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MONOTONE NONPARAMETRIC REGRESSION

BY HARI MUKERJEE
University of California, Davis

In monotone regression procedures one utilizes only the monotonicity of
the regression function. In nonparametric regression one utilizes only the
assumed smoothness. The analytic and asymptotic properties of the estima-
tor are superior in the latter case; howéver, monotonicity is not guaranteed.
We study a hybrid procedure that produces monotone estimators with
properties similar to those of nonparametric regression estimators.

1. Introduction. Let (X,,Y)),...,(X,,Y,) be ii.d. bivariate random vari-
ables with common joint density f. Let g be the  marginal density of X,
h(x) = [yf(x, y)dy, and let m(x) = E(Y,|X, = x] = h(x)/g(x) be the regres-
sion function of Y, on X,. Our problem is to estimate m.

In many applications the regression function is believed to be nondecreasing
(the nonincreasing case is similar) and it is natural to try to incorporate this
prior information into the estimation procedure Brunk (1958) proposed the
following least-squares estlmator

Suppose X ;) < X5 < -+ < X, is the order statistic corresponding to {X;}
with Y ;, being the “observation” at the “observation point” X ;. Then Brunk’s
estimator mj(X;)) is given by

t
(1.1) m(X) = max m>in Z Y,)/(t—s+1).

Let §,=0, S, = EI’=1Y(I)’ l1<k<n and let {(%,8S,): 0 < k < n} be the cumu-
lative sum diagram (CSD) of {Y;}. Let G be the greatest convex minorant
(GCM) of the CSD on [0, n], i.e., G is the supremum of all convex functions on
[0, n] whose graphs lie below the CSD. Then an equivalent definition of the
estimator is given by

(1.2) m#*(X;) = thelhsslopeof Gati, 1<i<n.

Simple algorithms for computations are discussed in detail in Barlow,
Bartholomew, Bremner and Brunk (1972). The fitted function m*, defined so far
only on {X,}, is called the isotonic regression function, and it corresponds to
some randomi local smoothing or averaging over the so-called level sets—subin-
tervals of the order statistics of {X;} over which m} has the same value. This
function could be extended to any nondecreasing function m* (we use the same
notation for m} and its restriction to { X;}) agreeing with (1.1) on {X}.

The function m * has been studied extensively. Barlow, Bartholomew, Bremner
and Brunk (1972) contains a comprehensive account of the subject. Brunk (1955)
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742 H. MUKERJEE

has shown that m*, restricted to {X;}, is the maximum likelihood estimator
when Y; — m(X,) has a N(0, 02) distribution. Brunk (1958) and Hanson, Pledger
and Wright (1973) establish strong uniform consistency of m* on closed, bounded
intervals. Brunk (1970) has shown that n!/3[m*(x) — m(x)] has an asymptotic
distribution with a density related to the solution of a heat equation when
m/(x) > 0. Groeneboom (1985) has found the solution in a closed form. Wright
(1982) has extended this result to the cases where |m(x + A) — m(x)| =
A|h|*(1 + o(1)) as A — O for positive A and a.

In spite of the availability of these statistical properties of isotonic regression,
it has not proven to be popular in applications. This is mainly because it has
several drawbacks from the user’s viewpoint:

(i) The extension of m*, although nondecreasing, is arbitrary, and is usually
not very smooth.
(i) Frequently, there are too many “flat spots in isotonic regression, corre-
sponding to the level sets where m} is constant.
(iii) The asymptotic distribution of m?* has a norming only by n
of positive slope.

1/3 at points

There are other nonparametric regression procedures, which are competitors
of isotonic regression procedures and provide smooth estimators with faster
convergence rates and asymptotic distributions that are normal. Possibly the
three most popular ones are those based on kernels, k-nearest neighbors (k-NN)
and smoothing splines. The articles by Stone (1977), Wegman and Wright (1983)
and Silverman (1985) contain substantial references. Although these estimators
are not necessarily nondecreasing [the spline method is an exception in that the
existence of monotone smoothing splines can be demonstrated [Wright and
Wegman (1980)], but no computing algorithms exist], their usage has gained
much popularity, even when m is believed to be nondecreasing, because of their
advantages over the isotonic regression mentioned previously. In this paper we
initiate the study of a “marriage” —first “isotonize” the raw data on {X;}, then
smooth the resulting isotonic regression function using an appropriate kernel.
Judicious choice of kernels yields smooth nondecreasing estimators with asymp-
totic properties similar to those in nonparametric regression.

