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COMBINATION OF REPRODUCTIVE MODELS

BY O. E. BARNDORFF-NIELSEN AND P. BL&ESILD

University of Aarhus

Suppose s is a random variate that follows a statistical model with
parameter , and let s, s,,...,S,,... be independent and identically dis-
tributed observations of s. The model is reproductive in s and w if for any n
the mean §= (s, + --- +s,)/n follows the same model as s but with
parameter nw instead of w. Suitable combinations of reproductive models
yield reproductive models for higher-dimensional variates. This combination
technique is discussed and illustrated by examples. It is possible, in particu-
lar, to construct reproductive combinations of gamma, inverse-Gaussian and
Gaussian distributions, determined by a regressiop structure, which may
conveniently be described in graph-theoretic terms. The graph-theoretical
interpretation makes it feasible to draw conclusions about conditional inde-
pendencies in the models concerned, by means of a very general result for
Markovian-type probability laws on graphs due to Kiiveri, Speed and Carlin
(1984). Most of the models discussed are exponential, of a form, which in
conjunction with the reproductivity, implies various useful distributional
properties, derivable from the general theory of reproductive exponential
models.

1. Introduction. Let 2 = {D(w): w € @}, where @ C R*, be a parametric
family of probability distributions on a sample space Z and let s be a statistic
on Z. We write s ~ D(w) if s is distributed according to D(w), and we let
815 895+ .+, S, denote independent and identically distributed copies of s.

The pair (2, s) is said to be reproductive in w if for all w € @ and all
n=1,2,..., we have

i) nQcQ
and

(ii) if s ~ D(w), then § =n"Y(s; + - -+ +s,) ~ D(nw).

When it appears from the context what £ or s is at issue, we simply speak of
s or 2 as being reproductive.

Our definition of reproductivity of (2, s) refers to a specific parametrization
«. To make the definition intrinsic to the pair (2, s), one could simply call (2, s)
reproductive if it is reproductive in the above sense for some parametrization
of 2.

For any statistic s of dimension k,, say, we denote the Fourier-Laplace
transform of s by ¢,. That is,

¢8(2; w) = Em{ez.s}’ A Zs,m’
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where Z, , is the set of complex vectors z for which the mean value exists.
Writing elements z of C* in the form z = Rez + i Im 2, where Rez and Im z
belong to R*:, the set Z, , is of the form ZX, + iR*:, where Z*  is a convex
subset of R*: containing 0 The restrictions of P, to sz and Z"j are, respec-
tively, the characteristic function and the Laplace transform, which will be
denoted by ¢, and ¢}, i.e.,

o8 0) =3,(i6; w), ¢ € Rk,
and
PX($ w) =9 w), EZx

With this notation condition (ii) can be reexpressed as

¥s(2; nw) =9 (n" 'z 0)", z€(nZ,,)NZ;,,
or, equivalently, as
#5(§5 nw) = g (n7; )", & € RA

Finally, if the interior of (nZ},) N Z*,, is not the empty set, condition (ii) is
equivalent to

eX($nw) =X (n" % w0)", S eint((nZX,) N ZE,,).

A survey of examples and properties of reproductive models, with particular
emphasis on reproductive exponential models for s having minimal exponential
representation of the form

(1.1) a(w)b(s) ewr HEFwrs

has been given by Barndorff-Nielsen and Bleesild (1984a). [See also Barndorff-
Nielsen and Blzesild (1983a, b) and Blaesild and Jensen (1985).] In (1.1), (w;, w,)
is a partition of the k-dimensional canonical parameter w into components of
dimension %k, and k,, respectively, and (H(s), s) is a similar partition of the
minimal sufﬁment statistic. If = = (1, 7,) denotes the mean value of (H(s), s),
the condition (ii) is in this case equivalent to
wy(wy, ) = —wlh(”b)’

where h(t,) = dH™(r,)/d1,, T indicating transposition. One of the properties of
a reproductive exponential model of the form (1.1) is that the components &,
and 7, of the maximum-likelihood estimator of the mixed parameter (w,, 7,) are
independent, i.e.,

AT
A number of other useful properties of such models are reviewed in connection
with a particular example in Section 3 of the present paper.

