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This paper is very thorough and complete, and we do not feel that we can add
materially to the subject matter covered. However, we would like to take this
opportunity to widen the scope of the discussion in two different directions.
First, we_would like to say a few words in favour of ordinary percentile or
“backwards” confidence intervals relative to the more sophisticated methods
preferred by Hall. Second, we believe that for circumstances in which better
confidence intervals are desired, it is often possible to apply a method that is
exact apart from Monte Carlo variation, so that we need not consider progressive
corrections to improve our approximations. We discuss two such methods, one
based on Robbins-Monro search and the other on “permutation intervals.”
Neither requires us to assume that the “bootstrap world,” in which parameters
are estimated, is equivalent to the “real world,” in which they are not.

1. Complex applications. In the Introduction, Hall notes that the per-
centile (“backwards”) method was used in more than half of the cases in
nontechnical statistical work and the hybrid method in most of the rest. One
advantage of the percentile method is that it always provides confidence limits
that lie within the permissible parameter range, provided the estimation proce-
dure does not allow out-of-range estimates. By contrast, if a distribution has a
finite bound to the permissible parameter space and the percentile confidence
limit is close to this bound, the hybrid method will often give an interval that
extends well beyond the bound for a skew distribution. When a distribution is
skew, but with scale independent of location, the hybrid method is exact and the
percentile method is not. However, we believe that such distributions are rare
and that, in practice, the percentile method will normally be preferable to the
hybrid method, as it is for the example of Table 2. The methods preferred by
Hall also fail to ensure that the permissible parameter space is not violated.

A further advantage of the percentile interval is that, in our experience, it
generates intervals similar in length to a central interval. By contrast, Hall’s
preferred methods may lead to intervals considerably longer, as noted by Hall
and indicated in the example of Table 2. The improvement in coverage error may
therefore be offset by the unnecessary increase in interval length.

In practice, skew distributions with at least one finite bound to the parameter
space are common. If a true confidence limit is close to a bound, second- and
third-order corrections may be unimportant relative to higher-order corrections;
the distribution conditional on the estimated parameter(s) § may be very
different from that conditional on true parameter(s) §. When implementation is
feasible, we prefer instead to avoid considerations of second-, third-, ... order
corrections and to use one of the following approaches:

2. “Exact” bootstrap confidence intervals using Robbins-Monro search.
Where we require parametric bootstrap confidence limits for a single parameter
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and we have no nuisance parameters, we may select some estimate of, say, the
upper limit and generate one or more bootstrap replications on the assumption
that the estimate is the value of the unknown parameter. We then repeat the
process for a new estimate of the upper limit. As we generate more bootstrap
replications, we can use them to improve our estimate of the confidence limit.
The Robbins—Monro search procedure [Robbins and Monro (1951)] maximises
the efficiency of the search. Full details on the implementation of the method
appear in Garthwaite and Buckland (1988); here, we give an outline of the
concept only.

The Robbins—Monro process is used to search for each confidence limit
separately. The procedure locates itself at the “best” estimate of a limit,
generates a single bootstrap replication, finds the new best estimate in the light
of the additional information and moves to it. Consequently, it steps from one
best estimate of the limit to another. A “steplength constant” governs the
magnitude of steps and if its optimal value is known, the procedure is fully
efficient. In practice, the steplength constant must be estimated, and indepen-
dent searches are necessary for the upper and lower limits, so that the procedure
generally requires rather more than double the bootstrap replications to achieve
the same nominal precision as the percentile method [Garthwaite and Buckland
(1988)].

Suppose we have data x;, i = 1,..., n, from which a parameter § is estimated
by 6. Suppose further that the data come from a single parameter density f(x; 6)
of known form. Under relatively general conditions [Garthwaite and Buckland
(1988)], the following search procedure converges to an exact 100(1 — 2a)%
interval as the number of steps tends to infinity.

Let u,, be the estimate of the upper confidence limit from m steps. Generate a
bootstrap sample of size n from f(x; u,,) and from this sample, estimate 6 by
0 , say. Set

_ | up—ca/m, ifd, >4,
Unpt1 = £

u, +c(l1—a)/m, ifd,<4.

The constant c is the steplength constant. If u,, is currently equal to the
upper 100a*% point [i.e., a* = P(0 < 6)), the expected distance we step is
{a*c(1 — a)/m} — {(1 — a*)ca/m}. This expression is zero for a* = a, in which
case u,, is equal to the required upper confidence limit. The expression is positive
when a* > a and negative for a* < a, so that each step reduces the expected
distance from the solution. The procedure continues for a predetermined number
of steps or until convergence occurs with acceptable precision. An independent
search yields the lower confidence limit estimate. Further details are given by
Garthwaite and Buckland (1988).

