The Annals of Statistics
1988, Vol. 16, No. 1, 433-449

ON THE ASYMPTOTIC DISTRIBUTION OF QUADRATIC
FORMS IN UNIFORM ORDER STATISTICS!

BY PETER GUTTORP AND RICHARD A. LOCKHART

University of Washington and Simon Fraser University

The asymptotic distribution of quadratic forms in uniform order statis-
tics is studied under contiguous alternatives. Using minimal conditions on the
sequence of forms, the limiting distribution is shown to be the convolution of
a sum of weighted noncentral chi-squares and a normal variate. The results
give approximate distribution theory even when no limit exists. As an
example, high-order spacings statistics are shown to have trivial asymptotic
power unless the order of the spacings grows linearly with the sample size.
The results are derived from a modification of an invariance principle for
quadratic forms due to Rotar, which we prove by martingale central limit
methods.

1. Introduction and statement of results. Suppose U; < - < U, are
the order statistics for a sample of size n from a distribution on [0,1]. Many
tests of the hypothesis that the distribution is uniform over [0,1] are based on
statistics of the form (at least asymptotically)

T =Y MU~ i/(n+1))(U~j/(n+1)).

Examples include the Cramér-von Mises statistic, Watson’s U 2-statistic,
Greenwood’s statistic and Cressie’s overlapping spacings statistics. The large-
sample distribution of such statistics has been studied by many authors. For
empirical process approaches, see Durbin (1973). For an approach based on
U-statistics, see Gregory (1977). Generally, such work imposes structure on the
matrix M of the type nM,; = M(i/n, j/n), where M(s, t) is a continuous kernel
on [0,1]% A notable exception is de Wet and Venter (1973), Section 4.

~ In this work we obtain the asymptotic distribution of T on sequences of
contiguous alternatives for a nearly arbitrary sequence of matrices M subject to
the condition that no spacing U, — U,_; contributes significantly to T in the
limit. Our alternatives will have densities of the form 1 + §4(x)/n'/? where
/m* = 1; these are essentially the alternatives considered by Gregory (1977) for a
different class of statistics.

Our results may be summarised as follows. The statistic T is the sum of two
quadratic forms in the spacings. The first of these forms (which we refer to as the
diagonal part of T') is a linear combination of the squares of the centered
spacings, U, — U,_; — 1/(n + 1), and will have a limiting normal distribution
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434 P. GUTTORP AND R. A. LOCKHART

under our conditions. The second quadratic form (the off-diagonal part of T') is
the part of T due to cross-products of such centered spacings. This form will
have a limiting distribution, which is the convolution of a sum of weighted
chi-squares (central under the null hypothesis) and a normal variate. The two
quadratic forms are not independent but the normal component of the off-diago-
nal part is asymptotically independent of the diagonal part. The mean of the
limiting normal distribution of the diagonal part and the noncentrality parame-
ters of the off-diagonal part respond to the alternative, but the normal compo-
nent of the off-diagonal part does not. As a result, only the diagonal part and the
sum of weighted chi-squares piece of the off-diagonal form contribute to the
asymptotic power of the statistic.

We will also see that the diagonal part of T tends to have poor power. It
cannot have an asymptotic correlation with the log:likelihood ratio of more than
2712 In addition, many statistics put equal weight on all the squared spacings;
in this case the diagonal part has the same limiting distribution under the null
and alternative hypotheses.

In Section 2 we state our main results and discuss their ramifications. A
distributional approximation for T is given, which avoids the need to embed M
in a sequence of matrices.

In Section 3 we present an apphcatlon to overlapping m-spacmgs statistics
such as those of Cressie (1976, 1979). We obtain an expression for the limiting
behaviour on our alternatives of such statistics, which holds uniformly in m. As
a consequence we show that m must grow proportionally to n to obtain
nontrivial asymptotic power against the alternatives considered here.

Our results here overlap those of Hall (1986). Hall has obtained the limiting
distribution of the statistics we consider for certain sequences of smooth alterna-
tives. These alternatives approach the null at such a rate that nontrivial limiting
power is obtained. When m = o(n) these sequences are more distant than the
contiguous alternatives considered here. Thus Hall’s results are more general
than ours although our results place fewer restrictions on the alternative densi-
ties. When m grows proportionally to n, Hall shows convergence on alternatives
of our sort (but with smoothness assumptions) to the integral of the square of a
Gaussian process. Our techniques provide a more explicit form of the limiting
distribution on a wider family of alternative distributions.

We include in Section 3 a brief discussion of other statistics of the form T,
concentrating on the Cramér-von Mises statistic to illustrate possible applica-
tions.

The results in Section 2 are derived from a modification of an invariance
principle for quadratic forms due to Rotar (1973, 1975, 1979). Our results in this
area are of some independent interest; we state them in Section 4. Other
potential applications are also discussed in this section.

We give proofs (and some minor related results) in Section 5.

