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ON WEAK CONVERGENCE AND OPTIMALITY OF KERNEL
DENSITY ESTIMATES OF THE MODE
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A mode of a probability density f() is a value 0 that maximizes f. The
problem of estimating the location of the mode is considered here. Estimates
of the mode are considered via kernel density estimates. Previous results on
this problem have several serious drawbacks. Conditions on the underlying
density f are imposed globally (rather than locally in a neighborhood of 6).
Moreover, fixed bandwidth sequences are considered, resulting in an estimate
of the location of the mode that is not scale-equivariant. In addition, an
optimal choice of bandwidth depends on the underlying density, and so
cannot be realized by a fixed bandwidth sequence. Here, fixed and random
bandwidths are considered, while relatively weak assumptions are imposed on
the underlying density. Asymptotic minimax risk lower bounds are obtained
for estimators of the mode and kernel density estimates of the mode are
shown to possess a certain optimal local asymptotic minimax risk property.
Bootstrapping the sampling distribution of the estimates is also discussed.

1. Introduction. The problem of estimating the location of the mode of a
density is considered here. A mode of a probability density f() is a value § that
maximizes f.

Although the mode has received relatively little attention in the literature,
some estimates of the mode have been studied in [2]-[6], [8] and [13]. We will
consider estimates of the mode of a density via a kernel density estimate. That
is, given a kernel K (a probability density on the real line), a bandwidth % and a
sample X,,..., X, from a c.d.f. F on R having a density f, the kernel density
estimate is given by

(1.1) fo () = fn Wt Xy, T Thh i" (t—hXA)

l-l

The bandwidth % may be data-dependent so that, in general, % is a measurable
function of n and X,,..., X,. The choice of h in the context of density
estimation has been studied by many authors. A relatively new motivation for
considering the problem of estimating the mode is that the mode of a density is
prec1sely a location where the choice of bandwidth is most sensitive.

If K is bounded, continuous and lim, _, , ,K(#) = 0, then so is fn s SO there
will be a point 8 such that

(1.2) f:. (8) = Slip fn,h(t)'
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Because 6 may not be uniquely defined by this equation, consider the mode
functional M defined by

(1.3) M(f) = inf{mif(m) = supf(t)},
t
where f is a density on R. Then the sample mode én, , is uniquely defined by

(1.4) b, n=M(F, 1)

For ease of argument, we will use this definition throughout the paper, but all

the results continue to hold if 9n, » is any random variable satisfying (1.2).
Parzen [10] proved that if f is uniformly continuous with a unique mode 4,

and h, is a fixed (nonrandom) bandwidth sequence such that nh2 —» oo, k, - 0,

then 9n’ », = 0 as. Under further conditions, Parzen also obtained the limiting

distribution of the sample mode. Eddy [4] weakened Parzen’s conditions to allow
less stringent assumptions on the choice of the kernel K. Samanta [13] has given
a multivariate version of Parzen’s results. Their results on estimating the mode
have several drawbacks. First, smoothness assumptions on the underlying den-
sity are imposed globally. For instance, Eddy assumes f has an absolutely
continuous bounded fourth derivative. Here, a much weaker hypothesis is
assumed about f. In particular, we only make an assumption concerning the
local behavior of f in a neighborhood of the mode.

Next, all previous results for estimating the mode by using kernel density
estimates assume fixed (nonrandom) bandwidths. This has two problems. First,
neither the kernel density estimate nor the sample mode (as defined via the
kernel density estimate) is equivariant under the group of scale changes. That is,
if all the data are multiplied by a fixed nonzero constant c, then the kernel
density estimate of the mode based on the transformed observations is not the
kernel density estimate of the mode of the original observations multiplied by c.
This lack of equivariance is theoretically unpleasant. By choosing the bandwidth
to be scale-equivariant, and hence data-dependent, the resulting estimate of the
mode is also scale-equivariant. Second, the optimal choice of bandwidth depends
on the underlying density. Such a choice cannot be realized by using a nonran-
dom bandwidth sequence.

The results presented in this paper eliminate these problems to a certain
extent. In Section 2, precise weak convergence results are obtained for both fixed
and random bandwidth sequences. Bootstrap weak convergence results are also
discussed, though more detail about bootstrapping functionals of a density is
given in [12]. Section 3 considers the question of why one should use estimates of
the mode based on kernel density estimates. In a decision-theoretic framework, it
is shown that estimates of the mode based on a kernel density estimate with a
bandwidth &, proportional to n~'/7 achieve the optimal rate of convergence in a
local asymptotic minimax risk sense. However, the results are seen to be sensitive
to the choice of neighborhoods used in evaluating the asymptotic minimax risk,
as will be made clear. The proofs are given in Section 4. Section 5 is an appendix
containing results on empirical processes indexed by classes of functions and
other technical results that are invoked in Section 4. The results can be extended
to estimating the mode of a density in R* with minor modifications.
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This section closes with a basic consistency result, which generalizes the
consistency result of Parzen.

THEOREM 1.1. Assume the kernel K is continuous and of bounded variation.
Let X,, X,,... bei.i.d. F having a density f such that:

1. f is continuous in a neighborhood of the mode 8 = M(f).
2. For every 8 > 0, sup, ;_g> 5, f(2) < f(0).

