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ASYMPTOTIC PERFORMANCE BOUNDS FOR THE KERNEL
ESTIMATE!

By Luc DEVROYE
McGill University

We consider an arbitrary sequence of kernel density estimates f, with
kernels K, possibly depending upon n. Under a mild restriction on the
sequence K,, we obtain inequalities of the type

E(fl/,. - /I) > (1+0(1))¥(n,f),

where f is the density being estimated and ¥ (=, f) is a function of n and f
only. The function ¥ can be considered as an indicator of the difficulty of
estimating f with any kernel estimate.

1. Introduction. In this paper, we consider the kernel estimate

Z Kn(x - Xi)7
i=1

S| =

f(x) =

where {K )} is a sequence of absolutely integrable functions (kernels) integrating
to 1, and X,..., X, are iid random variables with common density f on the real
line [Rosenblatt (1956) and Parzen (1962)]. The expected L, error E( f|f, — f]) is
a function of n, f and K,. Of these factors, the user can only choose K,, the
kernel. We note in passing that the most popular form for K, is K, (x) =
(1/h)L(x/h) for some fixed function L integrating to 1 and a scale factor 2 > 0
depending upon n only. In this case, we will call f, the standard kernel
estimate. We do not allow A to depend upon the data in this paper. In general,
the shape of K, can vary with n, and in this general setting the estimate is
known as the delta function estimate [Walter and Blum (1979)].

The arguments for focusing on the L; error are expounded in Devroye and
Gyorfi (1985) and Devroye (1987a). Since this error is equal to twice the total
variation distance between the probability measures induced by f and f,, the L,
error provides us with absolute numbers with a clear physical (and even graphi-
cal) interpretation. Lower bounds for the L, error allow us to draw direct
conclusions about minimal sample sizes below which we are bound to have errors
that are at least as big as a given value. Since the density f is not known
beforehand, it seems useful to have bounds that do not depend upon f such as

1
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[Devroye (1986)]. This result implies that even if we are allowed to choose f and
K, we cannot possibly have an expected error that is smaller than 1/ v528n . In
other words, the lower bound is the price we have to pay for the use of the kernel
estimate. This result could be used to determine if n is large enough for someone
to be able to use the kernel estimate. Another example of a result in this spirit
concerns the standard kernel estimate with even bounded compact support
nonnegative kernel L:

inf liminf inf n2/5E( f If, — f|) > 0.86
L f pnoo h>0
[Devroye and Penrod (1984) and Devroye and Gyorfi (1985)]. If one wants to
obtain a rate better than n=2/% it is absolutely necessary to drop one or more
constraints on L, such as the nonnegativity. Both bounds may be grossly
inadequate for some densities, since they provide information about the error we
are bound to make for the best densities. Thus, it is also of interest to have lower
bounds that do depend upon f. Such bounds could be used to discard the kernel
estimate altogether for some densities. They also provide information about the
limitations that come with the density f when a certain class of estimates (such
as the standard kernel estimates) is used. They measure the difficulty associated
with the estimation of f. In this paper, we consider just such lower bounds for

it &( fif, - 11

These bounds depend upon 7 and f only and are in the spirit of a celebrated L,
lower bound obtained by Watson and Leadbetter (1963) [see also Davis (1975,
1977)]. As is well known, L, errors vary with rescalings of the coordinate axis
and are thus not absolute numbers that can be used to compare performances of
different estimates on different densities in a straightforward manner. In particu-
lar, the infimum over all f of the Watson-Leadbetter lower bound is 0. Never-
theless, from a lower bound, it should be possible (by examination) to design a
specific estimate for which we come close to the lower bound for all (or at least
many) densities f. In the L, setting, this undertaking was carried out success-
fully by Davis (1975, 1977), who argued that the kernel L(x) = sin(x)/7x with a
carefully picked scale factor h = hA(n, f) is asymptotically optimal to within a
constant factor for all densities. Some have discarded this kernel as unpractical,
often complaining about its massive tails [see, e.g., Tapia and Thompson (1978),
page 79)]. The massive tails of L contribute very little to the L, error since
squaring tails tends to obscure them. The L, theory is much more sensitive to
the tails of both f and the kernel, but is also much more of a challenge since the
techniques used by Watson and Leadbetter that were based upon Parseval’s
identity are no longer applicable. The issue of finding a universally nearly
optimal L, kernel is not addressed here, although we will briefly mention a
kernel that is nearly optimal for all very smooth densities.