It is possible to combine reproductive models in a nontrivial manner so as to
obtain further reproductive models, for higher-dimensional variates. Some first
examples of this were discussed in Barndorff-Nielsen and Bleesild (1983b). Here a
more systematic investigation will be presented.

Let 2= (D(&): &€} and 27 = (DY(w'): o' € Q') be two parametric
families of distributions and let u and z be two statistics such that (2, u) and
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(2%, z) are reproductive in & and ', respectively. Furthermore, let v be a
statistic such that for all u the conditional distribution of v given u is
D'(wf(w,, u)), where w, € @, and w'(w,, u) indicates a function of w, and u with
values in Q. The resulting distribution for (u, v) is denoted [ D, D'](&, w,) and is
called a combination from 4 and 2%. Let 2 denote the class of combinations,
ie, 2= {[D, D&, w,): (&,&,) € xQ,). In Section 2 we give sufficient
conditions for (Z,(u,v)) to be reproductive in (&, w,) with or without the
additional property that the three classes of distributions 2, 2% and 2 are all
exponential and of the type (1.1). We also present some simple examples of such
combinations. Combination of several reproductive models in a somewhat more
intricate manner can also result in reproductive models. This is discussed in
Section 3 for the case where the elements of the combination are gamma,
inverse-Gaussian or Gaussian distributions. Graph-theoretic considerations are
helpful here. In particular, for certain types of graphs G, we define what we call
inverse-Gaussian models with graph G and inverse-Gaussian—Gaussian models
with graph G. These models are exponential and are shown to have c|j}'/2L
exact [cf. Barndorff-Nielsen (1980, 1983) and Bleesild and Jensen (1985)]. The
graph-theoretic formulations makes it possible to apply directly a very general
theorem concerning Markovian-type probability laws on graphs, due to Kiiveri,
Speed and Carlin (1984), to certain of the models considered in Section 3. The
theorem yields conditional independence properties of those models and this is
briefly discussed at the end of Section 3. Several examples are given to illustrate
the general results.

Parametric statistical models, whose structure can to a large extent be
described and interpreted by means of certain types of graphs, have recently
been delineated and studied in a number of important papers; see Darroch,
Lauritzen and Speed (1980), Wermuth and Lauritzen (1983), Kiiveri, Speed and
Carlin (1984) and Lauritzen and Wermuth (1984). The employment of graph-
theoretic concepts and results has been demonstrated to be a very powerful
approach in the investigation and applications of the models concerned. The
discussion given in Section 3 is partly inspired by those works.

2. Sufficient conditions for combinations to be reproductive. Through-
out this section we use the notation introduced in Section 1. Furthermore, we let
2,, denote the class of conditional distributions of v given u, ie., 2,,=

{D(w(w,, u)): w, € 2.}, and we denote the dimensions of u and v by &, and
k,, respectively. Note that 2, is reproductive in w. if and only if for all
n=12,..., n, CQ, and o(nw, 1) = nel(w, u). With this notation we have

THEOREM 2.1. Let U, denote the support of u under D(&). If
(i) nQ,cQ, forn=1,2,...,
and

(ii) for @ € @ and u € U,, the characteristic function for the conditional
distribution of v given u is of the form

(2.1) Pl @) = el earatmeds g e Rh
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for some functions ¢, and c, such that fori = 1,2 andn = 1,2,...,

(2.2) ¢;(n, nw,) = nci(n‘ln, @), n€ Rk, 0. €9,

then 2, is reproductive with respect to w, foru € U;, & € Q.

If, in addition,
(iii) the class 2 of distributions for u is reproductive with respect to &,

gzen éhe glass of combinations from 9 and 2% is reproductive in w = (&, w,) €
=0 xQ,.

PrOOF. For n € R*: one has, using (ii), that

_ n -1 -1 .
(pvlu(n 11’; wc) = encl(n N, W) +ncg(n™ ', w) - u

= ealn nw)+ca(n, nwe)-u
= %|u("7§ nwc)'

Together with (i) this implies that the first part of the theorem is true.