Let S, = S,(X,,..., X,) be any statistic such that for some real numbers s, and
32,
(1.5) 0 < s; < liminfS, < limsupS, <s, < © a.s.
n— o n—oo
Let v, be a fixed sequence of numbers with nv, /log(n) = o« and v, = 0, and set
h,=wv,-S,. Then .
(i) 9,",,” -0 a.s,

(i) fonl(Bn)—1(8) as.

REMARKS. 1. The hypothesis that f be continuous in a neighborhood of 6
can be weakened. By a slight modification of the proof (deferred to Section 4), an
analogous argument goes through if we assume the weaker hypothesis that f is
continuous in a neighborhood (8,, ) or (4, 8,), so that f can be discontinuous
at 0.

2. Compare Theorems 1.1 with Parzen [10]. He assumes f is uniformly
continuous. Furthermore, h, is nonrandom with k, > n~'/2 Specializing to the
case S, is a fixed constant, we only assume £, > log(n)/n

3. If S, isa scale-equlvanant statistic, so is the sample mode 0 . Assump-
tion (1.5) on S, is usually satisfied, because often S, — s almost surefy A quick
and simple ch01ce might be the sample standard dev1at10n if a second moment is
assumed. Another possibility is the interquartile range or some similar difference
between order statistics. More discussion on the choice of bandwidth is presented
in Section 2.

Actually, the proof shows that assumption (1.5) can be weakened consider-
ably. That is, S, could tend to 0 or + oo, but the rate at which this could happen
would depend on the actual choice of »,. Note, however, that both optimal and
reasonable choices for 4, are covered by the theorem.

2. Weak convergence results. If F is a c.d.f. on R with density f and
mode 6 = M( ), consider the approximate pivot

(2.1) R (X,..., X, F) = (nhi)l/z(én,hn - 6),

where fn, r(t) = fn, w6 Xi5..., X,,) is given by (1.1) and 9,,’ n, = M( fAn, n,)- Let
J(F) be the law of R (X,,..., X,) when X,,..., X, areii.d. F. In this section,
the limiting behavior of J(F') is obtained. Note that the dependence of J (F')
on h, has been suppressed, but a choice of A, will always be specified when
reference to J,(F') has been made.
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Before stating the main results, we need some weak assumptions. The assump-
tion on the underlying density of the observations is stated as assumption (A),
whereas the assumption on the kernel is given in (B).

(A) Assume f has a unique mode 8 such that Sup;. c—g> 8y f(2) < f(0) for every
8 > 0. Also, f has a continuous third derivative f ® in some neighborhood
of 8 with f®(6) < 0.

(B) Assume the kernel K is symmetric and has a continuous second derivative
of bounded variation. Also assume that, for some p > 0, K%*? and |[K ®V|2+?
are integrable. For later use, define

I(K)=f[K(1)(z)]2dz and H(K)=f22K(z)dz.

For every § > 0,

1
h_?z '/;23 121>8/h,}
Also assume |K|? and 2% K (2)|? are integrable.

Assumption (A) is close to necessary, in view of the fact that the asymptotic
distribution of the mode is Gaussian with variance depending onf®(#) and
asymptotic bias that depends on f®(#). Other authors have made global
assumptions on f in computing the asymptotic distribution of the mode.

The main theorem of this section is now given for the weak convergence of the
mode based on a possibly data-dependent bandwidth. To prove limit results for
random bandwidths, the idea is to consider a stochastic process representing a
class of pivots indexed by a bandwidth parameter, and show this class converges
weakly in an appropriate sense. Let Cl[u,, u,] denote the metric space of
real-valued continuous functions on [u,, 4,] with the sup metric. A technical
difficulty arises since the map A — 0 . » need not be continuous.

|KY(z)|dz > 0, forj=0,1,2.

THEOREM 2.1. Let the distribution F have a density f and mode 8 satisfying
assumption (A) and the kernel K satisfies (B). Let v, be any fixed sequence of
numbers such that nv;/log(n) - o and (nv;)"/* - d for some d < . For any
h >0, letf,, #(t) be given by (1.1) and 6, , = M(fn n) Let 0 < u, <u, < ooand
consider the stochastic process

T(b)_(nb3 3)1/2(0n b, _0), uls bSuz.

(i) T,, can be written as V,/D,, where V, can be regarded as a random
variable on Clu,, u,). The law of V, converges weakly to the law of V, where V
is a Gaussian process on Clu,, u,];

EV(b) = b2 ¢ - f®(8),
where c is the constant |
d {®(8)

7o) )

c=
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and if r = (b,/b,)"/? then
0 r
Cou(V(), V(5,)) = 1(8) [ KO (2 ) o

Also,
sup |D,(b) —f@(8)| >0 a.s.

uy<b<u,

(ii) Let S, = S(X,,..., X,) be any statistic such that S, — s in probability,
where s is positive and finite. Define the bandwidth h, to be h, = v, - S,. Then
the law of (nh3)!/ 2(9,,’ n, — 0) converges in distribution to Z — ¢ - s’/?, where Z
is Gaussian with mean 0 and variance given by

f(9)
Var(Z)_ [f(z)(a)]z ( )

REMARK 2.1. If {®() = 0, then it is of interest to determine the rate for
which the asymptotic bias of §, is not negligible. Specifically, assume f @/ +1)(09)
is the first odd order derivative of f at @ which is nonzero, and f@/*V is
continuous at 6. Then, under further tail assumptions on K, if (nh%*3)/2 > d,
then (nh2)/2(8 — 0) converges weakly to the law of Z — c, where

d fO(0) o,
= K .
Gt 1) )7 KE
REMARK 2.2. Under sirpilar'\condltlons on the bandwidth, one can study the
asymptotic behavior of [/, ,(6, » ) — f(8)]. Upon division by hZ, its distri-

bution converges weakly to the degenerate distribution concentrated at
f ®(0)H(K )/2. Details are given in [12].