In the second half of the paper, we restrict the class of kernels to K, € K,
where K, is a saturation class such as the class of all kernels of the form
(1/h)L(x/h) for symmetric L where all the moments of L up to and not
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including the sth moment are 0. The class of estimates constructed in this

manner is smaller than the class considered in the first half of the paper and the
lower bounds should thus be larger. We obtain lower bounds for

(it E( fir. =11
B( fir, 11

s/(2s+1)

and

that decrease as a constant times n~

2. The main results. We will relate the lower bound on the expected L,
error for any sequence of kernel estimates to the shape of f. Since Bessel’s
equality used by Watson and Leadbetter in relating the best possible L,
performance of any kernel estimate to the characteristic function of a density is
not directly useful here, we have to resort to different methods. The strategy
followed here is to bound the L, bias from below by a supremum norm for
characteristic functions and to bound the variational component in the L, error
directly, i.e., without going through characteristic functions. As a consequence,
the bounds depend upon functionals of f and its characteristic function.

The simplest treatment is the one in which we consider a sequence of
consistent kernel estimates and provide lower bounds that are (1 + o(1)) times
an explicit function of n and f. We will restrict the sequence of kernels K, as:

CoNDITION A. There exists a constant M such that (|K,| < M for all n.
Also, (K, = 1forall n and [, K,| - 0asn — o forall § > 0. (Condition A
implies that f[|K,*f—f| > Oforall f € L,.)

ConpITION B.  [|K,|' < oo forall n and for 1 < i < 4.

ConpITION C. K,, K2/[K? and K!/[K} are strong approximate identities
(a sequence of kernels g, is a strong approximate identity if for all f € L,,
8,* [ — [ at almost all x).

ConpITION D.  [K}/nf2K2 - 0 as n — .

For the standard kernel estimate with K,(x) = (1/h)L(x/h), Conditions
A-D are implied by

ConprTiON E. L =1, |L| < g for some symmetric unimodal nonnegative
function g with [g'< o forl <i<4and 2 — 0and nh - o0 as n > co.

The sufficiency of Condition E for Conditions A—-D can easily be verified.
Clearly, Conditions A and B hold. Condition D is satisfied when nA — oo.
Finally, Condition C holds if 2~ — 0 in view of some pointwise consistency results
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found, for example, in Butzer and Nessel [(1971), pages 132-135]. The conditions
h — 0 and nh — o are easily recognized as the necessary and sufficient condi-
tions for L, convergence of f, to f [see Devroye (1983)]. The conditions on L
are satisfied for virtually all kernels mentioned in the literature on density
estimation.

A sequence {K,} satisfying Conditions A-D is said to be a regular sequence
(for lack of a better term). The first result is captured in

THEOREM 1. Let {K,} be a regular sequence of kernels and let f, be the
corresponding kernel estimate. If [/f < o, then

E(ﬂf - fnl) >(1+ o(l))Oinf max(u, NZ;#),

<u<l
where ®(u) £ |, 1wty = u Gt and ¢ is the characteristic function for f.
When [\/f = oo,

E(flf - f,.l) 2 (1 +0(1)) inf max(u’(gg(z_u))vz)’

<u<l n

for all constants T.

In Section 3, we will discuss this theorem. Further theorems for restricted
classes of kernels in the standard kernel estimate are given in Section 5. It is
shown there that restrictions on the shape of K generally impose limitations on
the best possible rate of convergence regardless of how smooth f is. The lower
bounds of Theorem 1 and Theorems 2 and 3 of Section 5 are valid for all
densities on the real line without restrictions.

3. Discussion of Theorem 1. The asymptotic lower bound given in Theo-
rem 1 shows the importance of two factors: the size of the tail of f (as measured
by [ ‘/f , which is proportional to how spread out f is) and the smoothness of f
(as captured in the tail behavior of the characteristic function ¢).

/ ‘/f— appears in just about every inequality related to the rate of convergence
of density estimates given in the L, study of Devroye and Gyorfi (1985), so its
presence here is entirely natural. It is finite whenever [|x|'*¢f(x)dx < oo for
some ¢ > 0. It is well known that this factor is absent in L, asymptotics.