2. Limiting distributions for the test statistic. Suppose that XT =
(Xy..., X,,1) is a vector of iid centered exponentials [i.e., X; has density
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exp(—(x + 1)) for x > —1] and let X = X**X,/(n + 1). If we define

P (5, - )
U= + )’
n+l (n+1)(1+X)
then (U,..., U,) have the joint distribution of uniform order statistics.

Let A be the n X n + 1 matrix A;;=1G2j)/(n+1),Ibethen+1Xn+1
identity matrix and J be the n + 1 X n + 1 matrix J;; =1/(n + 1). Set M* =
(I — J) ATMA(I — J). Substituting for U, in T, we get

XTM*X
1+ X))
Define
%2 _ *2
s 2i§jMU
and

t*2 =8y Mx? — 4(X My )2/(n +1).

Let a; = M;¥/t* and Q;, = M;*¥/s* for i + j. Then Q is a symmetric n + 1 X
n + 1 matrix with 2tr(Q?) = 1 and @;; = 0, whereas a is an n + 1 vector with
8a?—4(n+1a*=1 If s*=0 let Q be any symmetric matrix with
2tr(Q?%) = 1. If ¢* =0 let a be any vector with 8La? — 4(n + 1)a® = 1. Now
define
T* = sthleXj + tZ(ai(Xiz - 1) - 26Xt),
where s = s*/(s*2 + t*2)!/2 and ¢t = t*/(s*% + t*?)/2. In Section 5 we show
that
(T - E(T))/Var'/(T) — T* - 0,

in probability as n — . Note that E(T*) = 0 and Var(T*) = 1. We use P, E
and Var to denote probability, expectation and variance under the uniform null
hypothesis. Our assumptions will be cast in terms of s, ¢, Q and a.

We will be interested in alternative densities 1 + 81(x)/n'/2, where we will

assume that /7% = 1. Under these conditions the log-likelihood ratio is asymptot-
ically equivalent (see Section 5 for an outline of a proof), under P, to

ShTX — §%2/2,
where h is a vector with ith entry

h,=(n+ 1)*‘/2j1,(x)1(i —1<(n+1)x<i)dr.

Let P, and E, denote probability and expectation for samples of size n under
these alternatives.

In general, objects with Roman letter names depend on n, whereas objects
with Greek letter names do not. The dependence on n is suppressed wherever
possible.
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To state the results let /,...,,., be the eigenvalues of Q arranged in order
of decreasing absolute value and let e,,...,e,., be the corresponding orthonor-
mal eigenvectors. Let (Z,; n = 0, 1,...) be independent standard normal variates.
Put r,=2e](a — @l), where 1 is a vector of 1’s. Let s;=eh and u=
2h"(a — al). Let riZ2 =1 — Xr*1r? = 4X7"'a?. Define

n+1 n+1
T, =5y, li[(Zi +8s;,)" — 1] + t[ Y rZ.+ Su].
1 0

THEOREM 1. If, as n — o0,

smax{ZQ?j;lsisn+1} + tmax{|a];1<i<n+1} -0,
J

then
sup {|P,([T — E(T)]/Var'/*(T) <x) - P(T, < x)|} = 0.

The distribution function of T is numerically computable. If s = 0, then
t=1 and T, is simply a N(du,1) random variable. If s # 0 and /, # 0 put
m; = r;it/(21;s); otherwise put m; = 0. Let ry*2 =1 — 4X7"2m? and u* = u —
2sXr*U.m;s;/t. (If all I, are nonzero, then u* = u and rg* = ry). Then T, has
the same distribution as

n+1

EDY li[(Zi +m; + 8s,)" - (1+ mf)] + t[r*Z, + du*].
1

The distribution function of the latter quantity may be calculated numerically
by Fourier inversion of the characteristic function; see Imhof (1961) and Durbin,
Knott and Taylor (1975).

The theorem provides distributional approximations for T, which may be
calculated without embedding the matrix M in a sequence of matrices. In Section
3 we illustrate the importance of this point in the context of overlapping
spacings statistics.

To get insight into the power of T, it is useful to consider special cases where
T, has a limiting distribution. In practice, the eigenvalues of Q often converge.
Suppose there are real numbers o, 7, v, A;, p;, and o, for i = 1,2,..., such that
the Roman letter quantities of the theorem all converge to their Greek letter
counterparts. In general, it is possible that 2Y°A% <1 = 2X 7412 Let A, =
(1 — 2X2A2)/2, Similarly, define p, = (1 — £3%?)'/2 (so that it is possible that p,
is not the limit of r;). Then our result becomes the following.

THEOREM 2. Under P,, as n — oo,

(T - E(T))Var’%(T) = o f)\i{(zi +80,)" -1} + )\OZO] + T[fp,.zi + 811].
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Here and throughout the paper the symbol = denotes convergence in
distribution.