REMARK 2.3. By forcing the asymptotic bias to be negligible by assuming
d =0, one can weaken the assumption that f has a third derivative in a
neighborhood of 6.

Discussion.

2.1. Assumptions on the kernel. Since the statistician is free to choose the
kernel K, no serious attempt has been made to weaken the assumptions imposed
on K. Furthermore, it is generally believed that the choice of kernel in density
estimation is not as crucial (or as sensitive) as the choice of bandwidth. Further,
in the more interesting case (nh?)/2 — d > 0, the optimal choice of K depends
on the unknown f, so no fixed optimal choice of K exists.

2.2. Assumptions on the bandwidth. All the results presented in this section
assume the bandwidth A, satisfies nhS/log(n) » o0 as n — oo (where this
convergence is almost sure in the case 4, is random). This assumption is needed
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to be able to estimate f ®(0) consistently. In fact, Silverman [14] has shown that
if f has a uniformly continuous second derivative, then, for fixed bandwidth
sequences h,, it is necessary and sufficient that A, — 0 and nh3 /log(n) -  as
n — oo in order for

sup| /@, (¢) — f@(¢)| - 0,
t

in probability and almost surely. Proposition 2.1 of [12] shows that the assump-
tion nhd/log(n) > oo can, at best, be weakened to nh® — oo in order to
estimate f ®(0) consistently. The assumption (nh’)!/2 — d is exact in allowing
one to calculate the asymptotic bias of the location of the sample mode.

2.3. Choice of bandwidth. As discussed in Section 1, the choice of a band-
width that is scale-equivariant results in a scale-equivariant estimator of the
location of the mode. The next issue is to determine the rate at which the
bandwidth tends to 0.

One method for choosing the bandwidth to estimate the location of the mode
is to minimize the (asymptotic) mean-squared error. For a fixed bandwidth
sequence A, the asymptotic mean-squared error of 0, ,

1 f(0) hZ ()
i Tre 0t [2 f<2><0>”’(")]

The rate at which this tends to 0 is fastest when the asymptotic variance and the
square of the asymptotic bias are of the same order. If f ®(6) # 0, this happens
when (nh’)/2 - d for some positive number d. In Section 3, it will be seen that
this choice of bandwidth corresponds to the best achievable rate of convergence
in a local asymptotic minimax risk sense. Theorem 2.1 covers this assumption on
h,,. Furthermore, for fixed K, (2.2) is minimized (asymptotically) if A, is chosen
S0

(2.2)

3f(0)I(K
(2.3) nh! - f(O)I(K) 5.
[1@(8)H(K)]
Such a choice is possible if %, is data-dependent. Specifically, if
h,=S,-n" Y7,

where S7 is a consistent estimate of the right-hand side of (2.3), then the
minimum asymptotic mean-squared error is attained without knowledge of f (by
Theorem 2.1). To construct a consisteni; %tlmate of the right-hand side of (2.3),
apply Proposition 2.1. Note, however, n h (0 ) is not a consistent estimate of
f®(0) under the assumption (nh?)"/? - d (see Proposition 2.1 of [12]), so

different bandwidths must be used to estimate f®(#) and 6. In any case, an
optimal kernel estimator of 6 exists based on a random bandwidth, assuming
f@(8) # 0. If {©(@) = 0, then the preceding choice results in a faster rate of
convergence of 0 to 8 since nh?, » co with probability 1, depending on the first
odd order denvatlve of f at @, whlch is nonzero (see Remark 2.1). Whether or
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not this order can actually be estimated consistently is not pursued here. By
Theorem 3.1, the best achievable rate (in the sense described there) would not be
increased anyway.

PROPOSITION 2.1. Let f be a bounded density with a jth continuous derivative
in some neighborhood of x. Let X, X,,... be i.i.d. with density f. Suppose
v, > 0 and nv2/*!/log(n) - . Assume the kernel K has a continuous integra-
ble jth derivative of bounded variation and such that, for every § > 0,

lj |KY)(2)|dz - 0.
Vn {21 12> 8/v,}

Let S, = S,(X,,..., X,) satisfy
(2.4) 0 < s, < liminfS, < limsupS, <s, < o0 a.s.

n—oo n— oo

Let h,=v, S, and set

n -X;
K
n’ ;gl ( h )
Then there exists 8, > 0 such that
(2.5) sup I £9(¢) - f‘f)(t)l -0 a.s.
{t: 1t-%|<8}

Hence, if f is continuous in a neighborhood of ¢ and £* — ¢ a.s., then
f(]ﬁ(g*) N f(!)(g) a.s.

REMARK 2.4. Proposition 2.1 would typically be applied when S, is scale-
equivariant and S, — s a.s. so that (2.4) is easily satisfied. The assumption that
f be bounded can be removed if K is assumed to have compact support (by an
easy modification of Proposition 5.1). As in Theorem 1.1, assumption (2.4) can be
weakened, depending on the choice of »,. Also, the weak convergence properties
of ng (x) can be derived by the method used to prove Theorem 2.2. Finally, the
sup in (2.5) can be replaced by a sup over all ¢ if f 9)(+) is uniformly continuous.

