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AN ARMA TYPE PROBABILITY DENSITY ESTIMATOR!

BY JEFFREY D. HART

Texas A & M University

Properties of a probability density estimator having the rational form of
an ARMA spectrum are investigated. Under various conditions on the un-
derlying density’s Fourier coefficients, the ARMA estimator is shown to have
asymptotically smaller mean integrated squared error (MISE) than the best
tapered Fourier series estimator. The most interesting cases are those in
which the Fourier coefficients ¢; are asymptotic to Kj~* as j — oo, where
p > 1/2. For example, when p = 2 the asymptotic MISE of a certain ARMA
estimator is only about 63% of that for the optimum series estimator. For a
density f with support in [0, 7], the condition p = 2 occurs whenever
f'(O+)#0, f'(m—)=0and f” is square integrable.

1. Introduction. Suppose X|,..., X, are independent observations from a
density f with support contained in [0, #]. We consider estimating f(x) by a
quantity having the rational form

k B
(1.1) f(x) = (ﬁo +2) ﬁjcos jx)/ll — ae'|?,
j=1

where |a| < 1 and the ,BAj’s are explicit functions of X,,..., X,,. An estimator as
in (1.1) bears an obvious resemblance to autoregressive moving average (or
ARMA) spectra and will thus be referred to as an ARMA estimator.

Apparently, ARMA type probability density estimators have not previously
been considered in the statistical literature. Parzen (1979) and Carmichael (1984)
have, however, proposed autoregressive (or AR) type estimators of the form

f(x§ p)=¢1—ae*— ... _&peipxl—z_

Carmichael (1984) obtains a consistency result for f(-; p) by allowing the AR
order p to tend to infinity at a certain rate with the sample size n. In the current
paper, the AR order is fixed at 1 and the MA order tends to infinity with n. The
motivation for the latter scheme is based on the numerical analytic device known
as the e,-transform, which in turn is related to the notion of a generalized
jackknife.

Hart and Gray (1985) studied the use of ARMA representations in approxi-
mating (rather than estimating) density functions. Their results characterize the
integrated squared bias of (1.1) in a number of different situations. The current
paper greatly generalizes the results of Hart and Gray and also considers the
mean integrated squared error (MISE) of (1.1). It is shown that there exist quite
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general conditions under which an estimator of the form (1.1) has asymptotically
smaller MISE than does any tapered Fourier series estimator. For example, this
optimality property holds when f'(0+)+0, f(x—)=0 and f” is square
integrable.

The paper will be ordered in the following way. In Section 2, the estimator to
be studied is defined and a number of motivations for its use are given. The
asymptotic MISE of the estimator is studied in Section 3. Here it is assumed
that the Fourier coefficients ¢, of f are asymptotic to either Kj~* or K(—1)’j~*
as j — oo. Cross-validated smoothing of ARMA estimates is addressed in Sec-
tion 4, where the results of a simulation study are presented. ARMA estimators
with AR order greater than 1 are discussed briefly in Section 5. In particular, an
asymptotic MISE expression for the ARMA(2, m) estimator is given.

2. The proposed estimator. Let X,,..., X, be a random sample from a
density f with support contained in [0, #]. We shall assume that f has the
Fourier series

(2.1) f(x) ~ 17‘1(1 + 2 i ¢;cos jx), 0O<x<um,

Jj=1

where ¢; = [Jcos jxf(x)dx. Cencov (1962), Kronmal and Tarter (1968), Hall
(1983a) and others have investigated density estimators of the form

m
fn(x; m) = w“(l +2Y &ycoij), 0<x<wm,

Jj=1
where
&’1 = n—l Z Ccos ij.
k=1 ,
The estimators to be studied here are
. . 2 éaexp(i(m + 1)x)
(2.2) f.(x; m,a) =f(x; m) + (vr )Real[ 1= aexp(ix) ,

where —1 < a < 1. The pair (m, «) is the smoothing parameter of the estimator
and can be chosen from the data by cross-validation. We will return to this point
in Section 4. .

