by n — p, then Assumption 4 is a consequence of Assumptions 1 and
2. More generally, if * is pooled from the residual mean-squares of several
independent experiments of the type of a ‘“calibration experiment,” then As-
sumption 4 will be satisfied if each of the experiments satisfies Assumptions 1
and 2 with the same ¢ but possibly different T, n, and 8. (In principle the
known {g;(v)} and p could also be different, but this would be hard to imagine
in practice.) Of course, if it is possible to replicate observations with the same
value v of 77, then if ¢ is pooled from the mean-squares within replicates, it
will satisfy Assumption 4 even if Assumption 2 is violated by assuming a wrong
functional form of the regression function, unlike a 4* pooled from residual
mean-squares. We have already remarked that Assumption 4 is unnecessary in
the case where ¢* is known.

Finally, we consider Assumption 5, which I find the most troublesome. I
believe that there is no possibility of a convincing empirical validation of this
assumption—only of an invalidation. We could define a “negligible” probability
to be one not exceeding a specified ¢, and then calculate what part of the pa-
rameter space is excluded by Assumption 5, but I see no profit in this exercise—
all the questions about accepting the assumption would remain. A robust high-
power test of Assumption 5 does not seem practicable: It would require a
tremendous number of observations to establish the “negligible” probability,
and much of the test’s probability of rejection would no doubt come from parts
of the critical region where the various components of Assumption 2 would be
most suspect.

It may be helpful to consider the following set of four assumptions; they are
listed in order of decreasing severity, for we know each implies the next: First,
Assumption 5. Next, 5.1: The probability is negligible that Condition 2 is
violated, that is, that for some ve T, and for =1 or 2, m,¥(v, &, c) < 0.
Then, 5.2: The probability is negligible that Condition 1 is violated, that is,
that for some ve T, m,(v, §) < 0. Finally, 5.3: For all ve T, m,(v, 8) > 0.
Considering the assumptions in reverse order, I find 5.3 indispensable for justi-
fying point estimation of the v; from a calibration curve which is the graph of
a strictly increasing function, and furthermore it seems to me that the stronger
5.2 must be assumed for this purpose, for reasons indicated in Section 3 in con-
nection with Condition 1. I strongly suspect that for interval estimation of the
{v;} some assumption resembling 5.1 must be made, And Assumption 5 speaks
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to me more simply than 5.1. For 5.1 and 5.2, as well as 5, empirical validation
does not seem practicable. (Nor does it for Assumption 1, whose violation can
also be disastrous, but this is of a type to which we are more accustomed.) It
would be formally possible to avoid Assumption 5 by redefining I(u;, &) as the
smallest interval containing the set I(x;, ). When Condition 2 is violated this
redefinition would cause the upper or lower calibration curve to have a vertical
portion, which the practitioner would regard as queer, and it would probably
produce the unhappy situation of the next paragraph.

I would guess that what would happen more frequently in practice than viola-
tion of Condition 2 ensuring that the upper and lower calibration curvesare graphs
of single-valued functions of u, is that for some u in [u'*, »’*] the intervals /(u, &)
would be too wide to be useful, and the calibration chart would therefore not be
used. An extreme case of this would happen if #* >u": Then if Condition 2 is satis-
fied, we see from the defining set .o7(#, c¢) in Section 4, that for « in the interval
[u”, u™], I(u, ") would be the whole real line, giving —co < v; < + oo, while
outside this interval it would be a half-line. But even when u* < u!?, so that
the intervals I(u, &) are finite for ¥ < u < u'?, they may still be too large to
be useful. (One might consider conditioning on the event that the intervals
I(u, &) be of less than a specified length, but I expect this calculation would be
difficult and the result unsatisfactory, in that the probability which we bounded
by 1 — ¢ would depend seriously on unknown parameters and could not be thus
bounded. Itry to console myself that this defect in my method is shared by all
the commonly used confidence intervals whose width is a random variable not
satisfying a preassigned bound.)

If the intervals I(u, &) are too wide you may consider the remedy of using a
larger number r of observations in a suitably designed calibration experiment.
In this way you could make the second term in w(v, ¢) = ¢; + ¢,S(v) as small
as you please. For large n the first term would approach z,, the horizontal
distance 2dw(v, c) between the upper and lower calibration curves would ap-
proach 20z, and the vertical distance, or width of I(u, ), would approach a
limit approximately equal to 20z, /m,(v, 8). This could be estimated as 2z,G, where

G = 6/m,(v, f) = 6[£3-, B; 0, (] ™,

and the standard deviation of 2z, G could be estimated as

22,G[G* 332121 b5, 9/ (v)9,'(v) + (2v)7']E.

You would have to consider the estimated limiting width 2z, G as a function of
v in the calibration interval [v", ¥®], and also its estimated standard deviation,
and if you decided it was still too large, it would indicate that the calibration
method being developed, of estimating the value of 2" from a measurement u
of 77, is not sufficiently precise for your purposes, because even if the calibra-
tion curve were to be determined with negligible error, the product of its slope
[m,(v, B)]~* by the standard deviation ¢ of a measurement ¥ would be too large.
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APPENDIX A

Generalization to a case of unequal variance. Let us generalize Assumption 2 to
permit SD(U;) = oF(V;), and if v, e T, SD(u;) = ¢F(v;), where F(v) is a known
function with a continuous derivative for v ¢ T, and ¢ is an unknown parameter.
Let us leave Assumptions 1, 3, 4 unchanged, and postpone generalizing Assump-
tion 5 until we see what is needed.

The estimates {§,} are calculated by the method of weighted least squares,
where instead of (2) we minimize
(37) 2 [FV)IIU; — 2o, ‘éj g; (VoI .