Watson and Leadbetter (1963) and Davis (1975, 1977) have related the L,
behavior of kernel estimates to the characteristic function. Roughly speaking,
the smaller the tail of the characteristic function, the smoother f, and the better
the best achievable performance for f with some kernel K,. Davis showed
that the Watson-Leadbetter lower bounds can in fact be attained up to a
multiplicative constant by using a standard kernel estimate with appropriate A
and sink kernel L(x) = sin(x)/7x. Later, we will give some examples of classes
of densities and the accompanying lower bounds. The best achievable rate for a
density f is a function of the two factors mentioned previously.
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It should be stressed that the shape of K, is allowed to change with n. For
the standard kernel estimate, with its fixed shape, the bounds may be rather
loose.

Finite support characteristic functions. Assume that T' = [, . d¢ is finite.
Since the minimal u in the definition of the lower bound tends to 0, ®(2u) — T.
We conclude that

B( i 11) = -+ o) 2L

The densities in this class are very smooth and, indeed, this lower bound is the
smallest among the lower bounds to be discussed here. By Lemma 7 (see Section
4) and the fact that [|¢| < T, we see immediately that f \/7 VT > V2« , which
yields the universal bound

1
E|[if =1l =@ +0(1)—,
(i =1} = @+ o) 5=
valid for all f in the given class.

Characteristic functions with infinite support. When T = [, . dt = oo,
we can formally replace T in the previous remark by arbitrary large constants.
Hence, we conclude that

nminfﬁE(f|f~fn|) = .

n—oo

For the standard kernel estimate satisfying Condition E, a slightly more general
result was obtained in Devroye and Gyorfi [(1985), Theorem 5.16, part 3].

A universal asymptotic lower bound. The previous two remarks taken to-
gether imply that for all densities f,

liminf\/ﬁE(ﬂf— f,,|) > 1

n— oo

Densities with a large tail. Consider a standard kernel estimate satisfying
Condition E. Then Lemma 6 (see Section 4) implies that

nﬁi::fME(ﬂf - 1) = o,

whenever [ \/7 = oo. This all but coincides with part 2 of Theorem 5.16 of
Devroye and Gyorfi (1985).

Superpolynomial characteristic functions. In this remark, we consider char-
acteristic functions for which |¢(¢)| > a/|¢#/® for some a, 8 > 0 and all ¢ This
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class includes the gamma family. We note that ®(u) > 2(a/u)'/2. Thus,
. C
E(flf - f,.l) > (1+ 0(1))0513fslmaX(u, W)

where C £ [\/f(((«/2)"/#)/(647))/%. The u minimizing the maximum is ob-
tained by equating the two terms in the maximum,

C B/(B+1)
(5

We conclude that

E(ﬂf - m) > (1 + 0(1))CH/B+Dp=B/@B+2)

(/ﬂ)ﬁ/(ﬁ+1)a1/(23+2)

91/(2B+ 2)(64,”n)ﬁ/(2ﬂ+ 2) "

-

= (1+0(1))

The lower bound decreases at a polynomial rate in n, with power —8/(28 + 2)
strictly between 0 and — }. Thus, by picking 8 small enough, any slow poly-
nomial rate can be achieved. It should be noted that the presence of one
discontinuity of the ordinary kind implies that lim sup|¢¢(¢)| > 0, from which it
can be concluded that ®(u) > ¢/u for some constant ¢ > 0. By the argument
used previously with B =1, we see that at best we have a lower bound
decreasing as n~1/3,

Superexponential characteristic functions. Many densities, including the
normal density and indeed all stable densities, are so smooth that their tails drop
off at an exponential rate. Assume, for example, that for some positive constants
a, B,v, |6(t)| = aexp(—y|t|f) for all £. Using the same technique as in the
previous section, we observe that

[VFlog'/*(n)

E(flf - f,.l) = (1+ 0(1))W-

This decreases as log'/®#)(n)/ yn . For the normal density, we obtain the lower
bound log'/4(n)/ Vn.

Absolutely integrable characteristic functions. The absolute integrability of
¢ implies that f is absolutely continuous. If [|¢| = oo, we can say that f is not
very smooth. It is not difficult to see that for all ¢ > 0, ®(u) > c¢/(ulog!*4(1/u))
for some positive constant ¢ and all u small enough. This can be used in
Theorem 1 to conclude that

]jminf(nlog1+’n)1/3E(f|f - fn|) >0,
n— oo

1

where & > 0 is arbitrary. Since n~/3 can hardly be considered a good rate of
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convergence, we may conclude that kernel estimates are ill suited for estimating
densities whose characteristic function is not absolutely integrable.