We will examine two common cases. In the first case (n + 1)Q,; = x(i/(n +
1), j/(n + 1)) for some continuous kernel x(s, ¢) on [0,1]% with 2/(x%2=1.In
this case the eigenvalues /; (ordered by decreasing absolute value) converge to
the eigenvalues (similarly ordered) A; of the integral operator x. Since 2//x% =1
we have 2YA2 =1, so that A\, =0. Then e h — [¢,(s)n(s)ds = g;, where
(¢, n=1,2,...) are the orthonormal eigenfunctions corresponding to (A,;
n=1,2,...). Assume, in addition, that ;= a(i/(n + 1))/(n + 1) for some
continuous function « on [0,1] with 8/a® — 4( fa)? = 1. We then have p; =
2(fp;a — [¢;fa) forall i > 1, » = 2fan and p, = 4fa’.

The conditions on x and a can be weakened considerably; what is really
needed is sums to be approximated by integrals. For simplicity, the discussion in
the next paragraph assumes that 7 is continuous.

When ¢ = 0 the result should be written as

(2.1) (T — E(T))Var/(T) = Z, + .

This is the special case of statistics dominated by terms of the form (U, , — U.)%
see the discussion of spacings statistics in Section 3 for examples. Subject to the
condition that 8fa® — 4( fa)? =1, the quantity |v| is maximised by a(s) =
273/2q(s) in which case » = 27172 Under P,, the log-likelihood ratio statistic
converges in distribution to Z, + 8. Thus, for equal sample sizes, a statistic with
limiting distribution (2.1) requires a departure from the null roughly 2!/2 bigger
to achieve the same power as the likelihood ratio test; alternatively, the Pitman
efficiency of the most powerful test of this form is 0.5.
When 7 = 0 our limiting approximation is

YA[(Z + 86,)* = 1] + 2,2,

This quantity has mean 82X\ 02 and variance 1. The power of the test will
then be large when the mean is large. Since Y02 = 1 the mean is maximised in
absolute value by o, = 1 and A2 = 1. This requires 7 = ¢, and all eigenvalues
other than the first to be 0. The corresponding statistic is simply the two-sided
equal-tailed likelihood ratio test against the family of alternatives indexed by 8.

The second case we want to consider is when all eigenvalues of Q converge to
0, or equivalently, tr(Q*) —» 0. Then (T — E(T))/Var/%(T) is well approxi-
mated in distribution (under P,) by #(Z, + 6u) + sZ,. Note that all the power
comes from the term ¢ du. The off-diagonal part of T contributes nothing to the
power of the test.

In summary then, good power for a statistic of the form 7' will be obtained
only when the limiting distribution under the null hypothesis is a sum of
weighted central chi-squares. Such a test will have good power against depar-
tures in the direction of those eigenvectors of Q corresponding to large eigenval-
ues. Attempts to focus on too many directions at once give poor power against all
alternatives.
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3. Examples.

3.1. Spacings statistics. Greenwood’s (1946) statistic is L3(U,,., — U;)? where
U,=0and U, , = 1. Cressie (1976, 1979) studies the overlapping m-spacings
generalisations

n
Cp = L (Ui — U,
0

where U, ., =1+ U,, and

n+l—-m

Cn’:= Z ( itm )

Del Pino (1979) restricts the sum to a set of i such that the m-spacings involved
do not overlap; we deal here with Cressie’s more powerful overlapping versions.
The statistic C,, was developed for use on the circle, whereas C* was intended
for use on the unit interval. The work of Cibisov (1961) shows that both C,, and
C* have asymptotic relative efficiency 0 against our alternatives when m is
fixed. Cressie extends this to the case where m grows with n sufficiently slowly
that m3/n — 0. For a more rigorous discussion, see Beirlant and van Zuijlen
(1984). Hall (1986) extends the conclusion to m = o(n) for a somewhat more
restricted class of alternatives.

Guttorp and Lockhart (1986) study the limiting behaviour of C,, under the
null hypothesis for general sequences of values of m. If 2m < n + 1, then, in the
notation of Section 2, we have M;* = [(m — | —Jl)+/m?] — 1/(n + 1), where
li — j|, = min(ji — j|, n + 1 — |i — j|) and x, = max(x,0). In this case the vector
a — al = 0. We consider separately three cases: m =1, m > 1 but m = o(n)
and m/n >y € 0,3

When m =1 we find s =(2n + 1)"2 and (C, — E(C,))/Var'/*(C,) = Z,
under P,.

When m > 1 but m = o(n), Guttorp and Lockhart (1986) show that tr(Q*) —
0. Following the discussion in Section 2, we see that (C, — E(C,))/
Var/%(C,,) = Z, under P,.

When m/n — y > 0 we find ¢ — 0. Following the discussion leading to Theo-
rem 2, we are led to a kernel whose spectrum may be found as in Guttorp and
Lockhart (1986). The eigenvalues of Q converge to the set Ayx(y) = Agp_y(y) =
¢[1 — cos(2mky)]/k?, where {%=1/(47*y%(4/3 — 2y)). The corresponding
eigenfunctions are ¢,,(¢) = 21/%cos(27kt) and ¢, (8) = 21/2sin(27kt) so that
the o, are simply the Fourier coefficients in the expansion of 7. (The kernel also
has an eigenvalue of 0 with corresponding eigenfunction 1.) Thus in this case we
have under P, that

(G, - E(C,))/Var/¥(C,) = i'f.xk(v)(zk +80,)" — 1).