2.4. Bootstrapping the distribution of the mode. In order to apply Theorem
2.1 to construct a confidence interval for the mode 6, one must explicitly
estimate f @(6) and f (), which is quite an intricate problem. In contrast, the
bootstrap approach is automatic, so it is of interest to investigate its properties.
We now indicate the nature of the behavior of the bootstrap with discussion
confined to the fixed bandwidth case; see [12] for details.

Let o, ,(F) be the distribution of the pivot (2.1) under F, where the
dependence of h, is made explicit. The bootstrap approach is to estimate

n #(F) by J, h(é ), where é is some estimate of F, and confidence intervals
cdn then be constructed by using the appropriate quantlles from this estimated
sampling distribution. The following can be shown: If G is a distribution that
has a density g, such that with probability 1 the first three derivatives of 2,
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converge uniformly to f in some neighborhood of M( f), then the bootstrap is
consistent in the sense

P(Jn,hn(,F)’ Jn,h,,(én)) -0 as.,

where p is any metric metrizing weak convergence. A proof of this can be based
~on Propos1t10n 4.1 by first showing it holds when G, is a nonrandom sequence.

Thus, if G, is the distribution with density f,, 5, With nb? /log(n) - o0, the
conditions are satisfied by Proposition 2.1 and the bootstrap is consistent.
However, this specifically rules out k, = b, when h, satisfies the optimal rate
nh? > d < oo. In fact, the bootstrap consxstency result fails in this case. The
essential reason is that £, (8) is not a consistent estimator of f®(6), and the
limiting distribution of the sample mode depends on the parameter f®(#).
Therefore, the bootstrap is a consistent method, but only if one resamples from a
density that is necessarily different from the original kernel density estimate
used to estimate the mode. In summary, straightforward application of a naive
bootstrap procedure may result in invalid inferences.

3. Minimax rates for estimating the mode. This section addresses the
question: Why use estimates of the mode based on kernel density estimates? To
begin, they are easy to understand conceptually and are easy to compute, their
statistical properties are understood and they possess certain optimality proper-
ties in the context of density estimation. This section specifically focuses on
optimality properties of kernel density estimates of the mode, and considers the
more general question of how well can the mode be estimated by any procedure.
In a decision-theoretic framework, the result given in the following discussion
will establish a certain optimal local asymptotic minimax property of estimates
of the mode via kernel density estimates.

We have seen that, by choosing a bandwidth sequence 4, proportional to

n~'/7, the kernel density estimate of the mode 8, converges to 6 at a rate
(nhi)‘/ 2 which is proportional to n%/7; that is, 8, is a n%-consistent estimator
of 8. Do their exist estimators that converge to 0 at a faster rate? We formulate
this question as an asymptotic minimax property, as in Hasminskii [7]. To start,
let L be the class of subconvex loss functions on the line [that is, [ € Lif [ > 0, I
is symmetric and for each c the set {x € R: I(x) < c} is closed and convex]. Fix
a density f, and, based on n observations, consider the problem of estimating the
mode for a family of densities in some neighborhood N, of f,. Neighborhood is
used informally here for purposes of motivation, but will be made more specific
in the discussion that follows. (It may be helpful to recall the classical paramet-
ric estimation problem where the neighborhoods shrink with n to the true
parameter value at rate n~1/2. See Section XIII.2 of Millar [9].) Let / € L and
let 8, be a normalizing sequence so that the loss of using an estimate d of ¢
based on n observations is /[§,(d — 6)]. Then the minimax risk for this problem,
which depends on §,, N, and [, is just

R,(8,, N,, 1) = inf sup E,{I[8,(T,, — M({))]},

n [EN,
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where the infimum is over all estimators 7, of the mode based on a sample
of size n (not just estimates based on kernel density estimates). If
liminf, , R, (8,, N,,7) > 0, then no sequence of estimates 7, converges to
M( f) faster than rate 8, uniformly over the neighborhood sequence N,; for if
Y,/68, = o and liminf, , R, (6,, N,,!) > 0, then liminf,_ R, (v,, N,, 1) =
sup,(x).

Hasminskii [7] considered this problem and for a certain choice of neighbor-
hoods N, found an upper bound for the fastest achievable minimax rate to be
n'/5, At first, this might seem inconsistent with the fact that we can achieve a
faster rate of n%/7 based on kernel density estimates. However, estimates of the
mode based on kernel density estimates misbehave for Hasminskii’s choice of N,
(due to the bias of these estimators, which depends on the third derivative of the
underlying density at the mode). On the other hand, we will see that for a choice
of neighborhoods that is, in some sense, slightly smaller than those used by
Hasminskii, the best achievable rate is increased to n?/7 and estimates of the
mode based on kernel density estimates achieve this rate for such a choice of
neighborhoods. The result actually considers various choices for N,, depending
on a parameter p, and the best achievable rate is seen to depend on p. The case
p = 2 approximately corresponds to Hasminskii’s choice of neighborhoods,
whereas the case p = 3 corresponds to neighborhoods for which kernel density
estimates of the mode enjoy the optimal achievable minimax rate.