4. Some technical lemmas. At a crucial junction, we need the following
lower bound, adapted from Devroye and Gyorfi [(1985), Lemma 27, pages
136-137], and based upon inequalities of Haagerup (1978) and Szarek (1976).

LEMMA 1. Let X,,..., X, be iid zero mean random variables with finite first
absolute moment. Then

o £

where X/,..., X! are iid random variables, distributed as X,,..., X,, but
independent of this sequence.

n 1/2
L E X; (%1— 2 (X - X.-')z) ) 2 —‘-lré—E(|Xl|),

LEMMA 2. Let X,,..., X, be iid zero mean random variables with finite

fourth absolute moment. Then
‘ 1 2))1/2 1)\ 1/4( y4
.z;lx,. > E(E(Xl)) - (4n) EV4(X}).

E(wu

Proor. From Lemma 1, we recall

1 n
i
n -
1 1 n V2
-
2 (2n =1
1/2
/2 1 1 n
= geCe) - 3o 5| 2
> 3(B(x)" - 38| o £ X~—X-')2—E<X~—Xf>2)2
= 2 1 2 (2n) = 14 i i 14
1 1 1
> 5 (B(x7)” - 384 (X - )|
1 1 16
> 5 (B(x7)” - 384 2xt)
1 2\\1/2 1/4 1 4
=§(E(X1)) - EVY X, o
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LeEMMA 3. Let |, be the kernel estimate with kernel K,,. Then, for all f,

B(11(5) - Ko 1)) 2 = (K20 1) = 7= Ko £(2)]

11\%/4
(5] ((eae 1)+ 871K, 1),
where * is the convolution operator [i.e., g * f(x) £ [g(x — ¥)[(y)dy].

ProOF. If we apply Lemmas 1 and 2 with X; = K (x — X;) — K, * f, then
we obtain

1
E(|f.(x) - K, * f(x)]) = —E(|K.(x — X,) = K, * [(x)]).
Jen

Also,

(B((K,(x - X) = Ko# £(2))

- 3i-

E(| fui(x) — K * f(x)]) 2

() B = ) = K 12
1

— (E(KX(x - X)) - —((K v 1(2)))

>

ﬁ\

1
173,

)3/4E1/4(8K;(x - X,) + 8(K,* f(x))")

|
- —
N

= (K2x ()" - T};IKn* f(2)]

7'\

1\ 1/4
‘(;) ((8Kx f(x))* + 841K, f(x)]). O

LEMMaA 4. If {K,} is a regular sequence of kernels, then [K 25 o0.

PROOF. The statement follows from the fact that [K2f > [?|K,|f for all
densities f by the Cauchy-Schwarz inequality. Take for f the uniform density
on [—8, 8] for 8 > 0 arbitrarily small and observe that

fK2 > —213]_88|K,,|.

By Condition A, the right-hand side has a limit infimum that is at least 1/24.
This concludes the proof of Lemma 4. O
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LEMMA 5. Let f, be the kernel estimate with a regular sequence of kernels
{K,}. Then, forallf,

4n

1/2
liminf(W) E(ﬂ fx) - K, = f(x)ldx) > fff.

n—oo

PROOF. From Lemma 3, writing L, for K2/[K 2, we have

4n 2
(fKZ) E(lfn(x) _Kn*f(x)D

2 (L,* f(2))" - |K,* f(x)l/ (f K:)l/z

2n-1/4 9
) UI';“Z’)‘”((BK:* f(x)) + 84K, » f()]).

The first term on the rhs tends to ﬁ for almost all x. The second term’s
numerator tends to f for almost all x, while its denominator tends to oo by
Lemma 4. The absolute value of the third and last term is (1 + o(1)) times

~1/4

(ZW((S’ ST 8/4(2)|.