Before further discussion of (2.2) we should justify using the cosine basis as
opposed to a basis with both cosine and sine functions. This study was in part
motivated by the problem of estimating animal abundance using the line
transect method [see Gates and Smith (1980) and Crain, Burnham, Anderson,
and Laake (1979)]. The density function estimated in this setting is typically
assumed to be monotone decreasing on (0, 7). Since f(0) # f(=), the periodic
extension of f is discontinuous at 0 and #, and hence a cosine-sine Fourier series

-estimator will perform poorly near these two points. As shown by Hall (1983a),
though, the cosine series estimator is not adversely affected by the condition
f(0) # f(7). In kernel estimation, the analogous means of correcting boundary
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problems is the symmetrization device studied by Schuster (1985) and Cline and
Hart (1986).

There are a number of ways of characterizing the estimator f;,( -; m, a). First,
it is clear that it may be written

m+1

(2.3) flxsme)= ¥  Be’*/|1 —ae™?, O<x<m,
‘ j==(m+1)
where ,éj =p_ ; and the ,éj’s depend only on a and the Qsj’s. Aside from the issue
of positivity, (2.3) has the form of an ARMA(1, m + 1) spectrum, hence the
name ARMA probability density estimator. The form (2.3) suggests that such
ARMA estimators are well suited for densities with large “ power” at either 0 or
7 (but not both). While this is so, it will be seen that such an observation
somewhat understates the value of fn( s m,a). .

Perhaps a more interesting way of characterizing f,(-, m, a) is in terms of the
generalized jackknife and the numerical analytic device known as the e;-trans-
form. Using (2.2), it is easy to show that, for m > 1,

(2.4) fu(x; m,a) = 771[1 + 2Real(G,, (x))],

where G, (%) = (F(x) — ae®F,_(x))/(1 — ae'*), Fy(x)=2It_ ¢ k=
1,2,..., and 1'40 = 0. The quantity G,, ,(x) is a generalized jackknife estimator
[as defined by Schucany, Gray and Owen (1971)] of the function F(x) =
L%, ¢,e"". The jackknife, of course, is well known as a means of reducing

estimator bias.

Defining F,(x) = E(F,(x)), we have

E(Gm,a(x)) = (Fm(x) - aelem—l(x))/(l - ae‘x)‘

If a is taken to be ¢,,,,/¢,,, then {E(G,, (x)): m = 1,2,...} is the e,;-transform
of the sequence {F,(x)}. This transform, which dates at least to Aitken (1926), is
a numerical analytic tool used for accelerating the convergence of a sequence to
its limit. The work of Shanks (1955) gives a thorough account of e, and the more
general e, -transform. The interesting paper of Gray (1985) demonstrates the
close connection between many numerical analytic methods (including the e,-
transform) and the statistical notion of jackknifing to reduce bias. For more uses
of the e,-transform in statistical problems, see Gray, Watkins and Adams (1972)
and Morton and Gray (1984).

Also of interest is the Fourier series of f:,(-; m, «). From (2.2),

f(x;m,a) =f(x;m) + (2/7) ¥ &0/ ™cos jx.

) J=m+1
The Fourier coefficients 3>j(m, a) of the ARMA estimator are thus
&)‘(m’a)':&)" j=0’1"°"m’
(2.5) ! !

=¢,0/™  jEm+1,....

" It is of interest to contrast the tapering scheme (2.5) with that of traditional
series type estimators [see Wahba (1981)]. The Fourier coefficients ¢; of such
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estimators are

(2'6) 5]’ = wn(j)&’j’ J = 0’

where w,(j) does not depend on the data. Wahba (1981) considers, for example,
w,(7) = (@ + Aj?*)!, with A and % being parameters chosen by the user. The
scheme (2.5) differs from (2.6) in that, for j > m + 1, ¢j(m, a) = ¢,a’~™ rather
than 4’1“1 ™  Surprisingly, this simple difference between the two tapering
schemes can result in a profound difference in the biases of the corresponding
estimators. It will be shown that in a. variety of situations the MISE of (2.2) is
asymptotically smaller than that of any estimator with Fourier coefficients as in
(2.6).

3. Mean integrated squared error results. Define the mean integrated
squared error of the estimator f by J( f, f) =Ef{ f(x) = f(x))? dx. The MISE
will be used as a basis for comparing f( m, a) with other Fourier series
estimators. It is straightforward to show that

J((imoa), f) = @/m)|n" L var(cos jX,)

Jj=1

(3.1) +a(1 — a2) Vvar(cos mX,)/n

2
+@/m) T (45— dua),
J=m+1
where var(cos jX,) = (1 + ¢,;)/2 — ¢?. Note that taking a = 0 in (3.1) yields
J( f (-; m), f). This is important since it makes clear that one may always
choose a so that the MISE of an ARMA estimator is no bigger than that of
£+ m).