From conditions (i) and (iii) it follows that nQ C Q for n = 1,2,..., and since
(ii) implies that Re cy(n, w,) € Z} ; forw, € R, & € @ and n € R*, we have for
¢ € R*« and n € R* that

Pu, o83 15 @, 0,) = (e “E, (e "|u))

= E‘B(ei{' u+cey(n, we)+ co(m, wc)~u)

e 9)g (if + cy(m, w,); &),
and we obtain, using (iii), that
q’u,v(n_]{’ nln; &, wc)" = encl(n—lﬂ»wc)q)u(in_lg' + c2(n‘1n, ""c); &-’)”
= e m09g (it + ney(n~'n, w,); nd)
= eamreg (i + cy(, nw,); nd)
= @, o($, 15 16, nw,).
The proof is now complete. O
In applications of Theorem 2.1 the family 2 will often be defined by specifying
~ the class of marginal distributions of u and the family of conditional characteris-

tic functions (2.1). It is then necessary, of course, to make sure that the joint
distribution of u and v is well defined, i.e., it must be checked that

Re 02(1], wc) = Z:dn
for w,€ Q,, @ € & and n € R*.

ExaMpLE 2.1. For fixed (a,B) let &, 5 be the scale-parameter family
generated by the one-dimensional stable law with characteristic function

9($) = exp(— (1 + ifS/§|tan(7e/2) }),
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where a € (0,2), « # 1 and |B| <1, and let S, g(w) be the element in &, 4
having scale parameter w*~1/%, ie., S, 4(w) is the distribution with charactens-
tic function

o($; @) = exp(— ' 81%{1 + iB¢/|¢|tan(7a/2)}).

Clearly, %, B is reproductive in .
Let 0 <a<1andlet &, be the class of marginal distributions for u, i.e.,
—Q In this case & = R and U, = R, for all & € Q. Furthermore, let
,@T = %, pt» Where af # 1. Spemfymg the oondltlonal distribution of v given u by

olu ~ Saf’pf(wcu(l‘“T)_l),
we have that the conditional characteristic function is of the form (2.1) with

e(ns @) =0,  cy(m; 0,) = —t ™' |n|*(1 + iBty/|n|tan(mal /2)}.

Theorem 2.1 now implies that the class of combinations [S; ;, Syt gt 1(&, @),
(&, w,) € R?, is reproductive in (&, w,).

Under the assumption (2.1) and the additional requirement that the distribu-
tion of u is not concentrated on an affine subspace of R*-, it is often possible to
show that reproductivity of 2,, is equivalent to (2.2) at least for 7 in a
neighbourhood of 0. A similar remark applies if the characteristic function in
(2.1) is replaced by the Laplace transform. This appears from Theorem 2.2,
which constitutes an analogue of Theorem 2.1 based on Laplace transforms
instead of characteristic functions.

It is useful to have both Theorems 2.1 and 2.2 available. In particular,
whereas Theorem 2.1 covers Example 2.1, it is not suited for the study of
reproductivity in exponential families, which is our prime interest in this paper.
On the other hand, Theorem 2.2 is geared to the latter purpose but does not
encompass a number of other interesting cases, among which is Example 2.1.

THEOREM 2.2. Suppose that
(i) for & € Q the smallest affine subspace of R*« containing Uy is R*«, i.e.,

~

dim(aff U;) = k,, &€,
and

(i) for every 3 € Q, w, € Q, and u € U; the cumulant transform for the
conditional distribution of v given u exists in a neighbourhood of 0 and is there
of the form

(2—'1’) Kulu(n; wc) = cl(n’ wc) + 02(?7, wc) ‘U,
for some functions ¢, and c, such that c¢,(0, w,) = 0,
then 2,

is reproductive with respect to w, if and only if for n =1,2,..., we
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have nQ, c Q, and
22) c(nne)=ne(n'n,0), i=129€N,,, 0 €,
for N, , some neighbourhood of 0.

If ,@” is reproductive with respect to w,, if the conditions (i) and (ii) are
fulfilled and if, in addition,

(iii) the class 2 of distributions for u is reproductive with respect to &, and
(iv) for every & €  the cumulant transform «,(-; &) of u exists in a
neighbourhood of 0,

then the class of combinations from 9 and 2% is reproductwe with respect to
w=(8,w0)ER=0xQ,

PROOF. Suppose 2, is reproductive with respect to w. for & € @ and
u € Uj. It follows that for u € U; and 7 in a neighbourhood of 0, one has

n"o|u(n_1’7? “’c) = Kulu(n; ne,),
or, using (2.1’), that
ncl(n_ln, wc) — ¢, nw,) = (cz(n, nw,) — ncz(n_ln, wc)) - u.
Using (i), one now obtains (2.2"). Conversely, (2.1') and (2.2') imply that in a
neighbourhood of 0,
n (07105 ) = Ky (n; ne,).

