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This procedure is distribution-free in the sense that it does not depend upon
the shape of the parent distribution(s) from which the observations were drawn.
It does, of course, depend upon the (necessarily symmetric) permutation distri-
bution generated from the sample data.

However, the value being estimated is a population value and, whatever
procedure is used, random sampling is desirable. With matched pairs, if the two
members of each pair were selected in the same way and given equal probabili-
ties of the two possible assignments to treatments, it may seem plausible to treat
the sample. of differences as more representative of the (hypothetical) population
of differences than the two individual samples are of their parent populations.

Permutation intervals are obtainable for parameters other than the mean. All
that is necessary is that they can be estimated by sample statistics having
unique values with each permutation of the data. Thus intervals can be con-
structed for variances and medians, but not for modes. The search for the
confidence limit again renders the method inefficient in more than one dimen-
sion. If there is a single parameter of interest, as before we might choose to
condition on the estimates of the nuisance parameters.
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We congratulate Hall for a most stimulating paper. Hall has presented
bootstrappers with a useful framework within which to compare resampling
methods.

Before getting to the main topic of our discussion, we would like to raise two
issues involving smoothing and uniformity. Outside of the obvious problem that
a stable estimate of variance may be difficult to obtain, one may question the
extent to which the results contribute to a complete theory of confidence
intervals. It is known, for example, that outside of the “smooth function” model,
the percentile-t method may be inconsistent. For instance, bootstrap confidence
intervals for functionals of a density (based on percentile-t or other proposed
methods) will generally be inconsistent unless resampling is performed from an
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966 DISCUSSION

appropriately smooth distribution; see Romano (1986). In other problems, even if
the percentile-¢ is consistent, smoothing may conceivably lower coverage error.
In summary, the issue of smoothing before resampling deserves investigation,
even though the benefit of smoothing falls outside of the smooth function model.
Also, see Silverman (1987). A second point that may deserve further attention is
the uniformity of coverage errors of various bootstrap confidence intervals over
appropriately broad classes of distributions. Indeed, if the level of a confidence
interval [ is defined to be the infimum over all F of the probability under F that
I contains 8(F), then uniform results in F of coverage errors are required in
comparing the level of various procedures. Of course, lack of uniformity in
bootstrap procedures is sometimes unavoidable in nonparametric problems; see
Bahadur and Savage (1956).

Within the smooth function model, Hall provides strong evidence against the
use of certain resampling techniques. Emerging as the two most promising
techniques are the percentile-t and Efron’s acccelerated bias-corrected (BC,)
method. Hall prefers the percentile-t over the BC, due to the following two
criticisms of the BC,. First, the BC, requires calculation of an analytical
adjustment, namely the acceleration constant, which automatic bootstrap meth-
ods should ideally avoid. Second, for any given sample, the BC, intervals shrink
to a point as coverage increases. We wish to describe an alternative procedure
which grew out of an attempt to reconstruct the BC, limits without having to
explicitly calculate a and does not suffer from these same criticisms.

1. Scalar parameter models. Suppose the model is parametrized by a
scalar parameter 6 and the interest lies in constructing an upper 1 — a con-
fidence limit for @ based on an estimator §. Let Gy(+) be the distribution function
of 6 under 6. To motivate the method, suppose that G4(0) is a pivot; that is, its
distribution is independent of 8 with 1 — a quantile denoted u,_,. For simplic-
ity, assume that Gy(¢) is strictly increasing in ¢ and strictly decreasing in 4.
Then,

P{Gy(0) < uy_,} = Pp{0 < G (u,_,)} =l-a.

Hence, Gj '(u,_,) is an upper 1 — a confidence limit for 6. All that is needed is a
method to compute u,_,. To do this, fix any 6, and simulate the distribution of
Gy(6,) under 6, and compute its 1 — a quantile. Let A(f) = G4(6,) and let
by = Gy, !(a). Then the upper 1 — a quantile of h(0) under b, is h(b;) = Gg(6y),
since A is monotone decreasing. Hence, the upper 1 — « limit for 6 is 6,, where 6,
is defined by

(1) b, = Gé_l{Go()(oo)}-

The assumption that Gg(6) is pivotal holds, for example, when for some mono-
tone transformation g and constants a and z,, the distribution of

g() - g(6)

) 1+ ag(d) T



COMPARISON OF BOOTSTRAP CONFIDENCE INTERVALS 967

is independent of 8. Efron actually assumes the distribution of (2) is standard
Gaussian to motivate the BC,. Several equivalent necessary and sufficient
conditions for the exactness of the upper limit given by (1) are given in DiCiccio
and Romano (1987). For example, (1) is exact in the exponential mean example
considered by Hall.

Typically, 8, given by (1) is an approximate limit. In practice, a reasonable
choice for the initial value 6, is the percentile limit or the BC limit. Note that if
the exact upper limit 6, is used as 6,, where 6, satisfies Gou(é) = @, then
0, = 0, is obtained. Generally, 6, is second-order correct in the sense of Efron
(1987) and the coverage error is of order n~!. No analytical adjustments are
required in (1), but the distribution of § must be obtained at three values: §, 0,
and 6. By choosing §, = d, this number can be reduced to two. The procedure
lends itself to iteration and it can be shown that, under certain conditions
involving the existence of Edgeworth expansions, each round of iteration brings
the approximate limit closer to 6, and brings the coverage probability closer to
1 — a by an order of n=1/2,

2. Multiparameter families. The procedure given by (1) can be extended
to set approximate confidence limits for a scalar parameter in multiparameter
families. Consider a family of distributions indexed by the vector parameter
A = (N,..., AP) and suppose that the scalar parameter § = f(A) is of interest.
Let A be an estimator of A and let § = f(f\) be the corresponding estimator of 6.
The distribution function of § is given by G A(8) = Py(8 < s) and the bootstrap
distribution for 4 is Gj.