For p > 2, let D, denote the collection of densities f satisfying: f has a
unique mode 6; for every & > 0, sup,,. ,_g> s f(t) < f(8); and f has a bounded
derivative of order p is some neighborhood of 8 with f ®(8) < 0. Fix p > 2 and
le¢ B,=n"%, where B=2p+ 1)L If f € D,, define a neighborhood of
N,(e, p, fo) of f, as the set of densities f in D, satisfying

(@) |M(f) = M(fo)l < B,/e
(i) sup|f P(x)| <1/,
(i) sup[Z2_J|f V(x) — f¢(x)|] < B, /e, where the supremum in (ii) and (iii)
is over the set A, = {x: |x — M(f,)| <€},
(iv) sup,:f(x) < sup,efo(x)-
The following theorem asserts that M( f ) can be estimated no faster than rate
8, = n~7" over this choice of neighborhoods, where r = (p — 1)/(2p + 1).

THEOREM 3.1. Fix p > 2 and let f, € D,. For any loss function l in L and
for every sufficiently small ¢ > 0,

(3.1) liminf inf  sup E {I[8,(T, - M(f))]} >0,

n—o T;l ,ENn(Evp: fO)
where 8, =n", r=(p — 1)/(2p + 1), and the infimum is over all estimators T,
of the mode, i.e., all measurable functions of a sample X,,..., X, from a
_density f. In particular, for all A > 0 and all sufficiently small ¢ > 0,

(3.2) liminf inf sup P{[8,(T,—- M(f))] >A) >o0.
n— o T, [fE€Ny(e,p,fo)
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REMARK 3.1. Condition (iv) in the definition of N, (e, p, f,) is a sort of
identifiability constraint to allow for perturbations of f, outside an & neighbor-
hood of M( f,). Note, however, that this condition could simply be removed from
the definition of N, (¢, p, f,) and the theorem would still be true. Alternatively,
one could look at only those f that are equal to f, outside some ¢ neighborhood
of M(f,). In fact, many variations on the choice of neighborhoods are possible.
The ones given here were designed to readily yield an optimal property for
kernel density estimates of the mode (see Remark 3.3).

REMARK 3.2. The neighborhoods N,(s,2, f,) approximately correspond to
Hasminskii’s choice of neighborhoods in the sense that both neighborhoods
contain densities f such that f and its first derivative are uniformly close to f,
and its first derivative in some neighborhood of M( f,). Hasminskii, however,
does not allow for perturbations of f, outside a neighborhood of M( f,). Further-
more, the neighborhoods N,(¢,2, f,) shrink with n, whereas Hasminskii’s do not,
yielding an improved result since the same bound for the minimax rate, namely
8, = n?/%, is still obtained.

REMARK 3.3. It follows from Proposition 4.1 (also see the proof of Theorem
2.1) that a kernel density estimate 0 based on a bandwidth sequence 4,
proportional to n~/7 achieves the optlmal minimax rate of n®7 over the
neighborhood sequence N,(¢,3, f,). This means that, if f, € D; and §, = n?/”,
then

(3.3) 0 < limsup  sup {[8 -M(f))] > A} <1
n—oo feN,/(e3,fh)

In fact, this result can be modified to yield an asymptotic minimax result over a
fixed (nonshrinking) neighborhood of densities. Specifically, let N = N(e, §) be a
family of densities f in D, satisfying f @(M(f)) > ¢, fO(M(f)) <& ! and

sggl f(x) = f(M(f))]> 9,

where A, is the set {x: |x — M(f)| <e¢}. Then (3.3) holds with N, replaced
by N.

4. Proofs.

Proor oF THEOREM 1.1. (i) The first step is to show the following. Let a,
and b, be fixed sequences of numbers such that (nb?)/[log(n)a,] - o« and
a, — 0. Then

(4.1) sup |6, ,— 0 >0 as.
(h: by<h<a,)

, Define

fn,h(t)—/ ( )f(y)dy
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Choose & such that 0 < § < §,, where §, is obtained from Proposition 5.1 so that
(4.2) lim sup sup | f, u(2) — f(t)| = 0.

n—® (h:0<h<a,} (¢ |t—0]<8)
By Corollary 5.1,
(43) sup Supl fn, h(t) - fn,h(t)l -0 as.

(h: by<h=<a,} ¢t

Combining (4.2) and (4.3) yields
(4.4) sup sup | fun(t) - f(t)l -0 as.

{h: b,<h<a,} {t: |t—0({<8)}
The assumptions imply for any é > 0,

(4.5) limsup  sup sup fn,h(‘t) <f(8).
n—oo {h:0<h<a,} {t:|t—0|>8}

Combining (4.3) and (4.5) yields
(4.6) limsup  sup sup f;yh(t) <f(8) as.

n—oo {h:b,<h<a,} {t:|t—0|=6}
It follows from (4.4) and (4.6) that P(sup. ,_ shsan}lén, a—0l <8 ev})=1
This proves (4.1). To prove (i), let @, = », - s, and b, = », - 5,. Then b, < h, < a,
eventually with probability 1. Hence, by (4.1),

limsup|9n,h — 0| < limsup sup |9n A= 0l >0 as.
n— o " n—o {h:b,<h<a,}

(ii) Combine (4.4) and (4.6) to get

sup  supf, »(2) > () as.
(h: by<h<a,} ¢

The result follows. O

Before proving Theorem 2.1, we first give a triangular version of the asymp-
totic distribution of the sample mode for fixed bandwidth sequences. The result
is given with F, varying with n for use in the context of bootstrapping.