By Condition D and Lemma 4, this is o(1) for almost all x. We can now apply
Fatou’s lemma:

n \1/2
liminff(f;{—z) Ef(11=) - Ky» (x)]) ds

n— oo

n 1/2
> jnminf((;{z) E(|fn(x)—Kn*f(x)|))dx

n—oo n

zf/f | m

LEMMA 6. Let f, be a kernel estimate with kernel K, and let f be an
arbitrary density. Then

B(fit= 1) = fir - Ko
2 sup[¢(£)[[1 - 4,(1)],

where ¢ is the characteristic function of f and Y, is the Fourier transform for
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K, [i.e, ¥, (t) 2 [e"™K, (x)dx]. Also,

E(flf - f,,|) > %E(flfn - K, fl).
PRrOOF. See, e.g., Devroye and Gyorfi [(1985), page 139]. O

Combining Lemmas 5 and 6, we see that for the kernel estimate with a regular

sequence of kernels {K, },
. K2
B(fir 1) >+ 0(1))maX(flf— K,* fl,%_"—)-

Unfortunately, the bias term in the lower bound cannot be bounded using a
Taylor series expansion for f as is standard practice because some kernels are
such that all their positive moments are 0. To get more information and to
eliminate K, from the lower bound, we will use the characteristic function route
suggested by the first inequality of Lemma 6. Alternately, we could also have
used the following measure of the lack of smoothness of f:

U(f,e)2  inf  [lf-Ksf),
K: [K=1, [K%=c
where the behavior of U(f,c) for ¢ |0 is important. However, characterizing
unsmoothness in terms of the tail behavior of the characteristic function of f
seems to lead to results that are easier to interpret. We should warn the reader
here that we now run the risk of obtaining lower bounds that are not attainable
in some cases, as the inequality used in Lemma 6 is not necessarily always tight.

PROOF OF THEOREM 1. Assume first that [/f < co. Combining Lemmas 5
and 6, we see that
IVEVIEZ (1 +0(1))
E(flf—f,,l) zmaX(SlipM(t)lll—tPn(t)l, /Ty ,
where ¢, is the Fourier transform of K,. Assume next that
sup[¢(£)[[1 = ¥,.(£)| = u.
t

Then, applying Bessel’s equality (also known as Parseval’s identity), we have

Jri= o2 [

- 51;/(1 - (1= y,(8)) at

1 u 2
— |1 - dt
2,,f ( |¢(t)|)+
1_/ ®(2u)
87 Ji: oty 2u © 87

v

[\
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Thus, we certainly have

: Ve (2u)
E(.[If - f"l) =1+ 0(1))05121;1max(u’ 8V2x7n ’
which proves Theorem 1 when [ /f < o0. When | ‘/7 = o0, we can formally
replace (1 + o(1))/ ‘/f in the bounds shown previously by (1 + 0(1))T, where T is
arbitrarily large. This concludes the proof of Theorem 1. O

LEMMA 7. For any density f,

‘/_> 1 - 27 \V2
ff_\/supf _(flqbl) ’

where ¢ is the characteristic function for f.

ProOF. The first inequality follows from the fact that

1= [f= 7 [VF.

The second inequality is a simple corollary of the standard formula for inverting
a characteristic function:

1
sup f < E;flqbl- O

5. Saturation: Restricted classes of kernels. Assume next that the kernel
in the standard kernel estimate is restricted in certain ways. It is known that
some restrictions lead to limitations on the best possible rate of convergence,
regardless of how smooth f is. This should be contrasted with the lower bounds
of the previous section, in which the best possible rate is only determined by the
smoothness of f, as long as [ ‘/f < o0. A case in point is the result of Devroye and
Penrod (1984) mentioned at the outset of this paper, which states that for the
standard kernel estimate with arbitrary nonnegative kernel L and arbitrary
sequence of smoothing factors h, n?°E( [|f — f,|) > 0.86 + o(1).

The latter result will be generalized here to include other (possibly negative-
valued) kernels. In addition, the proofs given here are shorter than those of
Devroye and Penrod (1984). The constants in the various inequalities are slightly
worse, however.

We need one technical lemma (Lemma 10), delayed until the end of the
section. We also need to introduce the class of kernels K, (where s is an even
positive integer) consisting of all even kernels L for which [L = 1, [x'L(x)dx = 0
forl <i<s, v, 2 [|x|°|L(x)|dx < o and p, £ |[x°L(x)dx| # 0.

THEOREM 2. Let f be a density with characteristic function ¢. Let f, be the
standard kernel estimate and let its kernel L belong to K for some even s and
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satisfy Condition E. If L has Fourier transform , then

lim inf n8/s+1) 1nf E(ﬁf f. |)

- ()

This inequality remains valid even if [/f = oo or sup,|t|*|¢(t)| = co.