As y — 0 this limiting distribution converges to Z,. Our conclusions may be
summarised in the following theorem. In the statement ¢ depends on m and n



QUADRATIC FORMS IN ORDER STATISTICS 439
via ¢ = ¢(m,n) =m/(n + 1).

THEOREM 3. Asn — oo,

sup{
—P[fp\k(c)((z,e +80,)" — 1) < x] } -0,

where the sup extends over all real x and all m < (n + 1)/2.

P,[(C. - E(C,))/Var'/*(C,,) < x]

Suppose one is considering the use of C,, with 'm = 10 and n = 100. The
limiting distribution of C,, is normal if m is treated as fixed at 10 or as m = n'/%;
if m is treated as n/10, then the limiting distribution is (a quite skewed) sum of
weighted chi-squares. Theorem 3 allows us to avoid thinking about how big m
would be if n were different.

The result in Theorem 3 holds with C* replacing C,,, but we are unable to
calculate the limiting eigenvalues and eigenfunctions explicitly.

In Guttorp and Lockhart (1986), Monte Carlo studies show that the ap-
proximation provided under the null hypothesis by Theorem 3 is good for
moderate n (40 or so). It is improved by taking c¢(m, n) to be the value of ¢ such
that (C,, — E(C,,))/Var'/%(C,) and L\ (c)(Z2 — 1) have the same skewness;
the required formulas are in Guttorp and Lockhart.

Theorem 3 provides some insight on the power of C,, and C;* and comple-
ments the results of Hall (1986). Theorem 3 shows that C,, and C;* have 0 ARE
against our contiguous alternatives unless m/n is bounded away from 0. Hall
(1986) has obtained nontrivial asymptotic power for a class of statistics including
C, and C} against more distant alternatives when m = o(n); his results
establish the efficiency assertion stated previously for our alternatives in the case
of smooth 7.

When m/n — y > 0 Hall establishes weak convergence of C,, to the integral
of the square of a Gaussian process. The distribution of this integral is precisely
that given in our Theorem 3; Hall does not give this explicit form. Hall notes
that rational values of y lead to different general conclusions about power than
irrational values. Theorem 3 sheds some light on this phenomenon. If y is
rational, there will be an infinite number of values of & for which A, (y) =
Agx—1(v) = 0, namely, those & for which ky is an integer; if y is irrational, no
such values of & exist. Any 7 that has nonzero Fourier coefficients only for such
k will have a limiting distribution on the alternative the same as on the null; for
such alternatives the power is asymptotically equal to the level. If y = p/q in
lowest terms, then any % that is periodic with period 1/q will have this
property; if g is at all large this means a rapidly oscillating alternative density.

The worst case arises when g = 2 or y = 3. In this case the statistic C,, will
have poor power against alternative density whose shape on [0, 1) is duplicated
on [1,1); such a density will have at least two modes. On a more positive note,
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the statistic should have good power against unimodal symmetric alternatives
for which o, and o, will likely be large. It seems likely that the latter sort of
alternative is more important in practice. Nevertheless, the existence of alterna-
tives against which the test has trivial asymptotic power is disquieting for an
omnibus test of fit.

It should be noted that the asymptotic distributions vary continuously both
as a function of y and as a function of 5. Thus the apparent distinction between
rational and irrational y is not really a sharp one. Theorem 3 enables one to
calculate approximate powers without figuring out whether lim,_  m/n is
rational or not.

We do not know of any contiguous alternatives for which the overlapping
spacings statistics with m = o(n) have nontrivial asymptotic power. On the
other hand, we are not certain that contiguous alternatives are the only ones of
interest when considering omnibus tests of fit. For example, Cheng and Stephens
(1987) have considered alternative densities with a rectangular bump of height
not converging to 1 with a width converging to 0. They obtain nontrivial
asymptotic power for spacings statistics with fixed m and show that EDF tests
do not better even though the alternatives are not contiguous. Note that these
alternatives are not within the scope of Hall’s work since they are not smooth.

Cressie (1979) considers alternative densities 1 + n(x)/n'/*, where 7 is a
stepfunction. Under these alternatives he obtains nontrivial asymptotic power,
whereas the Kolmogorov—Smirnov test and other EDF tests have power con-
verging to 1. It follows that these alternatives are not contiguous to the uniform
null hypothesis. When n'/* is replaced by n'/? the alternatives become contigu-
ous and the remarks above apply.

Thus, as far as contiguous alternatives are concerned, the statistics C,, and C*
will have poor power properties unless m is chosen to grow linearly with n.

Hall (1984) gives a detailed study of generalisations of C,, under a wide range
cf alternatives with m fixed.