PrOPOSITION 4.1. Fix F with density f and mode 0 satisfying (A) and
assume K satisfies (B). Also, assume nhS /log(n) - oo and h,, — 0. Let F, be a
sequence of distributions on R. Suppose F, has a density f, with mode 6, =
M(f,). Assume the following:

(@) f, and [,® converge to f and f ®, respectively, uniformly in some neighbor-
hood of 8.
(b) For every § > 0, limsup, _, ,,Sup;;. |.—g|> 5) [-(t) < f(8).

LetX, ,,..., X, , bei.id. F,. Set

Mo - - S k(5]

ni=1 n
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n \/2 0 - X
=|— o r__"nt
I"‘n (hn) EF,‘(K ( hn ))

Then (nh2)/%(8, — 6,) can be represented as the law of W, — p,/Y,, where the
law of W, converges weakly to the law of Z (as defined in the statement of
Theorem 2.1) and the law of Y, converges in F;* probability to f ®(8). Hence, if
we also assume

(¢) pp—p<oo,

then J(F,) converges weakly to the law of Z — p/f ®(0).

and 8, = M(f,). Let

PRrOOF. First note that assumptions (a) and (b) imply 6, - 6. By an argu-
ment analogous to that of Theorem 1.1, 6, — 6, > 0 in F probability. By
Taylor’s theorem, for some random variable 6* between 6, and 4,

(nh3)"* (8,

io(exy if ,®(6*) # 0.

(4'7) (nhi)lﬂ(én - an) =~

The result will follow by showing:

(1) The law of 8, = —(nh3)2{(8,)/f P(8) converges weakly to the law of

Z — p/f ().
2 1,2(6x) > f®(0) in F* probability for any sequence 6 — 0.

Proof of (1).
A 12
_fn(l)(an) == Z Vn,j)
n ;o
where the V,, ; are independent and identically distributed as
-1 0n - Xn,l
Vn,l = T{K(l)(——h—n——).
By Proposition 5.1, we have, for m = 1,2,2 + p,
BB g |V, ™ > £(0) [~ |KO()|" dby.
= 00

By assumption (c),
‘ (nhi)l/zEF,,Vn,l - —B.
Hence

(nh3)Varg( £(6,)) = 1(8) [~ |KD(5)[* dy

and
)|2+p

EF,.| Vn, 1 EF,,(V;z,l
w1, )

By Liapounov’s CLT, (1) is proved.

= O(nh,) " = 0(1).
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Proof of (2). By Corollary 5.1 and Proposition 5.1, there exists a §, > 0 so
that

sup |£@(t) - ®(t)| -0, in F" probability.
{t: |t—0)<8))

Now use the fact that 6* — 6 in F;* probability. O

ProorF oF THEOREM 2.1. First, we prove part (ii) of the theorem for the fixed
bandwidth case where S, is identically 1. Apply Proposition 4.1 taking F, = F.
Conditions (a) and (b) are trivial. To verify (c),

B R

n

By assumption (B), for and § > 0, this integral over the set {y: |y — 6| > 8}
tends to 0. On the set {y: |y — 0] < 8}, we expand f about 6 and, since
f®(@) =0and KO is odd, the preceding integral becomes

n \2 06—y
(8 (=) k| 52 o
) hn (> ly—0|<8} hn
where w(y) = f(¥) — f(8) — 1f ®(0)(y — 6)® and & in (4.8) is chosen so that
f(») has a continuous third derivative in {y: |y — 8| <8}. Now w(y)=
1 O(o(y))(y — 0)3, where v(y) is between y and 6. Let z = (8 — y)/h,,. Then
(4.8) becomes

(nhl)mf
6 (2t 12| <8/h,}

Note that, for any 2z, f ®(v(8 — h,2)) - f ®(9). Apply dominated convergence
and then integration by parts to conclude that expression (4.9) converges to p,
where

(4.9) K®(2)2%f ®(v(0 — h,2)) d=.

p= gf@(ﬁ)/‘w 22K (2) d=.

We now turn to the general case. As in the proof of Proposition 4.1 [see (4.7)],
Va(b)
D,(b)’

where V,(b) = —(nb®2)/ 2fn’ s»(0) and D(b) = f,,@},,, (8,%,,) for some random
variable 6,*,, between § and 0An’ bv,» Vn Can be regarded as a random variable on
Clu,, u,].

Step 1. Show D, converges (in the sup norm) to the constant function f®(6)
almost surely. To see why, apply Corollary 5.3 (making the identifications
b,=u, v, and a, = u, - »,), and Proposition 5.1 to get there exists §, > 0 such
that

(4.10) sup sup | f,,(?},,,n(t) - f(z)(t)l -0 as.
{t: |t—0|<8,} {b: uy <b<uy)

Tn(b) =




642 J. P. ROMANO

By the proof of Theorem 1.1 [namely (4.1)],
(4.11) sup |9n’ b, — 0 >0 as.