2s/(2s+1)

L, 1/@s+1)
( suple |¢(t)|)

Proor. Let A* be a sequence such that E([|f — f,|) ~ inf,E([|f — f,]). If
liminf A* > 0, then liminf E( f|f — f,|) > 0 in view of Lemma 6, and the fact
that ¢ # 1 in some open neighborhood of the origin (for otherwise u, would be
0). Thus, assume that A* — 0. If lim sup nh* < oo, then liminf E(f|f — f,|) > 0
for arbitrary f and absolutely integrable kernel L [see Lemma S1 of Devroye
(1987b), which is an extension toward nonnegative-valued kernels of Devroye
and Penrod (1984)]. Thus, we can assume that A* — 0 and nh* — 0. Hence, the
estimate satisfies Condition E. For simplicity, we now write A instead of A*.
From Lemmas 5 and 6, we recall that

WA (1 + 0(1)) )

E(ﬂf — fnl) > max(sgpltb(t)nl —y(th)], 2V8mnh

when the standard kernel estimate satisfies Condition E and [/f < co. By
Lemma 10 (see the end of this section), the last expression is bounded from below
by

Pipg f\/_\/_)

upllo()], Sy

when L € K, and sup,|t|°|¢(¢)| < oo. The maximum can be minimized by
equating both terms. This yields the formula

! ¥?
%%C;sgpltlsltb(t)l-

> (1+0(1)) 1nf max(

hs+1/2 =

Resubstitution yields

2s/(2s+1)

ez (1))(12@/; ) (B swpietecol)

This proves Theorem 2 when [ \/7 < oo and sup,|£|®|¢(¢)| < co. If either of these
factors is infinite, it is easy to verify that Theorem 2 is also valid. O
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Theorem 2 describes the phenomenon of saturation: The best possible rate of
convergence for any density f is n7%/®¢*D for L € K_, and is thus limited by s,
a parameter depending upon K only. The fact that negative-valued kernels (i.e.,
kernels with s > 2) can, in some cases, yield rates of convergence faster than
n~2/5 has been known for a long time; see, e.g., Bartlett (1963).

The lower bound is of the form A(f)B(L) where A(f) depends upon f only
and B(L) depends upon the kernel only. We will consider each factor in turn.

LEMMA 8. Define

2 2s/(2s+1) 1/@s+1)

B(L) 2 [ ¥ ("—) .
2/87 s!

Then

" )1/(2s+1)

1 2s/(2s+1)
B(L) > | —— il
( ’>(z¢§;) &

Proor. By Taylor’s series expansion for ¢,

t|° t® )
v(t) -1 < usup VO (u)| = U—sup x°L(x)e™ dx
sl s!

I|s s 1t

< o7 J¥IL(x)|de & =,
But then, |y(t)| > 3 when [t° < s!/(2v,). Hence,

,_ 18! 178
/\[/ > '2—(578) .
Thus,

1/@2s+1
P‘s)/(s+) a

1 \2/@s+D)
B(L) 2 |—F7— —
(L) =2 (2V87r ) (2Vs

It should be recognized that the lower bound for B(L) can take any small
value; this of course is due to the fact that when p, = 0, we have in many cases
L € K, , and the lower bound should in fact be 0, since we are bumped up to
the next higher s. In the special case that s = 2 and L > 0, we see that v, = p,,
and our lower bound becomes

1

B(L) > W

Let us now turn to the factor

A( f) N (/\/7)23/(25+1)( Sup|t|s|¢(t) |)

This quantity is an appropriate measure of the difficulty posed by f for kernels
L € K,. Again, it is composed of a tail factor [/f ‘/_ and a smoothness factor
dependmg upon the behavior of ¢. It can be verified that A(f) is scale and

1/(2s+1)
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translation invariant. Its value depends upon the shape of the density only. It is
infinite for one of two reasons only, either because the tail is too large or the
density is not smooth enough. In any case, we have

LEmMMA 9. For any density f,

A(f) = (u)/()

PrRoOF. We can assume without loss of generality that both factors in the
definition of A(f) are finite. We begin by noting that [\/f > V27 /([|9])/%,
where ¢ is the characteristic function for f. See, e.g., Lemma 7. If sup,|¢|°|¢(¢)| =
a for some constant a, then |¢| < min(1, a/|¢|°) and, thus,

. a 2s "
/|¢|sfnnn(1,|~tF)dt— —a'’".