3.2. Other statistics. The results of Section 2 can be applied to EDF statis-
tics such as the Cramér-von Mises statistic W2, which is asymptotically equiv-
alent to the statistic LU, — i/(n + 1))2. In this case we may apply the
discussion following Theorem 2. Extensive algebra shows that o = 1. The kernel
X is proportional to p(s, t) = (s? + ¢2)/2 — max(s, t) + 1/3. Differentiate the
eigenvalue equation

Mo(s) = [ 'o(t)p(s, t) dt

three times to see that the eigenfunctions are sines and cosines. Put s = 1 and
s =0 in the first derivative to see that the eigenvalues of x and A, =
(90)'/2 /(mk)?, with corresponding eigenfunctions 2!'/2sin(wks). (In addition, 0 is
an eigenvalue with eigenfunction 1.) The quantities o; are the Fourier coefficients
of 7. Cibisov (1965) shows that under our sequence of alternatives, the empirical .
process converges to a Brownian bridge By(¢) plus a drift u(¢) = 8/{n(s) ds. The
statistic W2 thus converges in distribution to [}(B(¢) + p(¢))? dt. This leads to
the same limiting distribution as that given in Theorem 2.
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4. An invariance principle for quadratic forms in independent variates.
In Section 2 we noted that T is asymptotically equivalent to T*, a linear
combination of a quadratic form and two linear forms in independent mean 0
variance 1 random variables. The distribution of T under our alternatives is
deduced using contiguity techniques from the limiting joint distribution of T*
and the log-likelihood ratio, itself asymptotically equivalent to another linear
form in independent variates. Thus we are led to the study of the joint
distribution of quadratic and linear forms in independent variates.

In this section we give asymptotic approximations for such joint distributions.
The section concludes with applications of the results to statistics other than
those of Section 2.

The theorems of this section have a substantial history. See Whittle (1964),
Varberg (1966), de Wet and Venter (1973) and Rotar (1973, 1975, 1979) among
others.

4.1. Results. Suppose that for each n (G,; k=1,...,m) is a family of
independent o-fields. (We continue the convention that Roman letters depend on
n; the dependence is suppressed wherever possible.) Assume X,Y;,...,Y, are
random m-vectors. Assume E(X;) = E(Y;;) = 0 and Var(X;) = Var(Y;) = 1 for
i=1,...,m and j=1,...,7. Assume X;,Y; € G; for all i, j. (Y; is the ith
entry of Y;.)

Let Q be an m X m symmetric matrix with @, = 0 and 2tr(Q?) = 1. Let
(l;,e; i =1,..., m) be the eigenvalues and corresponding orthonormal eigenvec-
tors of Q. Let b,,...,b, be unit length m-vectors.

Put s;;, = E(Y,,Y;). Define a 7 + 1 X 7 + 1 matrix C by C; =1 for i =
0,...,mCy;=Cyp=0 for i=1,...,7, and otherwise C;; = L;b;1b;;5;;.
Let H be the joint distribution function of (XTQX,b’Y,,...,bl'Y,) and H* be
the multivariate normal distribution with mean 0 and variance—covariance
matrix C. Let A metrise weak convergence of distributions on R”*1.

THEOREM 4. Assume the family (X;,Y;,1<i<m,1 <j<a,n>1)is uni-
formly square integrable. If, as n — oo,

tr(Q*) - 0
and
max{|b;;1<i<m,1<j<7} -0,
then
A(H, H*) - 0.

This result can be used to deduce distributional approximations for XTQX
without the condition tr(Q*) — 0. In XTQX the coefficient of X; is a mean 0
random variable with variance 4% Q7. Let 8(Q) = max{X,Q?; 1 <i < m}.

THEOREM 5. Suppose {X;; 1 <i <m, n > 1} is uniformly square integra-
ble. Assume B(Q) — 0 as n - 0. If I, converges to \; for each i and TN’ =
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(1 — 23)/2, then
0
XTQX = A\ Z, + Y A,(2% - 1).
1

When A, = 0 Theorem 5 is a neater version, with better conditions, of the
main result of de Wet and Venter (1973), who need four finite moments, identical
distributions and a variety of technical conditions on Q.

CoROLLARY 1 (Rotar, 1975). If {X;; 1 <i < m, n > 1} is uniformly square
integrable and B(Q) — 0 as n — oo, then

sup | P(XTQX < x) - P(¥.Q,;ZZ; < x)| - 0.

Of course,
P(XQ,zz <x)=P(Y12} <x) = P(XL ]2 - 1] < x).

This corollary is an invariance principle in asserting that the limiting distribu-
tion of XTQX is the same for a large class of distributions of X. The limit may
then be calculated for a special X, namely, one with independent, standard
normal entries.

The corollary is not as general as the work of Rotar (1979). Rotar does
multilinear forms and uses a weaker negligibility condition. On the other hand,
his results seem to require a structure assumption on the covariances between
the entries of X and those of the Y, We have not been able to deduce our
Theorem 4 from his results. Moreover, we are able to sharpen Theorem 4 to
obtain mixing convergence; see Theorem 6 in Section 5.

It is important to observe that in many applications the X; have identical
distributions for all i and n. In this case the uniform square integrability
assumption is trivially satisfied.

4.2. Tests for exponentiality. Suppose Y; < --- <Y, are the order statistics
from the exponential distribution with mean 8. Many tests of fit to the exponen-
tial distribution are based on some quadratic form in the Y, divided by an
estimate of scale. Since the normalised spacings, D;=(n—i+ 1Y, - Y,_))
where Y, = 0, are independent exponential variables with mean 6, the theory of
Section 4.1 can be applied to study the power of such tests against contiguous
alternatives.