For future reference we define
(2) x  ¢fvar(cos jX;)

J,

n,opt =

)»

w | ;=) var(cos jX,) + n¢;’

Watson (1969) showed that oJ, ., is the minimum MISE among estimators of
the form

(32) o) = /)1 2 £ s |

j=1
The estimator f ; m) and Wahba’s (1981) estimator are, of course, special cases
of 3. 2) The smgular integral estimators of Hall (1983a) are also of this form.

It is clear from (2.5) that fn( m,a) will be the most efficient when
the Fourier coefficients of f decay geometrically. Hart (1986) deals with the
situation in which ¢; = exp(—aj)R(j) and R is regularly varying at
infinity. In particular, suppose that R(j)= B + yexp(—§j), where B # 0,
6>0 and y;—> vy as j— oo(|y] < ). Hart (1986) shows in this case that
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lim, _, ,J( fn(-; m,, e *), f)/J, oo = a/(a + &), where m, minimizes
J(f (+; m,e™?), f). An example of the situation just described is when f has
Founer coefficients ¢; = 1/cosh(aj), j = 0. In this case a/(a + 8) is 1/3 and so
there is an ARMA estimator whose asymptotic MISE is only 1 /3 of o, ;nt-

In the remainder of this section, we shall deal with cases in which either
¢, ~ Kj~" or ¢, ~ (- 1)/Kj—*, where K # 0 and p > 1/2. Here it is not clear
from (2.5) that ARMA estimators should be more efficient than traditional
Fourier series estimators. It turns out, though, that if p is 1, 2 or 3 or is at least
3.26, then the best ARMA estimator is more efficient than any estimator of the
form (3.2). Before stating a theorem to this effect, Lemma 1 on the integrated
squared bias of fn( m, a) is given. The lemma is actually more general than is
needed for the subsequent MISE theorems.

LEMMA 1. Suppose that b = R_,J), j =1, where R_, is continuous and
regularly varying at infinity, i.e., R_, satisfies hmx_,wR_p(}\x)/R_ (x)=A""
for each A > 0. If, in addition, m(1 — a,,) = ¢ > 0 as m - o, then

o0

) (¢j - ¢m"‘f:m) = m¢,2n/(; (@+y)*- e_”) dy + o(me?,).

J=m+1

PrOOF. Since the ¢’s are regularly varying, LY i 1®; 2/(me) —
(1+y) 20 dy as m — 0. Also,

& L @m/(m) = am (1= ak) T - 1/(e) = [Tem dy.

Jj=m+1

There exist [see Seneta (1976), pages 19-20] functions ¢ and ®, defined on (0, ),
with the properties ¢(t) ~ ¢(¢) as ¢ — oo and ¢(t) S P+ < o(t) for all
t > 0. By assumption,
1-(1+ee/m<a,<1-(1-¢)c/m
for 0 < £ < 1 and all m sufficiently large. It follows that
[oe]
limsup Y. a5, "/ (mé,,)

m-ow j=m+1

< lim ["(mg) (1~ (1~ e)e/m) "t
tim [*(6(mu)/$,)(1 = (1 = e)e/m)" " du.
m—o0 Y1

Making use of dominated convergence, the last limit is

o0
f u Pe~1-ae®=D gy,
1

/

Obtaining a similar lower bound and using the fact that ¢ may be taken
arbitrarily small, we have '

lm Y s "/ (mey) ‘f (1+y) Pe™ dy.

m=®0 j—m+1
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The lemma now follows upon combining the previous results. O

Of interest is whether the quantity ¢ in Lemma 1 can be chosen so that the
integrated squared bias of the ARMA estimator is less than that of fn( m).
Define B(f f) to be the integrated squared bias of the density estimator f.
Now, if a,, is such that m(1 — a,,) = p as m — o0, then under the conditions of
Lemma 1, it follows that

B( f:z(, m, am)’ f)/B(f;(, m)’ f)
- (2p - 1)f0°°((1 +y) P —e ") dy<1.

It is worth noting that the e -transform choice for «,, ie., a, = D1/ P
satisfies m(1 — a,,) » p when ¢,, = Km~" + o(m‘(”")) (K +# 0).

