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According to Dudley’s (1978) Theorem 7.1, the last term of (12) is o,(n~'/%).
Next turn attention to the fourth term and note that
Var( Eg.{Gp{[—ot, X* - St]}})
< Var(Gp{[-ot, X* — St]})
= Var(E{Gp{[-ot, X* - St]}}X*,S})
+E{Var(Gp{[-ot, X* - St]}|X*,S)}

in view of the conditional variance formula. The first term of (13) is 0 because Gp
is a mean 0 process, while the second term is less than E{|F(—ot)—
F(X* — St)|} = 0o(1). Therefore, in view of (9) and (12),

X-2 D G A
X2 (B

[

(13)

= F,(—ot) — F(—ot) + XF'(—ot) + (0 — S)tF'(—ot) + o,(n"'?),

1

which is of exact order n~1/2 in probability as a consequence of the central limit

theorem.
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Peter Hall’s paper gives a welcome and illuminating comparison of competing
bootstrap confidence intervals for a one-dimensional parameter. Though im-
portant, this one-dimensional case is very special in several respects. Techniques
such as Studentizing or accelerated bias correction do not generalize readily to
confidence sets for a multidimensional parameter. I will address two problems:
(i) how to construct analogs of second-order correct bootstrap confidence sets
when the parameter 6 is vector-valued or infinite-dimensional and (ii) how the
general approach for multidimensional 8 relates to the one-dimensional methods
discussed by Hall.

1. Consider the following setting: The sample x,, has distribution P, , which
depends upon an unknown parameter A; the dimension of A may be infinite: Of
interest is the parametric function § = T(A), which need not be scalar-valued.
Let R, (6) = R,(x,,0) be a confidence set root for §—a real-valued function of
the sample and of 4. Let J,(-, A) denote the left-continuous cdf of R,. Suppose
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J is a left-continuous cdf estimate which is consistent for (-, A). Let J i(t)
denote the largest ¢th quantile of J Then, under moderate condltlons the
confidence set for 6,

1) C={6:R,(0) <J;'(1-a)},

has asymptotic coverage probability 1 — a, at least pointwise in A.

What are suitable choices of J, for constructing the confidence set C? Two
basic answers are:

Use first-order asymptotics. 1f J (-, A) converges weakly to a limit cdf J(-, A),
take o, = J(-, A), where X is a consistent estimate of A. Let C, denote the
confidence set so generated from expression (1).

Use the bootstrap. In other words, take cfn =J(, X) and approximate the
latter by Monte Carlo methods if an analytical expression is not available. Let
Cj denote the confidence set so generated from (1).

Suppose X is a n'/%consistent estimate for A and J,(-, \) has an asymptotic
expansion whose leading term is J(-, A) and whose higher-order terms are in
powers of n~ /2, Analysis then reveals an important difference between the
bootstrap confidence set Cyz and the asymptotic confidence set C, [see Beran
(1987, 1988)]:

(a) If the asymptotic distribution of the root R, depends on A, then Cy has
error in coverage probability of the same asymptotic order in n as does C,.

(b) However, if the asymptotic distribution of R, does not depend on A, then
Cp has error in coverage probability at least one order of magnitude higher, in
powers of n~ /2 than does C,.

In other words, the coverage probability of the bootstrap confidence set is at
least as accurate, asymptotically, as is that of the asymptotic confidence set, and
can be better.

Among other results, Hall’s paper establishes conclusions (a) and (b) for two
special cases where 6 is one-dimensional and the asymptotic distribution of the
root is normal. In the first case, the root R, is n'/%( — 0), where § = T(}), say.
The asymptotic distribution of this root is N(0, 02) in Hall’s setting, where o2
depends on A. If ¢ is estimated by 6, then Cy= [ + n~2%z,, ) and Cp =
[0xys, ). The error in coverage probability is O(n~'/2) for both C, and Cp.
This outcome illustrates the preceding conclusion (a). In the second case, the
root R, is the Studentized quantity n'/%(§ — 8)/6, whose asymptotic distribu-
tion is standard normal. Now C, is again as before while C becomes [ gy, ©).
The error in coverage probability is still O(n~1/2) for C, but is now O(n~?!) for
Cp. This outcome illustrates conclusion (b).

2. When # is multidimensional, the asymptotic distribution of an interesting
confidence set root for @ is usually nonnormal and often depends on A. This is
the less favorable case for the bootstrap confidence set Cp, according to conclu-
sion (a). Ducharme, Jhun, Romano and Truong (1985) studied a striking exam-
ple: bootstrap confidence cones for mean direction 6 of an unknown distribution
on a sphere. In their example, both C, and Cy have large errors in coverage
probability when the distribution on the sphere is nearly uniform. Neither
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Studentizing of the root nor accelerated bias correction is available to improve
Cjg here.