{b: uy<b<u,}

and thus the same is true with 4, , v, replaced by 6%, . Thus
sup |f(2) ( n, bv,,) - f(z)(on*: bv,,)

{b: uy<b<u,)

Apply (4.11) again the use the fact that f ®(¢) is continuous at ¢ = § to get the
desired conclusion.
Step 2. Show the law of V, converges weakly to the law of V. V, (b) can be

represented as
b3 3 1/2 p
[%=] " v,

where, for each b, V,, ,(b) are independent and identically distributed as
-1 K“)( 0 - X, )

2,2
by} by,

By the proof of Proposition 4.1 (i.e., the fixed bandwidth case),
d
E[V,(8)] > 572 519(8) [~ 2K(2) dz = E[V(b)].

-0 a.s.

Furthermore,
Cov|V,(b,), V(b Y L %) R Y ik
OV[ (), n( 1)] ( )1/2 f_w b, b, flac)
1 00 a_x
_ ®
(bibj)l/zvn f‘°°K ( b, )f(x)dx

)f(x)dx

Make a change of variables by letting z = v, '(b;b;)"'/%(8 ~ x) and then apply
dominated convergence to conclude the last expression converges to
Cov[V(bi), V(b))].

As in the proof of Proposition 4.1, it follows (by a multivariate version of
Liapounov’s CLT) that the law of (V,(b,),..., V,(b.)) converges weakly to the
law of (V(b,), ..., V(b,)).

To complete step 2, it must be shown that the sequence of laws of V, is tight.
By Theorem 12.3 of Billingsley‘[l], it suffices to show

E[V,(b,) — Vi(b,)]* < A%(b, — b,)?,

for some finite A which is independent of n, b, and b,. This can be verified by a
straightforward, but tedious, calculation; see [12].

Xf K(D( ob v

— 00 )iVn



KERNEL DENSITY ESTIMATES OF THE MODE 643

Finally, D(S,) — f ®(0) with probability 1. From part (i) of the theorem, the
law of V(S,) converges weakly to the law of V(s). The result now follows by
Slutsky. O

ProOF OF PROPOSITION 2.1. Let a,=v, s, and b, =, s,. Note that
b, < h, < a, eventually with probability 1. By Corollary 5.1 and Proposition
5.1, there exists §, such that

sup sup | £9(¢) - f‘j)(t)l -0 as. O
{b,<h<a,} {t: |t—x|<8}

ProoF oF THEOREM 3.1. It will suffice to establish the result for bounded I;
if I is unbounded, replace it by min(/, ¢) (another subconvex loss function) and
then let ¢ = + oo. Without loss of generality, we may assume M( f,) = 0 and set
a = —f®(0). As in Hasminskii [7], consider an auxiliary function g satisfying g
has a bounded derivative of order p, g is symmetric with compact support and
g(x)==x if |x| <a~' Let f(x;0), 6 €[0,1], be the parametric family of
functions defined by

fa(x; 8) = fo(x) + 6n~PPg(x - n?),
where 8 = (2p + 1)"!. An easy, though slightly tedious, analysis (similar to
Lemma 3.1 of Hasminskii [7]) shows that for any fixed 6 < [0, 1], all sufficiently

large n and all sufficiently small &, f,(x; @) is a density belonging to N,(e, p, fo),
and '

(412) M(f,(-,0)) = 6a™8;* + 0(3,), asn — o,

where §,=n" and r = (p — 1)/(2p + 1). Define P to be the n-fold product
measure of f,(:,0) if f,(:,0) is a density and, say, the n-fold product of f,
otherwise. Then, the left-hand side of (3.1) is bounded below by

(4.13) lim inf inf sup [1[8,(T, - a='0)] dPy.

nooo In 6
Now, it is easy to see that the experiments { P*, § € [0,1]} converge in the sense
of Le Cam to a Gaussian shift experiment {P,, 6 € [0, 1]}, either by application
of Theorem 3.1’, page 178, of Ibragimov and Hasminskii [8], or by Proposition
I1.2.3 of Millar [9]. In fact, the information ¥?(n, §) in experiment {Py}, 6 €
[0,1]} (as defined in 1.7 of Ibragimov and Hasminskii [8]), is given by

% 8% ()
¥2(n,0) = — - dy.
(n, ) f—oo fo(yn™F) + On=Prg(y)

Thus
1 0
¥3(n,0) » — [ &* =
(n,0) > 755 [ g ay=1,

and so P, is the Gaussian measure with mean § and variance I~!. Therefore, by
the Hajek-Le Cam asymptotic minimax theorem and (4.12), (4.13) is bounded
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below by

inf sup fl(T —a’'9)dP, = 1nf sup fla(T 0) dpP,,
T gefo,1] T gefo0,1]
where [ (x) = l(ax) is also a subconvex loss function. Finally, the minimax risk
for a Gaussian shift experiment is strictly positive, and the result follows. O

5. Appendix. The proofs of the results involve the use of empirical processes
indexed by classes of functions. The reader may refer to Pollard [11] for
background.