Lockhart (1985) and McLaren and Lockhart (1987) consider tests based on the
correlation coefficient between the Y; and the quantities m; = L ;,,1/j, which
are the expectations of the Y, computed under 8 = 1. Lockhart uses a special case
of Theorem 4 to deduce the asymptotic normality under the null hypothesis of
the test statistic. McLaren and Lockhart use that result to show that such tests
have 0 Pitman ARE against some natural alternative sequences. The present
work shows that this conclusion will extend to any sequence of alternatives such
that the log-likelihood ratio is an asymptotically normally distributed linear
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combination of the D,. This requirement places restrictions on the tails of the
alternative density. Some of the work of McLaren and Lockhart may help to
determine what restrictions are necessary.

4.3. Other applications. Whittle (1964) studies convergence in distribution of
quadratic forms with a view toward applications in time series. He considers
statistics XJa;_;X;X;, where the X; are iid with mean 0 and a finite moment of
order 4 + & If ¥®_a? < oo, he obtains asymptotic normality. The summability
hypothesis can be used to show that tr(Q*) — 0 for the appropriate matrices Q.
Using the results of Section 4.1, we see that if a, = 0 we need the X; to be
independent, mean 0, variance 1 and uniformly square integrable. If a, # 0 and
the X; are identically distributed we need only four finite moments. We have not
been able to see whether the summability hypothesis is necessary.

The results of Section 4.1 may be expected to have applications in the study
of regression problems with nonnormal errors. Although we have not pursued
such questions, it seems likely that the most interesting possibilities are con-
nected with the situation where the number of parameters is large. One might
study the problem with the number of parameters tending to infinity along with
the sample size.

5. Proofs and related results.

The equivalence of T* and T. By Basu’s theorem, T = X"TM*X/(1 + X)?
is independent of (1 + X)2. Thus

—_ E(XTMiX)k’
E(1+ X)*
and, putting W = XTM*X — E(T)1 + X)?, Var T = Var WE(1 + X)*. Then
T - E(T w T - E(T Var T \1/2 _
(T) _ (T |, 1+ %) >0,
Var'/2T Var/?wW Var'/2T Var W

in probability. Write W = W, + W, where
W= L MIXX;+ (M3 [XP - 1] - 2MzX),

i#j
so W, = tr(M*)(1 + 2X — (n + 1)X?)/(n + 2). Then T* = W, /Var'/?W,. Com-
pute

Var W, = 2) M*? + 8 M¥* — 4tr*(M*)/(n + 1)
i%j
> 4tr’(M*)/(n + 1)

and

Var W, = 2tr2(M*)/[(n + 1)(n + 2)].
Since Var W,/Var W, — 0, it follows that W/Var'/2W — T* — 0 in probability.
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Asymptotic forms of the log-likelihood ratio. The log-likelihood ratio is
T log(1l + 8n(U,)/n'/?). Standard Taylor expansion techniques show this is
asymptotically equivalent to §Xn(U;)/n'/? — §2/2. Fix ¢ positive. There is a
twice continuously differentiable n* such that [(n —7*)% <€%/(18682%) and
/n* = 0. Use Chebyshev’s inequality to see that P(| §L(n(U,) — n*(U,))|/n'/? >
¢/3) < /2. A Taylor expansion shows that Yn*(U;)/n*/?2 + h'TX - 0 in prob-
ability, where h* is defined from 7* as h is defined from #%. By the
Cauchy—-Schwarz inequality (A¥* — h;)? is bounded by

/(n —) ()G - 1< (n+ 1)x <i)dx

so that P(]8th* — h)TX| > ¢/3) < ¢/2. Thus, for n sufficiently large,
P(|Z1log( + 89(U,))/n'/? + WX + 8%2/2| > ¢) <e. Since ¢ is arbitrary we are
done.

Notation and matrix inequalities. We will need several vector and matrix
norms. For vectors we will need the usual L -norms | - |, for p = 1,2 and co. For
matrices we will use throughout the fact that tr'/%(Q?), ,81/ Q) = ‘max!/ XE,Q%
1 <i < m)} and p(Q) = sup{|xTQx|/x"x; x + 0} = |/,| are norms. We need the
inequalities

(5.1) tr(Q*) < p*(Q)tr(Q?),
(5.2) P(Q) < tx(Q?),
(53) « B*(Q) < tr(Q").

PRrROOF OF THEOREM 4. Define

m—3 m—2 m-—1

"'(Q) = Z Z Z Z Q;ka, Jth

i=1 j=i+1 k=j+11l=k+1

If p is a permutation of (1,..., m} define (pQ);; = @,; ,;- We will prove later
that the condition tr(Q*) — 0 is equivalent to the two conditions

(5.4) B(Q) -0
and
(5.5) there is a sequence of permutations p such that 7( pQ) — 0.

We will need the notation G(%, n) for G, to indicate the dependence on n.