Consequently, 2, is reproductive with respect to «. and the first part of the
theorem is proved.

As the next step we note that conditions (i) and (ii) imply that the functions
¢, and ¢, are continuous in 7 in a neighbourhood of 0 and that ¢,(0, w,) = 0
Now, let «, , denote the cumulant transform for (u, v). For (§, ) in a neighbour-

hood of (0, ()) one has, using (2.1"), (2.2'), (iii) and (iv),
K, o(§ 15 16, nw,) = ¢;(n, nw,) + Kk, (¢ + ex(m, nw,); néd)
= ncl(n‘ln, w.) + xu(§ + ncz(n‘ln, wc); n&’))
=ney(n7'n, 0,) + nry(n7X + ey(n s w,); &)
= nk, ,,(n-lg, n"ln; @, wc)
and the proof of the theorem is complete. O

In the next theorem we consider a situation where the two classes of distribu-
tions 2 and 2, are exponential, of the form (1.1), as well as reproductive and
where this implies the same two properties of the combination 2. Furthermore,
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9 and 2 will be noncurved exponential families. To be specific, we assume that

9, the family of marginal distributions for u, is an
exponential family of order £ and with minimal represen-
tation

(2.3) @(6)b(n) AW fe§,
where (01,0) is a partition of the minimal canonical
parameter § into components of dimension % — k, and

k,, respectively, and where Hisa(k—Fk )dlmensmnal
statistic; furthermore the parameter domain © is an open

subset of R,
and
for every u € U, the common support of the distributions
in 2, the family 2,, of conditional distributions of v
given u has an exponential representation of the form
(2.4) a'(6%)b%(v; u) el - Hi(0)+6}-0

where (6], 0]) is a partition of the canonical parameter
0t =0%(u), a vector of dimension %, into components of
dimension k' — %, and k,, respectively, and where
(H'(v), v) is a similar partition of the canonical statistic
ti(v).
The following theorem gives a set of sufficient conditions for the resulting class
of combinations to be a noncurved exponential model of the form (1.1).

THEOREM 2.3. Suppose that conditions (2.3) and (2.4) are fulfilled and that,
in addition,
(i) 4 is reproductive with respect to 6;
(ii) for every u € U the family 2, is reproductive with respect to 6, varying
in an open subset ©, of R*, k > k and
(iii) there exists a (k,— k ) X k'r matrix function Y(u) such that the follow-
ing three conditions are fulfilled for every u in U:
(2.5) 07(u) = 0,Y(u) + (0, 6,5),
where (8,4, 6,,) is a partition of 0, into components of dimension k,— k, and k.,
respectively,
(2.6) the components in the k ~dimensional vector (t'(v)Y(u)", v)
) are affinely independent,
and
(2) a'(07) = ay(6,)by(u) =S A= R0,
where S, and R, are vector functions of dimension k — k, and k,, respectively,
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such that Sl(n0d) =nS,(0,) and Ry(nf,) = nRy(6,) for all 6, O, and all
n=12,. "

Then the class of combinations 2= {[D, D'1(4,6,): (4,6,) € & x 0.} is a
(B + k,, E+k .) exponential family with minimal representation
(2 8) a(ﬂ)b(u v) eou-ﬁ(u)+0,2~tf(u)Y(u)T+021~u+022~o

where 0 = (0,), 6,,, 921, by5) = (0 S1(04), 04, 0 (9 ) 05), a(l) =
a(0)a1(0 ) and b(u, v) = b(u)bl(u)b (v; w). Furthermore 2 is reproductive in 0

[or in (6,6,)].

