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formly in A. However, this approach may not succeed in controlling the asymp-
totic level of the confidence set. The problem is that the relevant asymptotic
expansions may not converge uniformly over all A, especially when A is infinite
dimensional.

An interesting strategy, proposed by Loh (1985) in a testing context, is to pick
critical values so as to control the apparent level of the confidence set for 8 over
a confidence set for A of level 1 — ¢,, where ¢, is small. When feasible, this
construction ensures that the level of the confidence set for § is at least
1 — a — ¢,. One difficulty is finding a good confidence set for A. If the latter is
too large, then the induced confidence set for 6 is likely to be inefficient. Perhaps
the notion of controlling level of a confidence set for  is too strong. On the other
hand, controlling asymptotic coverage probability only pointwise in A is clearly
too weak.
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I found Professor Hall’s unified treatment of bootstrap bounds and confidence
intervals very valuable. I was particularly interested by his exploration of the
relation between the accelerated bias correction bootstrap bounds and the
Studentized bounds, a relationship which I also studied, but only in the para-
metric framework, in my discussion of Efron (1987). In my discussion I want to:

1. Argue at least heuristically that, in the nonparametric context, the second
order equivalence of BAABC and éSTUD holds quite generally for 6(F') a suffi-
ciently smooth von Mises functional, provided that we Studentize properly.
For example, it holds if the estimate 6= G(F'), where F is the empirical d.f., is
an M estimate corresponding to a nice ¢ function; see Huber [(1981), Chapter
2] for examples.

2. Suggest that quite generally in a parametric, nonparametric or semiparamet-
ric context, §,,; and fgpyp are second order equivalent provided again that §
is efficient and we Studentize properly, that is, by an efficient estimate of the
asymptotic standard deviation of 6.
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960 DISCUSSION

Since, modulo regularity conditions, checking equivalence of the theoretical
points §,,, and 6,4 and of the corresponding bootstrap points 0,5 and Oy is
the same thing, we restrict ourselves to the former. Suppose H and K are as in
Hall the d.f’s of T = Vn (6 — 8(F))/(o(F)) and T = yn (8 — 6(F))/6 and ad-
mit Edgeworth expansions,

Kun
H() = 0(x) - ()| Kiu + 23" = 1)) + O(n™),

+ 0(n™Y),

7 5 K~3n
K(x) = 8(x) = 9(2)| Kiu + (52 = 1)

where K, , K,, = O(n""?), i = 1,3, are asymptotic cumulants of T, T see
Bickel (1974) for a precise formulation. In this notation, Hall shows that
0,1, = Osuq + O(n™?/?) provided that

-1 -1 K3n 5 K3n -1
(1) m = ® 'H(0) + O(n )=K1n_T=K1n_ 5 + 0(n71)
and
1 Z -1
(2) a= —E(K3n+K3n)+O(n ).

Note that without any further calculation, the corresponding quantities for Oxpc
not only 77 but also @ can be estimated (but not in an invariant way) directly. In
particular, we can take 4 = — 1(K,, + K,), where the K, K,, are the
bootstrap cumulants of appropriately truncated versions of T and T. For the
fully nonparametric model and special §(F) and exponential families Hall,
following Efron (1987), derives a further approximation for a, if 6 is an efficient
estimate of §(F) and 6 is an efficient estimate of o(F'), the asymptotic s.d.

of Vn é.

To extend Hall’s approach in the fully nonparametric model, suppose )
admits a von Mises (stochastic) expansion

§=6(F) + [¥(x,F)dF(x) + § [v(x, y, F) dF(x) dF() + op(n™"),
where
/q»(x, F)dF(x) =0,
v is symmetric and
fy(x,y,F)dF(y) =0 forall x. ‘
Compare Withers (1983). The efficient estimate of o%(F) = [Y?*(x, F) dF(x) is
02(13: ) = [P(x, F)dF(x). Under additional regularity conditions we can check
o%(F) = o%(F) + [v(x, F)dF + Op(n~"), where

o(X, F) =2 [¥(, F)y(, y, F) dF() + ¥*(x, F) = o*(F).
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Since
-2

e T(l ~ - (F)(6%(F) - 0*(F))| + Ofn™)

if we take K, K, to be the cumulants of the appropriate linear or quadratic
approximations to T, T, we get

K, - K,, = —3n—1/2[SKEW(¢) + 673 F)
® x [ [4(e, F)4(3, F)r(s, 3, F) di(x) dE()]
+0(n71)
and from Withers (1983),
Ky, =n"'2 [SKEW(¢) + 267%(F)
(4)

X [ (D)1, 7) dF() dF(3)] + 0(n ™).
From (3) and (4) we get

(5) K,, + K~3n = _SKEW(‘P)
and hence

SKEW
©) a=——(¥).

These computations and Efron [(1987), Section 6] suggest that if P is any
model (parametric, fully nonparametric or semiparametric), the map F — 6(F')
is sufficiently smooth, § is an efficient (on P) estimate of §(F) and 6 is an
efficient (on P) estimate of the asymptotic variance of n'/24, then (6) should
hold. Of course, to make any such assertions precise we need to assume existence
of stochastic (von Mises) and Edgeworth expansions for T and T. For ap-
propriate conditions and the necessary formulae, see Pfanzagl [(1985), Chapter
10], where an extensive discussion of questions such as those treated in Section 4
may also be found.
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