The preceding method is based on the usual definition of a conﬁdence interval
and uses the relationship that exists between equal-tailed confidence intervals
and two-sided hypothesis tests. For multivariate problems, an obvious way of
implementing the method to set limits for a single parameter would be to replace
nuisance parameters by their sample-data estimates. This would be moving



964 DISCUSSION

toward the definition of a bootstrap confidence interval used by Hall, where
resamples are generated from a density in which all parameters are replaced by
sample estimates, including the parameter for which the interval is being
constructed.

If we can define the expectations of the observations as functions of the
parameter for which we require a confidence interval, then the preceding method
may be used in conjunction with the nonparametric bootstrap, where we sample
with replacement from the deviations of the observations from the expectations,
estimated using the current best estimate of the confidence limit. In other words,
at each step we update our estimates of the expectations of the observations,
calculate the observed deviations from these estimates and sample with replace-
ment from the deviations to provide a bootstrap replication. Otherwise, we
proceed as before. Again, if there are nuisance parameters, we can choose to
estimate them and apply the procedure conditional on those estimates.

3. Exact permutation intervals. Another way to exploit the relationship
between hypothesis testing and confidence intervals is to use randomisation or
permutation tests to generate intervals. If we enumerate all permutations, we
obtain an exact confidence interval. If, for computational efficiency, we sample
with replacement from the permutations, the method is exact apart from Monte
Carlo variation.

Permutation (randomisation) tests are included in many elementary nonpara-
metric textbooks. We use the permutation test for matched pairs to illustrate
briefly the method. Suppose that an experiment is performed to compare the
effects of two treatments. Subjects are matched in pairs as closely as possible
and then one member of each pair is assigned to each treatment. A test is to be
performed of the null hypothesis H,, that there is no difference between the
effects of the two treatments.

Suppose that observations are on an interval scale and the numerical dif-
ference for a particular pair is |d|. If H, is true, the observed difference Y, — Y,
could be either +d or —d, depending only on the random allocation of treat-
ments to subjects. The two signs are equally likely to appear. For an entire
sample of n pairs of observations, there are 2" possible patterns of signed
differences. Therefore there are 2" ways in which the sum of the differences Xd;
might be constructed by chance (although that does not mean that there are 2"
different totals, since some totals may be constructed in several ways). The
rejection region for the two-sided permutation test of size 2a consists of the
200a% most extreme totals (irrespective of sign).

We may now define a permutation interval. The 100(1 — 2a)% permutation
interval for a parameter 6 consists of all values 8, which would not be rejected if
they were the subject of the null hypothesis H,: § = 6, and the alternative was
two-sided, i.e., H,: 8 # 6, For example, a permutation interval for the mean
difference in the case of matched pairs of observations is constructed by finding
all the values of 6 for which Hy: p, — pg = 6 would not be rejected in favour of
H: p,—pg+#0, where p, and py denote the expectation of y, and yj,
respectively. ~



COMPARISON OF BOOTSTRAP CONFIDENCE INTERVALS 965

This procedure is distribution-free in the sense that it does not depend upon
the shape of the parent distribution(s) from which the observations were drawn.
It does, of course, depend upon the (necessarily symmetric) permutation distri-
bution generated from the sample data.

However, the value being estimated is a population value and, whatever
procedure is used, random sampling is desirable. With matched pairs, if the two
members of each pair were selected in the same way and given equal probabili-
ties of the two possible assignments to treatments, it may seem plausible to treat
the sample. of differences as more representative of the (hypothetical) population
of differences than the two individual samples are of their parent populations.

Permutation intervals are obtainable for parameters other than the mean. All
that is necessary is that they can be estimated by sample statistics having
unique values with each permutation of the data. Thus intervals can be con-
structed for variances and medians, but not for modes. The search for the
confidence limit again renders the method inefficient in more than one dimen-
sion. If there is a single parameter of interest, as before we might choose to
condition on the estimates of the nuisance parameters.
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We congratulate Hall for a most stimulating paper. Hall has presented
bootstrappers with a useful framework within which to compare resampling
methods.

Before getting to the main topic of our discussion, we would like to raise two
issues involving smoothing and uniformity. Outside of the obvious problem that
a stable estimate of variance may be difficult to obtain, one may question the
extent to which the results contribute to a complete theory of confidence
intervals. It is known, for example, that outside of the “smooth function” model,
the percentile-f method may be inconsistent. For instance, bootstrap confidence
intervals for functionals of a density (based on percentile-t or other proposed
methods) will generally be inconsistent unless resampling is performed from an