First, suppose the model has been parametrized so that Al = § and A%,..., AP
are orthogonal to 0, i.e., suppose that

cov(nl/zé, nl/zxi) =0(n™Y), i =2,...,D.

Let » = (A%,...,AP). Then (1) can be adapted to find an approximate upper
1 — a confidence limit for § by the following procedure. Start with an initial
value §, of 6, perhaps the percentile limit G5'(1 — ), set 65 = G5 ;(a) and
finally take

6, = G(}’l;,){G(% a)(oo)} .

In many situations, it is difficult to transform a given model to achieve an
orthogonal parametrization. For such cases, the least favorable family construc-
tion used by Efron (1987) allows the procedure to be implemented in terms of the
original parameters. Suppose that

cov(n'28, n'287) = kb7 + O(n™Y), i,j=1,...,p,

and let f;= df/dX and p‘ = Lx"/f; Consider the line in the parameter space,
parametrized by ¢, given by A(£) = A + #ji, where i = (f,..., i?) and p’ = pi(}).
Then A = A(0) and the bootstrap distribution for 4 is G))- To implement the
procedure, commence with an initial value 6, for 8, choose ¢, to satisfy 6, =
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f{A(t,)} and let 6 = Gy} (@). The approximate limit for 4 is
8, = GG )}

where t{ satisfies 65 = f{A(¢{)}. It can be shown that the error in the coverage
level of 8, is O(n™'); in fact, 6, differs from Hall’s theoretical limit 6g,,4 by
order n~3/2 in probability. However, because of the presence of nuisance param-
eters, the order of this error cannot be reduced by further iteration.

3. The nonparametric case. Consider the problem of constructing a con-
fidence limit for a functional § = 8(F) of the unknown distribution F in a
nonparametric setting. The normal estimate of §(F) is 0(F),), where F, is the
empirical distribution based on a sample Xj,..., X, from F. As in Efron (1987),
we reduce the nonparametric problem to the scalar parameter case by consider-
ing an appropriate one-dimensional least favorable subfamily of distributions,
constructed as follows. Let

6((1 — AF ) - 6(F
b 1 MO D)E, ¢ 88) —0(£)
A—0 A

where §; is the distribution assigning mass 1 to X;. Let F, denote the distribution
assigning mass

n
pi(t) = exp(tU;) | X exp(tU;)

Jj=1
to X,. This family of distributions, indexed by ¢, is the least favorable family; see
Efron (1987). Now, set 6(¢t) = 8(F,). Also, let G,(s) be the distribution function
of  under F, (conditional on the data). To construct the nonparametric version
of (1), let g, be an initial choice for an upper 1 — a confidence limit. Let ¢, be the
value of ¢ satisfying 6(¢) = 6,, let 6; = G, (a) and let ¢, be the value of ¢
satisfying 8(¢) = 6§. The proposed limit is then

(3) 0, = GO_I{G%(%)}.

As in the multiparameter case, commencing with a reasonable choice of §, [so
that 6, is within 6(F) by order n~'/2 in probability] results in a second-order
accurate limit 6,; that is, 8, differs from 6,4 by order n~3/2 in probability. This
result holds under Hall’s smooth function model and will be proved in a
forthcoming technical report. As in the parametric case, one may iterate the
procedure by starting with 8, to yield a new limit 8, and so on. Unfortunately,
this does not reduce the error of the procedure outside of the scalar parameter
case.

In the case of nonparametric confidence intervals for the mean, 6, approaches
the limit 6. obtained by Efron’s (1981) nonparametric tilting method as the
number of iterations increases. Specifically, if ¢, is the value of ¢ satisfying
0 = G/ (a), then O 1 = 8(t,). We have obtained expansions for 8, and Oy
corresponding to Hall’s analysis in Sections 4.3 and 4.5. The expansions for 6, to
third order depend on the choice of §,. Assuming we have started with a “good”
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choice for 6, [or that we have iterated (3) once more], the third-order properties
of 6, and @ are the same. In particular, the upper a nonparametric tilting
limit satisfies

Opppr(a) =6 + n_l/zé[za + n‘l/zé?(2zf +1)
+n_lza{ 7—‘272(—722 + 4) + 4k(3z, + 1)}] + 0,(n7?).
Furthermore, the coverage probability associated with éTILT satisfies
momr(@) = @ — n7(2,)z,(22 + 3)1(k — ¥2 + 2) + O(n~%2)
and, corresponding to Table 1,
t(z,_,) = —1.68x + 1.68y% — 3.35.
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This is the latest in Peter Hall’s series of impressive bootstrap papers. One
effect of these papers [and those by other authors, in particular Abramovitch
and Singh (1985)] has been to renew interest in bootstrap-¢ confidence intervals.
My original enthusiasm for bootstrap-¢ intervals, as naively expressed in Remark
F of Efron (1979) and slightly less naively in Section 10.10 of Efron (1982),
foundered on a list of their substantial drawbacks: noninvariance under transfor-
mations, occasional numerical instability and, worst of all, the need to compute
auxiliary estimates of standard deviation ¢ and é*. The good properties demon-
strated in this paper and others make it worthwhile to pursue the practical
details of applying the bootstrap-¢ method on a routine basis.

Figure 1 concerns “looking up tables backwards.” It is natural to assume that
if an error distribution is long-tailed to the right, then the corresponding