Therefore,
()= (2] (sumertaton) "
A(f 2(—) (sup|t|s¢ t )
/19| t
_ s/@s+1) _ s/(25+1)
. 27(s — 1) /D) _ (s — 1) g
~\ 2sal/® s )

THEOREM 3. Consider any density [ and all standard kernel estimates
covered by Theorem 2. Then

s—1 s/(2s+1) 1/(2s+1)
liminfns/(2s+1)E(f|f - fn|) > P .
n— oo 32s 2y,

Proor. Theorem 3 follows immediately by combining the bounds of Lemmas
9 and 10 and Theorem 2. O

For nonnegative kernels and s = 2, we obtain, in particular,

1iminfn2/5E( f If - f,,|) > 2713/5 = (164938488 ... .
n-— oo

This bound is not as good as the bound of approximately 0.86 obtained by
Devroye and Penrod (1984), due to the fact that many shortcuts were taken here
to simplify the proofs and to obtain bounds that are valid for all kernels. Since
for nonnegative kernels, E( [|f — f,|) = 0 implies 2 — 0 and nh — oo [Devroye
(1983)], we see that for any even nonnegative kernel L satisfying Condition E
and having a finite second moment,

liminfn?/?® }lln%E(ﬁf - f,,|) > A(f)B(L) = 2713/5 = 0.164938488...... .

n-— oo

LEMMA 10. Let f be any density (with characteristic function ¢) and let L be
any kernel L € K, (with Fourier transform ). Assume that h|0. If
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sup,|?|°|¢(¢)| < oo, then

psh?
sup |1 — ¥ (#h)||#(¢)| = (1 + 0(1)) —— sup|#l’|#(¢) .
t . t
Otheruwise,
. supl — ¢ (th)||e(2)|
lim inf = o0
nL0 h?

ProoF. Since |L| has finite absolute sth moment, y(*) exists everywhere and
is continuous [Kawata (1972), page 411]. The proof is in two steps. Assume first
that |t|°|¢(¢)| — O as |¢{| = co. Then, for ¢ > 0,

(th)"¥*(0) + (th)*(¥2(§) — ¥(0))
s!

Y(th) =1+ o

for some 0 < ¢ < th (by Taylor’s series expansion and the conditions imposed on
L). Clearly,

|th|%ul(2)) (th)°R(th)|o(2)]
—T — sup ’

] s!

sup|1 — 4(th)[[¢(¢)| > sup
t t

where R(u) £ supig <u[¢O(§) — ¢)(0)|. Since [|x|*|L(x)|dx < o0, (), and
thus R(u), remains bounded. Also, R(u) — 0 as u — 0. Thus, for every ¢ > 0,
we can find 8 > 0 such that

(th)"R(th)|$(2)| (th)"]9(2)| (th)’|9(2)|
sup ' <esup ———— + supR(u) sup —
t s: |t| <8/h §: u 18| >8/h s:
t°lo(t
< eh’sup ltf ) + o(h%).
. !

Thus,

Sl;pll - ‘l’(th)”‘t’(t)l = (1 + 0(1))51ip @;I‘_‘l’_@.

For general ¢, we introduce a mollifier with characteristic function x(tu),
where u is a scale factor and x has the property that ¢t°x(¢) — 0 as |{| = oo.
What we proved previously certainly remains valid for |¢(¢)| [x(fu)| (with u
fixed): ‘

Sgpll —y(th)[|o(2)] = Sl:pll = ¥(th)[|o(¢) l|x(tu)|

|th% | (2) || x ()] _

>(1+ O(l))Sl:p ]

The right-hand side divided by A° is at least

h 8
(1 + o)1 - 0 sup L
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where ¢ > 0 is arbitrary, § > 0 is a function of x and ¢ and u can be chosen at
will. If we let u — 0, it is clear that the supremum approaches

[th|%|o(2)]
sup —————,

¢ s!

even if this is infinite. This concludes the proof of Lemma 10. O

6. Are the bounds attainable? We will say that a lower bound is attain-
able if we can exhibit a kernel estimate with expected L, error bounded above
by ¢ + o(1) times the lower bound for some constant c. It is the purpose of this
section to indicate that the bounds of Theorems 2 and 3 are attainable and that
the same is true for those of Theorem 1 whenever f is very smooth.