The idea of improving on convergence rates of isotonic estimators by averag-
ing over larger neighborhoods than the typical (random) ones used by the
isotonic regression procedure is not new. Barlow and van Zwet (1971) and Wright
(1982) first grouped the data and then isotonized the resulting estimator to get
improved convergence rates. Friedman and Tibshirani (1984) first smoothed the
data by the £-NN method, restricted the estimator to the “observation points”
{X;} and then isotonized the resulting function. Since the smoothing in the
second stage requires averaging typically over smaller intervals than in the first,
it is not clear how to attack the problem of asymptotics in this case. It may be
noted that in the procedures described in this paragraph the group-averaging or
* the k-NN smoothing is performed first and isotonization is done last. Thus the
objections (i) and (ii) to the isotonic regression procedures mentioned previously
still remain valid against these procedures.
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2. The estimator. Let m* be defined on{X;} by (1.1) and let its extension
to the reals be given by

m*(x) = m,",‘(X(i)), for X;) < x < X1y, l1<i<n-1,
(21) my(x) = m:(X(l))v forx < X,
m¥(x) = m¥(X,,,), forx=X,.

Let the kernel % be a log-concave density and let the bandwidth sequence {b,}
be a positive sequence converging to 0. Let

ho(x) = (nby) ™" 3 k[(x — X,)/b,]m3(X,),

i=1

g.(x) = (nb) ™ ¥ k[(x - X,)/b,].

i=1

(2.2)

Since % is log-concave its support is an interval. If the support is the entire real
line, then g,(x)> 0 for all x; if not, g,(x) may be positive only on a finite
number of disjoint intervals, not including or including their endpoints depend-
ing on whether the kernel has a positive value or is equal to 0 at the correspond-
ing endpoints of its support. We define our estimator of m(x) by:

m(x) = h,(x)/8,(x) on {x: g,(x) > 0} and, if necessary, it
is extended (i) first by closure, (ii) then by linear interpolation

(2.3) in “gaps” inside (X), X)) and (iii) as a continuous function
with constant values in each of the semiinfinite outer inter-
vals.

When £ is differentiable we estimate m'(x) by the left-hand derivative of m, at
x, which exists everywhere.

REMARK 2.1. We have introduced the assumption of log-concavity of the
kernel in the definition of our estimator to guarantee isotonicity of m,. These
kernels include the uniform, the normal, the Laplacian and all concave densities
as well as the C,_-density with compact support given by

k(x) = Cexp[1/(x% — 1)] I(Ix| < 1).

From the definition of m,, to establish its monotonicity, it is sufficient to
do so on {x: g,(x) >0}, and this monotonicity, as pointed out by a referee,
is a consequence of the monotone likelihood ratio property of k,(y|0) =
b, %k[(y — 6)/b,], which is log-concave. Let 8 have the prior distribution given
by P(@=X)=1/n, 1<i<n. Then m,(y)=E[m}(0)|Y =y] (k, is the
conditional density of Y) is nondecreasing because m* is nondecreasing and the
_posterior distribution of  given Y=y has the monotone likelihood ratio
property as well [Lemma 2, page 74, in Lehmann (1959)]. The smoothness of m,,
on an interval is a direct consequence of the smoothness of % and positivity of g,
on the interval.
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3. Consistency of the estimator and its derivative. To prove consistency
of m,,, we will use some known properties of m*. Let G be the marginal df of X,
and let S be the support of G. For B C S let

(38.1) Ly(t) = sup P{|Y; — m(x)| = t|X, = x}, t=0.
x€B

Consider the assumption
(3.2) Lg(t) >0, ast— oo and foot"‘ldLB(t)I < o0, forsome s > 0.
o

For any interval I and ¢ > 0 let I, denote the open e-neighborhood of I, and let
N,(I) = #{X;: X;€ 1,1 <i < n}. The following result is due to Brunk (1958)
and Hanson, Pledger and Wright (1973).

THEOREM 3.1. Let I be any closed, bounded interval. Assume that for some
e>0,

(3.3) P{ liminf N,(J)/n > o} =1, forallintervalsJ C I,

condition (3.2) holds with B = I, and s = 1, and m is continuous on I,. Then
(3.4) sup |m*(x) — m(x)| >0 a.s.
xel

Note that I is bounded away from the endpoints of I.. This is necessary
because the bias in m} at the extreme order statistics may be very large.
However, the following result due to Makowski (1973) and Wright (1981)
controls the growth rate of |m* — m|.