While (3.3) is encouraging, our real concern is with the MISE of ARMA
estimators. Hence, our first theorem gives approximations to the MISE of
fa(+; m, @,,) and of f,(-; m).

(3.3)

THEOREM 1. Let the Fourier coefficients of the density f satisfy either
J*; > K+ 0 or (- 1)11P¢->K=/=0asj—>oo,wherep>1/2 In the former
caseletm(l — o ) -c> 0asm—> oo, while in the latter let m(1 + a,,,) = ¢ > 0.
Then, defining 1, . = [°((1 + y)™" — e™)? dy,

J(f.(-; m, a,,,), f)= w‘ll(m/n)(l + (2c)_1) + 2K2m1‘2"1p’c]

+o(m/n + m'~%)

(3.4)

and
I(F(-sm), f) =7 [m/n + 2K ?m=20(2p — 1) 7] + o(m!/?/n + m'~2).

Furthermore, if m, and m, are the respective minimizers of J( fn( m), f) and
J(f (smya,), f) and if J,;s n and Jy ., are the respective minima, then as
n — oo,

(3.5) m, ~ (2K 2)/¢Pp1/@0),
3.6 A, ~ [2K2(20 - DI /(1 + (2¢)7Y)]*nt/eo,
n p,cC
(3.7) I ps ~ 7~ Y(2K2)®"2p(2p — 1) 't/ = A, n/@1
and
(3.8) Jpa ~ A1+ 20)7) T (20 - 1)L, ]|/ n1/e01,
Proor. Using the conditions p > 1/2 and J"|¢| |K|, we have
L™ var(cos jX;) = m/2 + o(m'/?). The integrated variance approximation for
f ( m) follows from th1s, and so does that for f,,( m,a ) after also using the

fact that a2(1 —a%) != m/(2c) + o(m). When ¢; ~ Kj~*, the integrated
squared bias approximation for f (+; m, a,,) is immediate us1ng Lemma 1. When
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TABLE 1
Asymptotic MISE of ARMA and Fourier series estimators for densities with algebraically decaying
Fourier coefficients®
Type of estimator
Fourier series
Optimum with 0-1
0 c ARMA(p) ARMA(c) Fourier series weights
0.55 0.30 10.123 9.711 10.137 1
0.75 0.30 2.265 1.951 2.418 3
1 0.50 . 1.358 1.111 1.571 2
2 1.39 0.853 0.699 1.111 4/3
3 2.30 0.797 0.679 1.047 6/5
4 3.33 0.789 0.691 1.026 8/7
10 9.30 0.834 0.783 1.004 20/19
20 20 0.883 0.883 1.001 40/39

°It is assumed that jP¢; - K # 0 or that (—1)’j°¢; - K + 0. For a given p and an estimator, a
table value in columns 3-6 is the limit of m(2K2)~1/20)p!-1/@e) MISE, Hence, ratios of values in
the same row are asymptotic relative efficiencies. ARMA(7) denotes an ARMA estimator for which
m(l — |a,|) = 7 as m — oo (see Theorem 1). The values of ¢ are approximate solutions of 3.9).
Details on how the ARMA efficiencies were calculated are available from the author.

(—1)’p; ~ Kj~* and m(1 + a,,) — c, note that

0 2 0 y m Jem)\2
Y (4=dui™) = L (18— (-1)"¢n(-a,)’ ™)
Jj=m+1 Jj=m+1
and use Lemma 1. The integrated squared bias approximation for f,,(-; m)
follows upon observing that X%, . ,¢?/(m¢Z) —» (2p — 1)1 O

One may show that the derivative of (3.8) with respect to ¢ is 0 when
(3.9) (4¢® = p) = 2¢(2¢*+ (2p — 1)c — p)e°E,(c),

where E (c) = [°e~“’y~*dy is the so-called exponential integral. Using (3.9) and
the tabled values of E(c) in Abramowitz and Stegun (1972), approximately
optimal values of ¢ have been determined for selected p. These are given in
Table 1.

The next ‘theorem shows that when ¢ = p, the expression (3.8) is less than (3.7)
for each p > 1/2. More importantly, the theorem and subsequent numerical
results give conditions under which lim,, , o, 4/, oo < 1.