PrROOF. From (2.3), (2.4) and (2.7) it follows that the distribution for (u, v)
can be represented as in (2.8). This representation is minimal according to (2.6)
and (ii), and (2.3) and (ii) imply that the parameter set ® for 2 has a nonempty
interior. From formula (2.7) it follows that for 7 in a neighbourhood of 0 € R*-,

a’(6'(u))
a¥(6'(u) + (0, 7))
__all) R0+, 1)~ Ro0) u,
al(oc + (0’ 7’))
and an application of Theorem 2.2 completes the proof. O

Ey(e"°lu) =

According to Bleesild and Jensen (1985), the only exponential families of order
2 and with minimal representation of the form (1.1), which are reproductive in s
with @ = (w,, w,) as reproductivity parameter, are those corresponding to the
normal, the inverse-Gaussian and the gamma distributions, respectively. Denot-
ing these distributions by N(£,02), N~ (x,¢) and I(a, 8), their probability
density functions are, respectively,

o(x; ¢, 02) = (2m02) /2 =47/ 20" g=2"/@0")+xE/0"

(2.9)
x€R,{€R,and 0 > 0,
(2.10) @ (x; %, %) = (x/27)" eVx¥x—3/2 g=x3™/~¥x/2,
x>0,x>0,and y >0,
and
(2.11) v(x; a, B) = 'Ba/l‘(a)x—lealogx—px’ £>0,a>0,8>0.

In Table 1 we present essentially all possible reproductive combinations of
two of these three models omitting, however, the trivial combinations, i.e., the
combinations for which u and v are independent, and the combinations resulting
in a curved exponential model. The combinations in Table 1 resulting in
exponential families may be shown to be reproductive using Theorem 2.3,
whereas the reproductivity for the rest of the combinations in Table 1 follow
from Theorem 2.2. Note, that in the cases where vju ~ N~ (xu, ¢), a direct



COMBINATION OF REPRODUCTIVE MODELS 331

TABLE 1
Reproductive models for (u, v) obtained by suitable
combination of two of the models N, N~ and T

u viu
N(§, 6%) N(tu + a, 02) +5
N™(X,¥) N(tu + a, 0%u) +5
N~ (%, ¥) N(tu, o%u) +4
N~ (%) N~ (xu®, ¥) +4
N_()'Z» ‘P) F(auv ﬂ) ' -
I, B) N(tu, o%u) +4
(& B) N~ (xu? ¢) +4
I, f) T(au, B) -

Trivial combinations and combinations giving a
curved exponential model for (u, v) are omitted. In
the last column it is indicated whether or not the
model for (u, v) is exponential and if so the order of
the model is given.

argument shows that one may, in fact, take ©,= {(x,¢¥): x>0, ¢ =0},
whereas Theorem 2.3 only applies for (x, ¢) € int @, the interior of @, Similar
remarks apply to the situations in Section 3 where the inverse-Gaussian distribu-
tion occurs.

The class 4, of r-dimensional normal distributions N,(§, 2) with mean value
¢ and positive definite variance X, provides another example of an exponential
family of the form (1.1), which is reproductive in the canonical parameter.
Furthermore, the class A"~ of inverse-Gaussian distributions may be combined
with /] to yield a new reproductive and exponential model. Details of this are
available in Barndorff-Nielsen and Blsesild (1984b).

3. Reproductive combinations of gamma, inverse-Gaussian and
Gaussian models. Suitable combinations of several gamma, inverse-Gaussian
and Gaussian models yield further examples of reproductive models. A general
scheme for such combinations may conveniently be described by means of
graph-theoretic terms in the following way.

Suppose G is a finite, directed and acyclic graph, i.e., every edge of G is
equipped with a direction and it is not possible to travel along edges from any
vertex and back to that vertex by a route that respects the orientation of the
edges. A vertex i is said to precede a vertex j, and we write i < j, if j can be
reached from i via edges while respecting the orientation of the edges. If i
precedes j and if there is an edge from i to j, we indicate this by i — j. For any
vertex j of G let g(j) be the number of edges with j as an endpoint and
directed away from j, and let r(j) be the number of edges with j as an endpoint
and directed toward j. If q(j) = 0, then j is called a terminal vertex, and if
r(Jj) = 0, then j is said to be an initial vertex.
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With each vertex j of G we now associate a random variable u ; and we let
u=ug={u; j<€ G}. Furthermore, for each j that is not an initial vertex, let
¢/ = {c;;: i < j} be a set of known nonnegative constants of which one at least is
positive. We let u/ = {u;: i <j} and

J.yl =
c/-ul= Zcijui,
i<j

with the convention that if j is an initial vertex, then ¢’ - u’ is interpreted as 1.