THEOREM 3.2. If (3.2) holds with s = 2, then

(3.5) m E[mn(X(,)) m(X)]| = 0([nloglogn]'?) a.s.

In kernel procedures it is necessary to make certain assumptions about the
kernel, many of which are automatically satisfied by our log-concave density.
Since k(x) = exp[C(x)] for some function C concave on its support, k(x) is
initially nondecreasing and then nonincreasing as x goes from — o to o0. Since &
is also a density, it is bounded. Moreover, if & is positive on the entire right tail,
then C(x)| — o0 as x 10 and C’(x) (with some arbltrary but fixed determina-
tion on the interior of the support of C), which is nonincreasing, must be less
than or equal to —M for some M > 0 for all x sufficiently large, showing %
decays at least as fast as a negative exponential on the right tail. A similar result
holds if % is positive on the entire left tail.

We now state and prove our main results.

THEOREM 3.3. Let I be any closed, bounded interval with I, C S for some
e> 0. Assume that m is continuous on I, and that (3.2) holds wzth B=1I and
s = 1. If k has compact support and b, — 0, then

(3.6) sup|m,(x) — m(x)| >0 a.s.
xel
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If k has infinite support, then (3.6) holds under the additional assumptions that
s =21in (3.2), |m| <M < oo and nb, = 0 for some r > 0.

Proor. Devroye (1978) showed that if < is a compact subset of S, then
inf, . ,P{X, € [x — §,x + §]} > O for all § > 0. Fix 0 < 8 < e. By SLLN condi-
tion (3.3) holds with I, replaced by I, the closure of I, and thus Theorem 3.1
implies
(38.7) sup |[m*(x) — m(x)| >0 as.

xel,

By monotonicity of m, and m and continuity of m, it is sufficient to prove
pointwise consistency. Fix x € L. If g,,,(x) = 0 for some subsequence {n(k)},
then, from the definition of m,, it is easy to see that m,,(x) = m(x) on
{m}(x) > m(x)}. Thus we assume m,(x) = h;(x)/g,(x) for all n without
loss of generality.

Let 0 <n < B be arbitrary. If £ has compact support and b, — 0, then
k[(x — X;)/b,] =0 if |x — X;| >n and n is large enough. Thus (3.6) follows
from (3.7) and the continuity of m. Now suppose % has infinite support and the
assumptions of the theorem hold. Using the first result, it is sufficient to show
that

(nb,)™" X k[(x - X)/b,]|m2(X,) - m(x)| >0 as,

|x—X;|>7

(nb,)™" L k[(x-X,)/b,]Im(x)] >0 as.

|x—X;|>7

(3.8)

Using Theorem 3.2 and the bound of m, we have

(39) [m¥ (X)) — m(x)| <|m3(X;) — m(X,)| +|m(X)| +|m(x)]| -

< C(nloglogn)"? + 2M, for some C > 0.
Let Q(¢) = sup{k(u): |u| > t}, t > 0. Then t?Q(¢) — 0 as ¢ — oo for all real p
since k is log-concave. Thus, for any p > 0,

(nb,)™" XL k[(x-X)/b]n?

|x—X;|>n
< (nb,)”'Q(n/b,)nP*?
= 17" (nb;)"(n/5,)""'Q(n/b,) — 0, since nbj; - 0.

The results in (3.8) now follow from (3.9) and (3.10), which completes the proof of
the theorem. O

(3.10)

In the remainder of this section we assume m, g and & are differentiable. Let
n
g¥(x) = (nb,) ™" L [(X; - x)/8,]k'[(x — X,)/b,]-
i=1
Note that g} is the usual kernel density estimator using a kernel whose value at
t is —tk’(t) and which integrates to 1. In proving consistency of m/,, we will use
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the convergences of g,, g¥ and g, to g, g and g’, respectively. There is a vast
literature on the consistency of kernel density estimators using a variety of
techniques and noncomparable assumptions. We follow Silverman (1978), who
uses the least restrictive bandwidths.

For any real-valued function § on the reals, consider the assumptions

(a) 4 is uniformly continuous (with modulus of continuity w;)
and of bounded variation V(4);

(b) JoTlog(L/u)]/2 dy(u) < oo, where y() = [wy(u)]"/%

(c) Jlx loglx| [/* db(x) < oo;

(d) f|6(x)|dx < oo and 8(x) — 0 as |x| = oo; and

(e) [6(x)dx =1.