THEOREM 2. Let the conditions of Theorem 1 hold with ¢ = p. If J, , and
J,, ps are the minima of J(f,(-; m,a,,), f) and J(f,(-; m), f), then for each
p>1/2

lim J, /0, = By = [0~ D1, [0 + (20)) 7 <1,
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Furthermore, for each p > 1/2,
. 2 ~1\1-1/2p)
lm J, 4/d, o= G, = [(20 = DI, ,]"(1+ (20)7) 720

x@o- )7 [[1+ ) e,
0
where C, < 1 for each p > 3.26. (For other values of p see Table 1.)

ProOF. The first of the two limits follows immediately from Theorem 1. To
establish that B, < 1, first note that (2p — 1)I, , < (2p) ' as (1 + y)~Pe "7 >
e~ 2 for y > 0. Hence, B, < (2p)"e9(1 + (2p) 1y1-1/@e) which is less than
or equal to 1 for p > 1/2 since (x+1) >0 +xH* forx > 1

A proof essentially the same as that of the first theorem in Section 3 of
Watson and Leadbetter (1963) shows that (under the conditions of our
Theorem 2) J, . ~ n'/@P "7~ 2K ?)1/@e)e(1 + y2¢)~! dy. Combining this
with (3.8) gives the limit C,. Now, [3°(1 + y%)~ 1dy—7r[2psm(7r/(2p))]‘
[see, e.g., Bronshtein and Semendyayev (1985), page 60], which is larger than
1 for each p > 1/2. To show that C, <1, it is thus sufficient to show that
L1 + y%)” 1dy < 1. For p > 3.26 this is done as in the proof of the first
mequahty by using the fact that (x + 1) > (1 + x " 1)*(1 — x~1)~* for x > 6.52.
(]

This section is concluded with several remarks about the results in Theorems
1 and 2.

REMARK 1. Theorem 2 shows that an improvement in MISE is possible if
one uses an ARMA estimator instead of a traditional series estimator. Table 1
indicates that the resulting improvement can be quite dramatic. For example, if
p = 2, the asymptotic MISE of the best ARMA estimator is only about 63% of
that for the optimum series estimator. An example of an (asymptotically)
optimum series estimator for a given p> 1/2 is Wahba’s estimator f,\ , With
taper w,(j) = (1 + Aj2*)~L Of course, in practice p is unknown and will have to
be estimated from the data and so fA o> like f (+; m, a), has two tumng con-
stants. In fairness to Wahba’s method we should point out that fk
guaranteed to be optimum among estimators of the form (3.2) when 1P1¢J|
K > 0. This condition is weaker than the ones in Theorems 1 and 2.

REMARK 2. Although Theorem 2 establishes that C, < 1 only for p > 3.26,
the numerical evidence in Table 1 suggests the inequality holds for each p > 1/2.
Furthermore, one can show that B,/C, has limit 1 as p - 1/2.

REMARK 3. Qualitative conditions on f under which the conditions of
_Theorems 1 and 2 hold can be obtained by expanding ¢; via integration by parts.
‘Suppose f has 2k derivatives (k > 1) on [0 7] with f@® square integrable.
I [fO0+)=f(r—)=0 for r=1,3,...,2k—3, f@®* Dxr—)=0 and
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f@* =D +) # 0, then J2*¢; = (—1)¥f @*-10 +), and Theorems 1 and 2 hold
with p = 2k. In particular, when % = 1 we have fO+)+#0and f(7—)=0.
Exponential-like densities are one example of such behavior. The poor perfor-
mance of the series estimator f:,(O; m) when f’(0) # 0 has been noted by
Buckland (1985) in the setting of line transect sampling. Table 1 and the example
in the next section show that the ARMA estimator can yield a large improve-
ment over f,(-; m) when f'(0+) # 0.

REMARK 4. Hart and Gray (1985) claimed that ARMA estimators are often
more parsimonious than traditional series estimators. Evidence of this is seen by
examining (3.5)—(3.8) and Theorem 2. When ¢ is chosen optimally, we have
lim,_, m,/m, <1 foreachp > 1 /2. For example, when p = 2, the best ARMA
estimator uses (in the limit) only about 39% as many Fourier coefficients as does
Io(-; m); and yet the MISE of f(-;m) is about twice that of the ARMA
estimator. :

REMARK 5. Finally, we note that our results can be generalized to allow for
regularly varying ¢,’s [see Hart (1986)]. In this case ¢; =J°L(j), where L is
any slowly varying function. An example of a slowly varying characteristic
function is L(¢) = (1 + log(1 + |¢])) L.