How can we refine Cz when 8 is multidimensional? A general answer is:

Use the double bootstrap. One such approach is the method of prepivoting
[Beran (1987)]. Let oJ, (-, A) denote the left-continuous cdf of the new root

R, (0) = J,[R,(0), X]—the transform of the original root R, by its bootstrap
cdf In the confidence set defined in display (1), take J J, 1([J (-, X), X]. This
yields the confidence set

Cp1 = {0: R(8) < J;[J; (1 - o, R), 4]}

= {0' Rn,l(o) = Jn_,i(l - a X)}’
a modification of Cz. As the second line in (2) indicates, Cp; is simply the
bootstrap confidence set generated from the transformed root Rn 1~ In practice,
the cdf J, (-, X) can be approximated by a double bootstrap Monte Carlo
algonthm

Analysis of Cp , establishes the following 1mportant supplement to the earlier
conclusions (a) and (b):

(c) CB . has error in coverage probability at least one order of magnitude
higher, in powers of n~1/2, than does Cy. This happens because the distribution
of the transformed root R »,1 depends less strongly on 6 than does the distribu-
tion of the original root R,. By less strongly, I mean that é first occurs in a
higher-order term of the asymptotlc expansion for the distribution of the root.

In Hall’s setting, where 8 is one-dimensional and we take R, = n*/%(§ — 6),
the double bootstrap confidence set Cy, is second-order correct like both
[GSTUD, o0) and [0ABC, 00). Indeed,

3) R,,=Jd(R,, ) =0[n"%(d - 0)/8] + O,(n"1?),

where @ is the standard normal cdf. Bootstrapping R, ; to obtain Cp, is thus
equivalent asymptotically to bootstrapping n'/%(§ — 6)/6 to obtain [is'x'UD’ o).
For a derivation, see Beran (1987). On the other hand, the asymptotic equiv-
alence between Cp, and [f45c, ©) comes about because the accelerated bias
correction generates a good analytical approximation to o, (-, ). For discussion
of this point, see Bickel (1987).

The relation between Cp; and Cjp is thus analogous to the relation between
[fsrup» ) and [0yp, ). Confidence set Cp,, is the next-order asymptotic
refinement of confidence set Cy. The great merit of Cp, is that it offers a very
general method for improving bootstrap confidence sets for multidimensional
parameters 6. Once programmed, the double bootstrap Monte Carlo algorithm
for approximating Cp, is readily adjusted to different models and to different
confidence set roots.

(2)

3. The bootstrap and asymptotic confidence sets discussed so far rely on a
common idea: Choose the critical value so as to control, at least asymptotically,
the apparent coverage probability of the confidence set at the estimated parame-
ter value A. Under regularity conditions, this approach does, in fact, control
coverage probability for large samples, pointwise in A and, often, locally uni-
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formly in A. However, this approach may not succeed in controlling the asymp-
totic level of the confidence set. The problem is that the relevant asymptotic
expansions may not converge uniformly over all A, especially when A is infinite
dimensional.

An interesting strategy, proposed by Loh (1985) in a testing context, is to pick
critical values so as to control the apparent level of the confidence set for  over
a confidence set for A of level 1 — ¢,, where ¢, is small. When feasible, this
construction ensures that the level of the confidence set for § is at least
1 — a — ¢,. One difficulty is finding a good confidence set for A. If the latter is
too large, then the induced confidence set for 6 is likely to be inefficient. Perhaps
the notion of controlling level of a confidence set for 8 is too strong. On the other
hand, controlling asymptotic coverage probability only pointwise in A is clearly
too weak.
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I found Professor Hall’s unified treatment of bootstrap bounds and confidence
intervals very valuable. I was particularly interested by his exploration of the
relation between the accelerated bias correction bootstrap bounds and the
Studentized bounds, a relationship which I also studied, but only in the para-
metric framework, in my discussion of Efron (1987). In my discussion I want to:

1. Argue at least heuristically that, in the nonparametric context, the second
order equivalence of éABc and éSTUD holds quite generally for 8(F') a suffi-
ciently smooth von Mises functional, provided that we Studentize properly.
For example, it holds if the estimate § = 0(F), where F is the empirical d.f., is
an M estimate corresponding to a nice ¢ function; see Huber [(1981), Chapter
2] for examples.

2. Suggest that quite generally in a parametric, nonparametric or semiparamet-
ric context, f,5. and fyyp are second order equivalent provided again that §
is efficient and we Studentize properly, that is, by an efficient estimate of the
asymptotic standard deviation of 4.