A variety of reproductive models for u can be obtained, extending the kind
of constructions exhibited in Table 1, by suitable choice of the marginal distribu-
tions for u;, where j € G is an initial vertex, and of the conditional distributions
of u; given u’ ', where j € G is not an initial vertex. Some of these reproductive
models for u, are exponential models of the type specified by formula (1.1),
curved or noncurved, whereas others are not exponential. To distinguish between
the models, we say that for a particular model for u; a vertex j € G is of
inverse-Gaussian, Gaussian or gamma type, according to the type of the condi-
tional distribution of u; given u’. In graphical representations the three types of
vertices will be symbolized by ®, O and O, respectively. Here we confine
ourselves to presenting three classes of noncurved exponential models for u; of
the form (1.1). In Section 3.1 we consider combinations involving only inverse-
Gaussian distributions. Combinations for which some of the terminal vertices are
of Gaussian type, all other vertices being of inverse-Gaussian type are treated in
Section 3.2. Finally, in Section 3.3 we consider the case where the initial vertices
of G are all of gamma type and the remaining vertices are of inverse-Gaussian
type. At the end of each subsection the corresponding class of combinations is
illustrated by an example.

3.1. Combinations of inverse-Gaussian models. Let x = {x; j € G} and
¥ = {¥,;: J € G} be two sets of parameters with x ; > 0 and ¢, > 0.

DEFINITION 3.1. The inverse-Gaussian distribution N; (x, ¥) with graph G
and associated constants {c;;: i <j} is the probability distribution of the
random variate u given by the probability density function

(3.1) o6 (w5 x, ¥) = JDGW(u,-; (/- u)’x,0 ;).

The inverse-Gaussian model N with graph G and associated constants {c,;:
i < j} is the collection of such distributions as x and y vary freely (i.e., x ; > 0,
Y;20 and j € G). In the special case where c;;=1if i >j and ¢;=0
otherwise, this model is referred to simply as the inverse-Gaussian model with

graph G.

Note that, as may easily be shown, the conditional distribution of u; given u’
is ¢~ (u;; (¢’ - u’)?x j, ¥;). The mean value of this distribution is \/x ;/¥, ¢’ - u’ so
that the coefficients have an interpretation as regression coefficients.
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We need to prove that the right-hand side of (3.1) is, in fact, a probability
density function. This may be done by induction relative to |G|, the number of
vertices of G. Suppose the result has been established for |G| < n. Let G be any
directed acyclic graph with |G| = n + 1. There exists at least one terminal vertex
k of G for otherwise G could not be acyclic. The graph G° obtained by deleting
from G the vertex % and all edges with % as endpoint is again a directed and
acyclic graph, and if we let u® = {u;: j € G}, x°= {x;: j € G’} and y° = (Y
Jj € G%, then

(3.2) 06 (5 %, ) = @~ (s (* - u*)xr Y1) 0o (1% x°, ¥°).
It follows that ¢;(u; x, ¥) integrates to 1 as was to be shown.
The model A 1is a full exponential model of order k = 2|G| and with

exponential representation :
(3.3) oG (u; %, ¥) = a(0)b(u) el H+0xu,
where 6 = (6,, 0,),
(34) 0, = —3x, 0, = {_%‘\l’j + X éjiVXi‘Pii JE G},
Jj=<i

-, 2' 1/2

(3.5) a(8) = (27) 7% ( I x,.) eEebs
Jj€G

(3.6) b(u) = T1 {uj—a/zcj. uj},

JjE€G
and
(38.7) H(u) = {H/(u): j€ G} = {uj‘l(cj~ u)’: je G}.

Here ¥, indicates summation over all initial vertices and in an obvious notation
0, Hu) =L, Hu), 0, u=2;c50;u,

Furthermore, ./ is reproductive in u with 8 = (6,, 6,) as reproductivity
parameter. This may be proved by induction, as was done previously, using
Theorem 2.3 in connection with (3.2).