4. Choice of smoothing parameter by cross-validation. In the practice
of density estimation, one must usually select smoothing parameters via some
data-driven method. As a result, data-based density estimators are not as
efficient (at least in small samples) as theory would suggest. Hence, it is not
realistic to expect that the MISE improvement discussed in previous sections is
fully attainable in practice, except perhaps in very large samples. Some improve-
ment in small samples seems likely, though, if the ARMA estimator’s smoothing
parameter is reasonably chosen. This is borne out in the simulation study of this
section.

One means of choosing the smoothing parameter (m, a) of the ARMA estima-
tor is the cross-validatory method introduced by Rudemo (1982) and Bowman
(1984). This method chooses the pair (i1, &) that minimizes

(4.1) R(m,a) = jo”f,f(x; m,a)dx — (2/n) ¥ f, (X; m, a),
i=1

where f:,,i_‘ indicates the estimator calculated by deleting the data value X..
Rudemo (1982) showed that R(m, «) is an unbiased estimator of the risk

R(m,a) = I(f,(-; m,a), f) —fo"fZ(xwx.

A number of results now exist showing that density estimates chosen by
cross-validation are asymptotically efficient [see, for example, Hall (1983b, 1987),
Stone (1984) and Hall and Marron (1987)].

. To investigate the behavior of cross-validated ARMA estimates, a small
simulation study was conducted. The density considered was

(4.2) f(x) =22 (1 + e 4" ) 1-e*)"", O<x<m,
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which has Fourier coefficients

o=+, Ji=12,....

This density satisfies the conditions of Theorem 2 with p = 2.

For (4.2) and n = 50, the minimum MISE among ARMA estimators is
0.00633. This minimum occurs at (m, a) = (1,0.64). Among Fourier series estima-
tors fn(-; m), the optimum m and MISE are 5 and 0.04160. Since 0.00633/
0.0416 = 0.152, we see that the asymptotic relative efficiency of 0.52 from Table
1 understates the improved efficiency of the optimum ARMA estimator at
n = 50.

Twenty independent random samples of size n = 50 were generated from the
density (4.2). This was done by generating values from the exponential density
8(x) = 2e”**I, . (x), and using the fact that, if Y has density g, then

X =Y, ,(Y)+ 'Z1|Y_ 27— 1ym,@j+ym(Y)
j
has density (4.2). Since little of the mass of g is larger than #, the graphs of f
and g on (0, 7) are virtually indistinguishable.

For each of the 20 data sets, the minimizer of R [defined by (4.1)] for
0<a<1,1<m< 20 was approximated. Also, the minimizer of R(m,0) for
1 < m < 20 was determined. This latteg value of m is simply a cross-validatory
choice of the smoothing parameter of f,(:; m) [see Hart (1985) and Diggle and
Hall (1986) for more on this subject]. The integrated squared errors of the
cross-validated ARMA and Fourier series estimates were determined for each
data set. Denote these two ISEs I, and I, respectively.

The results of the simulation are summarized in Table 2. The fact that
average I, was a bit larger than average I is misleading. In 16 of the 20 cases,
the ratio I, /I, was between 0.151 and 0.690. Note the trimmed mean and the
confidence interval for the median of I, /I, in Table 2. These more accurately
reflect the overall performance of the two cross-validated density estimates.
From the 16 cases in which I, was less than I, a typical comparison of the two

TABLE 2
Summary of simulation study®

Type of estimate
ARMA Fourier series

Average ISE 0.0542 0.0522
Median ISE 0.0183 0.0354
Trimmed mean ISE 0.0287 0.0390

2The trimmed means exclude the three (out of 20) largest
values of ISE. A 95% confidence interval for the median of
1, /1 is (0.3607,0.6581), where I, and I are, respectively,
the ISEs of cross-validated ARMA and Fourier series
estimates.
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-0.1

0.0 0.8 16 2.4 32

F16c. 1. Wrapped exponential density, ARMA estimate and Fourier series estimate: The solid curve
is the density (4.2). The ARMA estimate has the higher value at 0 and no spurious bumps. The two
estimates were calculated from the same set of data, each being fitted by cross-validation.

estimates is given in Figure 1. The qualitative improvements obtained with the
ARMA estimate are a better estimate of f(0) and an absence of spurious bumps.
See Hart and Gray (1985) for further discussion of the qualitative properties of
ARMA approximators.