Silverman (1978) showed that g, — g a.s. uniformly for any kernel k& obeying
(3.11) if g is uniformly continuous, b, —» 0 and log(1/b,)/nb, = 0 and that
8, — g’ as. uniformly if 2’ obeys (3.11)(a)—(d), % obeys (3.11)(e), g’ is uniformly
continuous, b, — 0 and log(1/b,)/nb2 — 0. For our log-concave density kernel
k, (3.11)(d) is automatically satisfied if 8(¢) = k(t), —tk'(t) or k’(t) and (3.11)(c)
and (e) are satisfied if 8 = k. Thus we have

(3.11)

THEOREM 3.4. Assume (3.11)(a) and (b) hold with 8(t) = k(t), (3.11)(a)—(c)
hold with 8(t) = k'(t) and 8(t) = —tk'(t), g is uniformly continuous, b, - 0
and log(1/b,)/nb2 — 0. Then g,, g* and g, converge a.s. uniformly to g, g,
and g’', respectively.

We now prove consistency of m/. Even for log-concave kernels their deriva-
tives may have arbitrarily large “spikes” in the tails. Assumption (3.13) controls
their growth rate.

THEOREM 3.5. Let I be any closed, bounded interval with I, C S for some
e > 0. Assume that g is bounded away from 0 on I,, m’ is continuous on I,, the
conditions of Theorem 3.4 hold and that (3.2) holds with B=1I,ands =1. If k
has compact support, then

(3.12) sup |m;(x) — m'(x)| >0 a.s.
x€l

If k has infinite support, then (3.12) holds under the additional assumptions that
s = 2 in (3.2), m and m’ are bounded and

(8.13) nb?loglogn =0 and t"*’sup{|k’'(u)|: [u| >t} -0, as|f - oo,
for some r > 0. |

Proor. Let E be the set of sample sequences for which the conclusions of
Theorems 3.3 and 3.4 hold. Then P(E) = 1 from the conditions of this theorem
for both compact and noncompact kernels. Henceforth we assume all sample
sequences to be in E. From our assumption on g,

liminf inf g,(x) > 0.
n X€I,
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Thus, for all n large enough, m,(x) = h,(x)/8,(x) for all x € I,, and we assume
n is at least this large. Since m/(x) = h(x)/8,(x) — h(x)g8)(x)/[8%)]? it is
sufficient to show that A/, » mg’ + m’g a.s. uniformly on I.

If & has compact support, then 2'[(x — X;)/b,] = 0if |[x — X;| > 7 and n is
large enough for every n > 0. Write

m(X;) = [m3(X;) — m(X,)] + [m(X;) — m(x)] + m(x)
= [m3(X,) - m(X,)] + [m'(x)(X; - x) + o(1)] + m(x),

where o(1) - 0 as n - 0 uniformly in x € I, for some 0 < 8 < &. From (3.7),
Theorem 3.4 and the aforementioned, we have

(n52) ™" % #[(x - X,)/B,] [m2(X,) — m(X,)] — 0,

i=1 .

(n52) "' 3 K[(x - X)) /b] [m( X)) — m(2)] — m/(2)g(x)

and
(n68) ™" £ K1(x = X0/l m() = m(x)8'(2),

almost surely and uniformly in x € L.
If & has infinite support, then a.s. uniform convergence of

(ne})™ T Kl = X/ {im(X) = m(X)) + (X))

to 0 for every n > 0 follows from the same method used to prove (3.8) using
assumption (3.13). Thus the consistency result follows from the first half of the
theorem. O

4. Asymptotic normality. We will prove asymptotic normality of
(nb,)?[m,(x,) — m(x,)] at a point x, using the rectangular kernel ky(x) =
I(|x| < 1/2). Assume v(x) = Var[Y;|X; = x] < co. Schuster’s (1972) theorem on
asymptotic normality of kernel regression estimators implies

THEOREM 4.1. If g(x,) > 0, g’, m’, v/, 8” and m” exist and are bounded in
a neighborhood of x,, E|Y,|* < oo, nb} — co and nb; - 0, then

n n
(43) (16| £ 1050~ X1 < 0/9% £ 1050~ X1 < 02 - (s
i=1 i=1
converges in distribution to N(0, v(x,)/8(x,))-
THEOREM 4.2. Assume that the conditions of Theorem 4.1 hold and that