THEOREM 5.1 (Pollard [11]). Let (S,S) be a measure space. Let F, be a
countable class of real-valued measurable functzons f on S, with |f] < 1 and
whose covering numbers satisfy

(5.1) supN,(e,Q,F,) < Ae™ %, for0<e<1,
Q

with constants A and W independent of n. Let X,, ,,..., X, , be i.i.d. S-valued
random variables with distribution P,; let P, denote the empirical measure of
the X, ;, 1 < i < n. Choose 8, so that

sup P,f?% < §82.

feF,
Let a,, be a bounded sequence of positive numbers for which n82aZ/log(n) - .
Then

: |P.f = Pufl : .
i sup ——=—— — 0, in P" probability,
(i) sup —r 0, in P" probability
T n“n
Bf-P
(ii) sup I——"% -0, as.iffP,=P.
fE€F, n“n

Proor. See Theorem 37, and its proof in Pollard [11], page 34. He has
P, = P, but the proof carries over yielding convergence in P probability
without this assumption. We will need to use the more general version. Pollard
also assumes a,, is nonincreasing, but his proof goes through if we assume a,, is
bounded. O

REMARK 5.1. The only classes of functions considered in this paper are
classes (or subclasses) of functions of the form

-—0
F={g(———),—oo<0<oo,o>0},
()

where g is a Borel-measurable real-valued function on R of bounded variation.
In this case, condition (5.1) in Theorem 5.1 is satisfied for F' and hence for any
sequence F, of subclasses of functions of F, by an argument similar to that of
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Pollard [11], page 29, as given in Theorem 5.2 of Romano [12]. Furthermore, the
function g will also be assumed continuous. Thus we can replace the supremum
over F by a supremum over a countable subcollection of functions in F (by a
dominated convergence argument), but more to the point, Theorem 5.1 will

apply.

COROLLARY 5.1. Let f be a density with mode 0 satisfying (Al); let the
kernel K have a continuous integrable jth derivative of bounded variation; Let
X, 1.0 X, , beii.d. withc.d.f. F,; let F, be the empirical c.d.f. of the X, i
1<i<n. Set

hate) = 5 J5(57) a6
and
fot) = 5 R[5 ().

Assume nb2/*?/[log(n)a,] = o and b, > 0. Assume f, ,(t) is bounded by a
constant C as t and h vary, for large enough n. Then

— 19()| - 0, inF} probability,

® sup
{h: b,<h<a,}

FOME) = £90()| > 0 a.s.if F,=F.

(ii) sup
{h: by<h<a,}

In particular, if h,, is a fixed bandwidth sequence such that nh**! /log(n) - oo
and F, = F, then

sgpl £t - )]~ 0 a.s.

Proor. Apply Theorem 5.1 with

1 [ t—
F"={MK(J)( ) tER,bnsh<a}

and M the maximum of sup|K )| and the integral of |K |. Then
1 .
sup P,f? < sup  sup “M‘ﬂK(’)(Z)Vn, #(t — hz)hdz < Ca,,.

f€F, {h: b,<h<a,} t
Put 82 = Ca, and a, = bJ*'/Ca,, and the result follows. O

PROPOSITION 5.1. Fix an integer j > 0 and let a,, and b, be positive numbers
such that a, - 0 as n - . Assume K (not necessarily a density) has an
integrable jth derivative and such that, for every 8§ > 0,

1

— KW dz - 0.
b,{'/;z:|2|>8/a,,)| (z)| -
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Suppose g, and g are densities satisfying:

1. g is j-times continuously differentiable in some neighborhood of x.

2. g, and g\ converge to g and g, respectively, uniformly in some neighbor-
hood of x.

3. supl|g,| < M, sup|g| < M, for some M < oo.

Define
1 t—y
8.1(0) = 5 [K[ 52 |9 >
and let
o, (t) = 80%(t) — 89(t) [ K(y) dy.
Then there exists a 8, > 0 such that

lim sup sup |a, 4(¢)| =0.
R=0 (h: b, <h<a,} {t:|t—x|<8}

Hence, if x, = x, then g{,(x,) > gV(x)[2 K(y) dy.

ProoF. Choose 8, so g is j-times continuously differentiable in the neigh-
borhood N = [x — 2§, x + 2§,] and

sup |g¥(x) — g®(x)| - 0, fork=0, .
xeN

Then, given & > 0, we can find § > 0 so that for n large enough: If |¢ — y| < §,
te€ N, y € N, then |gV%(t) — gV(y)| <e If t € N and b is fixed, then

d 1 t—y

i) = 257 JK| 5 ) - 0] .

Let I, be this integral evaluated over the set {y: |y — ¢| < 8} and let I, be the
integral over the complement of this set. Then |I;| < ¢ and

1 ft—y . 1 t—y
I, = —— KU)( ) (y)dy — U)(¢ —K(——)d
2= . e[ 8POFK| |
<Zf KOG e+ [ K(2) e
bl /(21 12128/a,) (2 12128/a,)

Using these bounds, the supremum of |a, ,(¢)| over the appropriate values of ¢
tends to 0, as seen by first letting n — o0 and then ¢ —» 0.0

COROLLARY 5.2. Let X,, X,,... be i.i.d. with c.d.f. F. Assume F has a
density f with mode 0 satisfying (Al). Assume K (not necessarily a probability
density) is integrable, continuous and of bounded variation. Suppose
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nh,/log(n) = o« and h, — 0. Then there exists 8, > 0 such that

e o VIOV g TOR

ni=1

(i)  sup >0 a.s.

{#: 1£-01<8p}

Let 9;; = M( fn) be the sample mode obtained from the first n observations. Then

(ii) n;z iK(%__)&) —>‘f(0)/:oK(y) dy a.s.

nij=1

Proor. (i) Combine Proposition 5.1 with j = 0 and Corollary 5.1.
(ii) Theorem 1.1 yields 6, — 6 a.s. Apply (i). O
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