If the estimate ¢ of ¢* is calculated only from the residual sum of squares in
the calibration experiment, it is the minimized quantity (37) divided by n — p.
The calibration chart is constructed with the lower and upper calibration curves
defined by

(38) u = mv, f) + é[c,F(v) + ¢,S(v)],

where S(v) is still defined by (11), and ¢, and ¢, are calculated as follows: Let
S§*(v) = S(v)/F(v); fori=1, 2 let S;* be the inf and sup of $*(v) for v e T; find
c by entering Table 1 with s, = §;*/z,; ¢, are then given by (32). The interval
estimates for the v; are given in terms of the lower and upper calibration curves
by the same statements .&; as in Section 10.

This generalization can be derived by transforming to “pseudo-observations”
depending on the observations and the unknown v, as follows: U* = U,/F(V}),
w* = w/[F(v;) if v;e T, w;* = w,[Fv") if v; < v, u,* = w,[Fv®) if v; > v?.
Under the transformation the quantities v, 8, 8, ¢, ¢ remain invariant, while
for ve T, the following quantities transform like u* = u/F(v): g,(v), m(v, p),
m(v, f), and S(v), that is, g;*(v) = 9;(v)/F(v), etc. It may be verified that the
“pseudo-observations” satisfy the Assumptions 1-4 made for the original method
with g;(v) replaced by g,*(v), and m(v, 8) by m*(v, 8). The lower and upper
calibration curves in the transformed problem have the equations
(39) wt = m*v, ) + d[c, + &, S*(v)],
and the sets I*(u;*, &) defined by these cover the v, with the required proba-
bilities; however they need not be intervals. If we did make the appropriate
form of Assumption 5 in the transformed problem to ensure, with probability
one minus a negligible amount, that the curves (39) have positive slope for all

ve T, this would not ensure that the corresponding curves (38) in the untrans-
formed problem have positive slope. What we need is

ConpITION 2'. For A= 1,2 and all ve T,
m,(v, B) + (—1)*é[c, F'(v) + ¢,S'(v)] > 0.
Although the lemma about S’(v) in Section 9 is still valid, it no longer leads me

to a neat analogue of Assumption 5, and so after some vain attempts to untie
the Gordian knot I cut it with
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AssuMPTION 5'. The probability is negligible that Condition 2’ is violated.

APPENDIX B

Frequency interpretation. Suppose the events of a sequence & are independent,
and let 7, = Pr(&7,). Define x; = 1 or 0 according as &; occurs or not, so that
Pm = 2.1 x;/m is the proportion of the m events &, - - ., &, that occur. If all
m; = n= we may say that “the proportion of events & that occur is in the long
run equal to z.” A frequency interpretation of this case is usually based on
the law of large numbers. The weak law says p, converges to r in probabili y,
i.e., for every ¢ > 0, Pr{|p,, — 7| < ¢} > 1 as m — co. The strong law says p,,
converges to = almost surely, i.e., Pr{lim, p, = x} = 1. Using the weak law,
a frequency interpretation is given to the statement that for every ¢ > 0 the
probability approaches 1 as m — oo that p,, lies in the interval (x — e, 7 + ¢);
using the strong law, a frequency interpretation is given to the occurrence of
events of probability one.

In the case that all z; > = we say that “the proportion of events &’; that occur
isin the long run > z.” The weak law can then be reformulated thus: for every
¢ >0, Pr{p,, = 7 — ¢} — 1; and the strong law thus: Pr{liminf, p, = 7} = 1.
The weak result follows from applying to p,, the Chebyshev inequality and the
formulas E(p,) = =, V(p,) < (4m)~*. The strong result follows from applying
to the sequence y, = x; — =, Kolmogorov’s criterion [1, Theorem 3.4] and the
formulas E(y;,) = 0, V(y;,) < 1. Whatever method of obtaining a frequency in-
terpretation is used in the previous case can be applied here.

(In case all z; < = we would say “the proportion of events &; that occur is
in the long run < #,” and the frequency interpretation would be based on the
reformulated weak law that for every ¢ > 0, Pr{p, <7 + ¢} > 1 asm — oo,
or on the reformulated strong law, Pr{limsup,, p,, < =} = 1. All these reformula-
tions could be made for any sequence of random variables of the structure
P, = Y7 X;/m, where the X, are independent and Y V(X;)/i* < co. The fre-
quency interpretations are as above, and are useful in many situations, besides
that of calibration, where there is a routine application of the same statistical
procedure to many successive cases, for example with attribute sampling inspec-
tion plans: Let L(z) denote the probability of the plan accepting a lot with
proportion defective =. Under the assumption that L(x) is monotone nonde-
creasing, it follows that if a stream of lots characterized by an arbitrary sequence
{z;} is submitted to the plan the proportion of bad (good) lots accepted (rejected)
by the plan is in the long run < the consumer’s (producer’s) risk, and if it is an
AOQL plan, the average proportion defective in the outgoing lots is in the long
run < the AOQL, defined as inf, [zL(x)]. The usual frequency interpretations
are made for the unrealistic model where all the =; are equal.)

Acknowledgments. I shall feel forever indebted to Rupert G. Miller, Jr. for
having found a basic error in an earlier version of the manuscript of this article,
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which claimed for all p the present result for p = 1. Emil Spjgétvoll worked out
a correct formulation of the operating characteristic for that version. Having
decided nevertheless to attempt the present version, I asked Paul G. Hoel for
references to work subsequent to his [3] on confidence bands for regression
curves; he responded by sending me an unpublished manuscript which analyzed
the relation between his method and C. R. Rao’s [5]. David R. Brillinger sug-
gested extending the weak-law treatment of the frequency interpretation in
Appendix B to strong-law. David W. Hutchinson programmed the computer
calculations.
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