THEOREM 6. Theorem 4 remains true if the condition tr(Q*) — 0 is replaced
by (6.4) and (5.5). If, in addition G(p,i,n) C G(p,,i,n+1) fori=1,..., m,
then the convergence is mixing.

See Hall and Heyde (1980), page 64, for a definition of mixing convergence.
For the sequence p of permutations in (5.5) let F}, = Vpr - The Cramér—Wold
device reduces the problem to the case # = 1. Define

Z Z sz pJ pz

i=1j=1
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and
k

Sk = L by Y-
j=1
Fix r, and r, such that r} + r? = 1. Define S, = ,S,, o + 1S, ;. Then (S,, Fy;
k=1,...,m) is a mean 0 square integrable martingale. Let D, =S, — S,_,.
Theorem 6 will follow from the martingale central limit theorem, Corollary 3.1
(and ensuing remarks) of Hall and Heyde (1980), page 58, provided we show that

(5.6) V(e) = Y E(DA(D| > ¢)|Fy_,) = 0, in probability for each & > 0,
2

and
m

(5.7) V=V(0) = Y E(D}F,_,) > 1, in probability.
2

If, in addition, the o-fields G,, satisfy the nesting condition of the theorem, then
F, , will be a sub-o-field of F, , ;. In this case the convergence will be mixing;
see Corollary 3.2 of Hall and Heyde

For notational convenience, we now assume that each p is the identity
permutation. Let D, ;= S, ; — S,_, ; and define V(¢) by (5.6) with D, ; replac-
ing D,. In view of the inequality

(x +3)1(x + 31 > €) < 4(x*1(x] > /2) + y"1(y] > &/2)),

condition (5.6) will follow from V,(¢) — 0 in probability for i = 0,1. For V (e¢)
this is a simple consequence of uniform square integrability and the condition

on b.
Let ®,(t) = E[ X21(|X,| > t)] and ®(t) = sup,, ,@,(¢). Then

V},(s) = 42[ Z ijXj] o, 8/[2 Z ijXJ

k|Jj=1 j=1

where M = 2max{|Ej=1leXj|, 1 < k < m}. Since E[V(0)] = 1, it suffices to
show that M — 0 is probability; this follows from the next lemma

< Vo(0)2(e/M),

LEMMA 1. Suppose (Y(t); t € T) is a family of uniformly square integrable
independent random variables. Let A be the set of all a: T — R such that
a(t) = 0 for all but finitely many t and ~,a’(t) = 1. Then the family {Xa(t)Y(?);
a € A} is uniformly square integrable.

The lemma is proved below. Now put ¢7 = £*_,@7; and W, = (£%_,Q,,X,)/t,.
Then
P(M > ¢) < 3} P(W,| > ¢/t;)

< ZtﬁE[szl(kal > e/t,)] /¢
< Zt E[WA(W,| > ¢/B%(Q))] /€%

The lemma and (5.3) imply (5.6).
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To check (5.7) we will show that V,= V,(0) tends to 1 in probability for
i=0,1and V;, = XE(D, le 2|F3—_1) = 0 in probability.

First, V,, = 2r,r,T,5,5%-1Q,, X, has mean 0 and variance proportional to
IR+ 1Qki0)? = bTRb, where R, = T, . ; ,Q,,Q, ;- Since b is a unit vector
it suffices to check that p(R) — 0. But from (5.2)

P’(R) < tr(R?) =47(Q) +2 Y Q% % + 2 2 Q4 % + Y Q.

i<j<k k<‘i<j i<k
We may write V, = 8R, + R,, where

m—-2 m-—1

S > Qk,Qk,X X

i=1 j=i+1k=j+1

and

m—-1 m
R2 =4 E E Q?/th’
i=1 j=i+1
Then R, has mean 0 and variance 21-(Q) + X, < j<4@%Q%, which converges to 0
by the assumptlons on B and .
The following triangular array version of the law of large numbers shows that
R, — 1 in probability and that V; — 1 in probability.

LEMMA 2. Suppose, for each n, that a, is a vector in R™ with |a,|; = 1.
Suppose (Y,; n > 1) is a sequence of independent uniformly integrable mean 0
random variables. If |a |, — 0, then ¥;a,,Y;, = 0 in probability.

The lemma is proved by truncation as usual. The lemma may be applied to R,
in view of (5.3). This completes the proof of Theorem 6. The earlier variance
calculation for R, the identity

Y +(pQ)/m! = (tr(Q“)—2ZQ .+ Za! )/24

p vk
and (5.3) show that tr(Q*) — 0 implies (5.4) and (5.5). O

We remark that our experience with examples is that it is usually no harder to
prove 7(Q) — 0 than to prove tr(Q*) — 0. We do not know whether the two are
equivalent in the presence of the negligibility condition 8(Q) — 0.

In many cases all the entries in Q are positive. In this case 7(Q) < tr(Q*) so
that the introduction of the permutations p is unnecessary; this often makes it
easier to check the nesting conditions leading to mixing convergence.