The saturation bounds of Theorems 2 and 3. In Devroye and Gyorfi [(1985),
page 208], kernel estimates are constructed that have expected L, bounds that
vary as n~%/@**D (s even) provided that f has compact support (hence,
JVf < ), that f has s — 1 absolutely continuous derivatives and that f( is
continuous. In addition, it is assumed that [|f )] < co. But under these condi-
tions, the characteristic function ¢ of f satisfies the inequality

suple*o(¢)| < fIf ¥l < oo.
t

The condition that f have compact support can be relaxed to [|x|' *5f(x) dx < o
for some ¢ > 0 [Devroye (1987a)]. In these cases, the lower bound of Theorem 2
is attained up to a multiplicative constant. For the important case of nonnega-
tive kernels, the bounds of Theorems 2 and 3 cannot be improved upon, except
possibly by a multiplicative constant.

The bounds of Theorem 1. We will argue that the bound of Theorem 1 is
attainable for all very smooth densities f. However, to avoid a lengthy technical
treatment, we will make our case with the help of two examples: all densities
whose characteristic functions have compact support and all densities with a
characteristic function of the form ¢(¢) = exp(—(1 + o(1))|¢|?) as |{| = 0. For
performance that is not restricted by the form of the kernel as in the case of
saturation, one should consider the standard kernel estimate with kernels whose
characteristic function is flat in an open neighborhood of the origin. With such
kernels (coined superkernels in Devroye (1987a); see also, Devroye and Gyorfi
[(1985), Section 5.11]), one generally obtains the rates predicted by Theorem 1.
Consider first densities f with a bounded support characteristic function. The
use of the sink kernel sin(x)/(7x) leads to 1/n error rates for the mean square
integrated error [Davis (1975, 1977) and Ibragimov and Khasminskii (1982)].
When we choose a kernel L whose characteristic function is 0 in a neighborhood
of the origin, and for which [(1 + x2)L? < 0, and when we keep & fixed at a
certain positive value, then E(f|f — f,|) = O(1/ Vn) for all { with finite second
moment [Devroye (1987a)]. Consider next densities with characteristic function
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of the form
o(t) = e~ Aot

as |¢| > oo, where 8 > 0 is a constant. These densities are very smooth. For
example, when B > 1, the densities are analytic [Kawata (1972), pages 439—440].
Assume furthermore that f|x|'**f(x)dx < oo for some & > 0. (This condition
implies that [ ,/f < o and is only slightly stronger than [ ﬁ < 00.) In view of
the example worked out in Section 3, it suffices to show that E( [|f — f.l) is not
greater than a constant times log'/®n/ /n. We again choose the standard
kernel estimate with smoothing factor 2 varying as a constant (to be picked
further on) times log~'/An and kernel L defined via its characteristic function
(actually, Fourier transform)

1, ¢ <1,
= 1
O s
1+ (¢ - 1)

It is easy to verify that |L| is bounded [by (1,/27)f|¢|] and x%|L(x)| is bounded
[by 1/27)[|¥®|]. Thus, [*|L(x)|dx < c/z for some constant ¢ and all z > 0, a
fact that will be needed further on. Let us define L,(x) = (1/h)L(x/h). We will
have achieved our goal if we can show that E(|f, — f * L,|) < ¢,/ Vnh and that
JIf = f* Ly| < cye" /" for some positive constants ¢;. The moment condition

on f implies that
fVsL?
B( i~ 7o) - HOIE

as n — oo [see Devroye (1987a)]. Since ¢ is absolutely integrable, we can recover
f by standard inversion. In particular,

1
sup | f(x) = f+ Li(x)| < 5~ flo(e) 111 ~ w(th)|de

< — t)|dt
<274MMM(M

< e~ +o()r~F

as h |0, where we absorbed all the constants conveniently in the o(1) term. Let
us also define & £ ¢!/(+9%") Then,

fif = £+ Ly

< 28e" oAy [ (f4faL,)
Jx|>8

- | L4l
< 2~ (e+o()/A+oh™F | 8_(1+”)fx 1+ef 1+ fIL f+
o Jita /|x|>8/2 /|x|>s/2f Ll

< e~ (e+o(M)/A+eh™® | e—l/hp/|x|l+ef + /|L| f+ / L.
lx|>68/2 |x|>8/2
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The third term is smaller than a constant times e~/#" and the fourth term is
not greater than [, . s @en)|L| < 2hc/8 for some constant c. This concludes the
proof of our claim.
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