Im(xy) — m(x)| = Alx, — x|*(1 + o(1)) for some A >0 and 1 < a < 2, where
o(1) > 0 as |x, — x| = 0. If n(b,/loglog n)?>**! - oo, then

(4.2) (nbn)l/z[mn(xo) - m(xo)] -4 N(0, v(x,)/8(x,))-
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PrOOF. From the conditions on g’ and g”, Nadaraya’s (1965) result implies
that g, = (nb,) 'L I(]xy — X;| < b,/2) > g as. uniformly in a neighborhood
of x, if nb?/logn— o and b, > 0. Since g(x,) >0 we have m,(x,) =
h.(%0)/8,(x,) for almost all sample sequences if n is large enough. Thus 4.2)1is
the same as (4.1) with m*(X;) replacing Y, for large n with probability 1. Since
8n(%9) = &(x,) a.s., an equivalent form of (4.1) is

n
(nb,) ™" ¥ I(ixe - Xi| < b,/2)Y, - (nb,)"*m(x,)g(x,)
i=1 :
=4 N(0, v(x0)g(x,))
and it is sufficient to show that

n
(43) (nb,)™* ¥ I(xo ~ X/ < b,/2)[¥, — m3(X,)] -, 0.
i=1
For each ¢>0 and n>1 let ¢,=cn /D, For s <t let A(s,t) =
£ I(s < X; < )Y/Z_I(s < X, < 1),

m,(X;) DO g mn (s, t),

and extend it the same way as in (2.1) using m,,(X,) instead of m}(X;). Using
assumptions considerably weaker than ours, it can be shown, by a slight
modification (in the extension of ,,) of Wright’s (1981) lemma, that for all x in
a neighborhood of x,,

(4.4) clim limsup P[m*(x) # m,(x)] = 0.

Let L,=x,—-b,/2~-c,and U, = x4+ b,/2 + ¢c,. For X, € [L,, U, ] define

* (X)) = in A(s,t
md X:) L,,Igsa;{xixigltlgu, (s,2)

and extend it to [L,,U,] the same way as in (2.1) with m}(X,) replacing
m¥(X;). From (4.4) it is clear that

P[m3(x = b,/2) # m3(xo — b,/2) or mi(xo + b,/2) # m¥(x, + b,/2)]
can be made arbitrarily small by choosing 7 and c large enough. The same can
be said about

P £t~ X1 < b/2mi(X) - mi )] # o)
i=1
from definition (1.1) of isotonic regression. We also have Y I(lxe — X)| <
b./2 + ¢,)[Y; — m}(X;)] = 0[Barlow, Bartholomew, Bremner and Brunk (1972),
page 27]. Thus to prove (4.3) it is sufficient to show that

n

(4.5) U, = (nb,)"? L I(b,/2 < |xo — X < b,/2 + ¢,)Y, -,0
i=1

and

B n

V.= (nb,) " L I(b,/2 < |z, — X;| < b,/2 + ¢,)[Y; — m2(X,)]
(4.6) i=1
-, 0.
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E(U2) = (nb,) " '2nc,8(x)[mX(%,) + o(xo))1 + 0(1)) - 0 since (B,/c,)?**! =
n(b,/c)?**! > oo by assumption. This proves (4.5). Theorem 3.2 implies that V,
is almost surely bounded by (nb,)~Y% D[nc,g(x,)]loglog[nc,g(x,)]}/? for
some D >0 and this bound converges to 0 since (b,/c,loglogn)?**! =
n(b,/cloglog n)2**! > o by assumption. This proves (4.6) and completes the
proof of the theorem. O

REMARK 4.3. The key to the proof of Theorem 4.2 is the equality of the
unweighted sums X I(|x, — X;| < b,/2 + ¢,)m*(X;) and X2 I(|x, — X;| <
b,/2 + ¢,)Y;, which follows from the properties of isotonic regression. It is
reasonable to hope that if an arbitrary log-concave kernel k is approximated by
a step function k&, and the preceding result is applied to each step, the sum of
the differences

N

{k[(xo - Xi)/bn] - ks[(xo - Xi)/bn] } [X - m:c(Xi)] )

over each step will be small. Unfortunately, this does not follow from the
isotonicity of m*, and m. It appears that the desirable smallness can only be
proven to be true in probability and will require a more precise knowledge of the
joint distribution of {m}*(X;)} than is known at present.
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