Proor oF THEOREM 5. We give the proof only for the case where infinitely
many of the limiting eigenvalues are nonzero. The case of finitely many nonzero
limiting eigenvalues is simpler.

Again (e,; 1 < k < m) are orthonormal eigenvectors corresponding to the
eigenvalues (l,; 1 <k <m). Let U,=X7 ¢, ;X,. Put W,=UZ - X, e} X~
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Lemma 2 shows that U2 — W, tends to 0 in probability for each & provided we
show that |e,|,, — 0 for each k. This follows from the inequality

(5.8) [ e, |l ='ZjS €r,i| < B*(Q).
For each fixed L, T, = ¥, ,;W, is a quadratic form in (X,,..., X,,). Let Q, be

the matrix of this quadratic form; Q; has all diagonal. entries equal to 0. We
claim there is a sequence L = L, tending to infinity so slowly that

(5.9) tr(Q2) - (1 - A3)/2
and that for any such sequence
(5.10) tr(Q}) — 0.

For this sequence L, and any fixed K, Theorem 4 shows that
(To/No, Uy, ..., Ug) = (Zy,..., Zg).

Let Hy be the distribution function of YXI,W.+ T,, and let H} be the
distribution of XX\ (Z2 — 1) + A,Z,. If A metrises weak convergence on R, then

(5.11) A(Hy, HE) = 0,
for some sequence K = K, tending to infinity sufficiently slowly.

Now Var(W,) = 21 — ¥, e; ;) and, for j # k, Cov(W;, W,) = —2%, e} ;e?..
Summing separately over positive and negative eigenvalues and using the general
inequality Var(Y + Y*) < 2(Var(Y) + Var(Y*)), we see that

L L
(5.12) Var( Y lka) <2 Y I
K+1 K+1

Now choose a sequence K, tending to infinity so slowly that (5.11) continues to
hold. For this sequence the upper bound in (5.12) tends to 0. Theorem 5 follows
from the identity XTQX = LI, W,.

To check (5.9) and (5.10) fix L and write Q, = Qf — D, where Q} =
X7, .l e;ef and D is a diagonal matrix with D;; = {7, e? ;. Now

1 L
3 Y2 =tr(Q.*?) = tr(Q2) + tr(D?).
1
Use (5.8) to see that tr(D?) — 0. Thus for each fixed L we have tr(Q%) —» 1 —
LLA2. Furthermore, by (5.1),
tr(Q1) < tr(Q})e*(Q% — D) < 2(If., + p*(D))tr(Q3).
It is now easily seen that choosing L, tending to infinity sufficiently slowly, we

can have (5.9) and (5.10). O

PRrROOF OF COROLLARY 1. From any counterexample sequence a subsequence
may be extracted, which is a counterexample and for which the eigenvalues
converge. Apply Theorem 2 to obtain a contradiction. O
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ProoF oF LEMMA 1. If the conclusion is not true, there is an ¢ > 0 and a
counterexample sequence Z, = X ,a,Y,; with E(Z21(|Z,| > n)) > ¢ for all n.
There is no loss in assuming that |@,;| > -+ > |a,,|. Since Var(Z,) = 1 there
is a subsequence along which m — p and Z, = Z. When p = o, extract a
further subsequence along which Y,; = Y,_; and a,; - a,. Define aZ = 1 — X¥a?.
Use the Lindeberg central limit theorem and sequences L and K as in the proof
of Theorem 5 to prove that Z, = ¥%a,Y, ;, where Y, is standard normal and
the Y,; are taken to be independent. This limit has variance 1, but Z has
variance at most 1 — &. The case of finite p is easier. O

ProoF OF THEOREMS 1 AND 2. From any counterexample sequence for
Theorem 1, a subsequence may be extracted, which is a counterexample and for
which there are real numbers A;, g;, p;, 0, 7 and v such that all of the following
convergences hold: s - 6, ¢ > 7and u - v,and foreachi > 1, [, > A, 5, > ¢;
and r; > p;. Thus Theorem 1 reduces to Theorem 2.

We prove Theorem 2 only in the case o, 7 and A; are positive for all i > 0. Let
V, = X(a(X? - 1) — 2aX,) and V, = Th,X;. With U,, W,, T, and L, chosen as
in the proof of Theorem 5 we have, from Theorem 4, under P,

(Ty/Ao, Uyy ..., Ui, V1, V)
K K
= (Zo,n-, Zy, X.0:Z; + poxZ 1, 1 0,Z; + 0oxZ_, + UO}Z—z),
1 1
for each K. Under P, we have [see Hajek and Sidak (1967), page 208]
K
(Ty/Ao, Uy, Ui, V) = (ZO,Z1 +80y,..., Zx + 80g, Y. 0.Z; + poxZ_, + 8v),
1
for each K. Let Hy be the distribution function of
K
1
and let H¢ be the distribution of

K K
o(}jxi((z,. +80;)" = 1) + AOZO) + 'r(zpiZi + poxZ_, + v
1 1

As in the proof of Theorem 5 there is then a sequence K = K, tending to
infinity so slowly that A(Hg, Hg) — 0. Use (5.12) to finish the proof. O
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