It is also important to point out what happened in the four cases where
1, > Iy. In these cases, cross-validation chose too large an a and/or too large an
m. When a is too near 1, the ARMA estimate tends to be too large near 0, thus
inflating the estimate’s integrated squared error. That cross-validation would
occasionally choose too rough an ARMA estimate is not unexpected. It is well
known from other settings that in small samples cross-validation tends to
drastically undersmooth around 5-20% of the time [see, e.g., Hart (1985)]. Scott
and Terrell (1987) give an explanation for this phenomenon.

. Clearly, further experimentation is needed to determine how efficiently cross-
validation smooths ARMA estimates. Recent work of Scott and Terrell (1987)
shows that a biased version of cross-validation provides more efficient kernel
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estimators in moderate and large samples. Such an idea is also worth pursuing in
the setting of ARMA estimators. For example, a modification of R(m, a) that
places a more severe penalty on large values of |a| would discourage the
occasional undersmoothing observed in the simulation study.

5. More general ARMA estimators. To define an ARMA(%, m) estimator
(k = 2), one may appeal to the notion of a higher order jackknife as in Schucany,
Gray and Owen (1971). For simplicity, we shall only discuss the ARMA(2, m)
estimator here. Define for each m > 2,

(5.1) f.(x; m,a) = 771[1 + 2Real((G,(x; a)))],

where G,,(%; a) = (F(x) — a,“F, (%) — a,e?F,_y(2))/(1 — ae™® — ae?).
The real numbers «, and a, are such that the zeros of h(z) = 1 — a2 — a,2°
are outside the unit circle in the complex plane. The Fourier coefficients ¢(m, a)
of the estimator (5.1) satisfy the second order difference equation a; — a;a;_,
aya;_, =0 for j > m + 2. To develop results analogous to those in the previous
section, it is thus natural to consider the model

(5.2) ¢, = (Kj=* + 0(j™*))cos(j8),
where p >1/2 and 0 <@ <. (The cases § =0 and @ = 7 are covered by

Theorem 1.)
Under (5.2), the MISE of f,,( m) is

J( fn('; m)y f =a [m/n + K2(2p - 1)—lm1—2P] + O(ml/Z/n + ml—Zp),

and so the efficiencies in Table 1 are still applicable. (The integrated squared bias
approximation is established by arguing as in Theorem 1 and using Abel’s
lemma.) Now, let a,, = (a;,,, @5,,), Where a,,, = 2r,c0s0, a,,, = —r2 and 0 <
r, < 1L.If m(1 —r,) = c> 0 and (5.2) holds, then

J(f(-3m,a,), f)

2(1 — ¢,cos 8
= w'l[mn“(l + —(——q)l——)—) + KZIp,cm“Z"]

(5.3) |l — e2¥*?

m
+o(— + ml‘2").
n

Notice that the bias term in (5.3) is essentially the same as that in (3.4), but the
variance terms are the same only when 8 = 7/2. If 6 = #/2, the asymptotic
efficiency of the ARMA(2, m) estimator can be obtained from Table 1. We see
that if 6 is near 0 or =, the variance of f, (-3 m, a,,) becomes large. This can be
counteracted by taking c¢ to be larger than it is in Table 1. Increasing ¢, however,
will make the integrated squared bias of the ARMA estimator larger, although
one can show that I, . < (2p — 1)~! for each ¢ > p. In any event, it appears that
if jf¢; or (— 1){]"¢ osclllate slowly about zero, then any increased efficiency
obtained with an ARMA estimator will be small in’comparison to the increases
seen in Table 1. If, on the other hand, j*¢; or (— l)fj"¢j oscillate slowly about a
nonzero constant, then the ARMA(1, m) estimator can be efficient. This follows
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from Remark 5 of Section 4 and the fact that slowly varying functions can be
infinitely oscillating [see Seneta (1976), page 49].

The ideas of this article could also be applied to other density estimators of
the type

fulx) = (1/”)[1 + 2 'Zn‘, wj&ycos jx].

Jj=1

The form (2.4) nnmedlately suggests jackknifed versions of fm So long as the
truncation bias of f is not dominated by the bias due to the w)’s, results
analogous to Theorem 2 could be established for a jackknifed f
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