As mentioned in the Introduction, the structure of reproductive exponential
models of the general form (3.3) [i.e., without the particular properties (3.4)—(3.7)]
has been studied in Barndorff-Nielsen and Blaesild (1983a,b). Note, however,
that in the latter of these papers a reproductive exponential model of this type
was called strongly reproductive. We now apply some of the results from those
papers to the A#; models.

If 7= (7, 7,) denotes the mean-value parameter, i.e., 7= (Ey,H(u), Equ),
Theorem 3.2 in Barndorff-Nielsen and Blaesild (1983b) implies that 6,, consid-
ered as a function of the mixed parameter (8,, 7,), is

(3.8) 0, = —0,h(7,).
Here £ is the |G| X |G| matrix-valued function
dHT 0H;
h(m) = 3 (1) = {_J "'2)} ,
i€qG, jeG

Ty a7y,
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where T indicates transposition. Thus
JdH.
by = — Z 01,"_1(72), 1€G.
Jj€G 979
5 The components of the Legendre transform H of H evaluated at Ty, i.e.,
H(my) = {H{(,): j € G} = 1,h"(r,) — H(r,), are easily found to be
ﬁj(fz) _ { —27; = —2/x,/¥;, if jisaninitial vertex,
, otherwise.

According to Theorem 5.1 in Barndorff-Nielsen and Bleesild (1983a), the norming
constant for the reproductive exponential model (3.3) is of the form

a(f) = e Hm) = M8
and, using (3.5), one obtains for the A4 model (3.3) that
1/2 1/2
(39) e ® =@ ([1x) =-@n (11 -20,) .
JjeG JjEG
Consider the quantity p(u) = {p;(u): j € G} given by
p(u) =p(u; ) = H(u) — ub™(r,) + ﬁ("'z)-
With the convention that ¢/ - u/ = 1 and ¢/ - 7/ = 1 for an initial vertex j, the
components of p(u) are
. . A\ 2 .
p(u) = (/- (uef = mul)) /(uny),  jeG.

Since the Laplace transform for p(u) is [cf. Barndorff-Nielsen and Blaesild
(1983a), Corollary 5.1],

E, {eMP0) = M@ +)-ME)
1

n (1 - 2}‘j/Xj)_1/2a

jeG

where A = {A;: j € G}, it follows that the components of p(u) are mutually
independent and that ,

pi(u) ~T(3,x,/2), JEG.

For a sample u,,...,u, from the Ng(x,¥) distribution let & = n™'(u, +
o tuy), H=n""H(u) + - +H(u,) and p=n"(p(u,) + - +p(u,).
It follows from Corollary 5.4 in Barndorff-Nielsen and Blaesild (1983a) that
H — H(%) and % are independent, i.e.,

H - H(u) 1 u,
and that this statement is equivalent to
f, L%,

where (01, 7,) is the maximum-likelihood estimator of the mixed parameter
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(6,, 7). Furthermore, the Laplace transform of H - H(u) is

Eo {ex-(H—H(u))} — e-—{M(n01+>\)—M(n01)}+n{M(01+n")\)-M(0‘)}
1

= l_[ (1 - zxj/(an))_(n—l)/z,

j€G
implying that the components of H - H(w) = {I—I—j — Hy(u): j € G} are mutu-
ally independent and that
(3.10) H - H(a) ~T((n-1)/2,nx,;/2), JjEG.

Combining (3.10) with Theorem 2 of Bleesild and Jensen (1985), one sees that
the general formula c|j|*/2L for the distribution of the maximum-likelihood
estimator [Barndorff-Nielsen (1980, 1983)] is exact when applied to the maxi-
mum-likelihood estimator (%, ) from the #; model (3.3).

Finally, let

¢ =p(z) = H(a) - ﬁhT("'z) + H(Tz)’
and
w=H-H(@)=p—-4¢.

Theorem 3.1 in Barndorff-Nielsen and Blasild (1983b) then states that the

components in the decomposition of p,
p=4q+w,
are independent, i.e.,
gLuw,
and since the Laplace transform of ¢ is
Ea {ex-q} = eM(n01+A)—M(n01)

= T1(1-27/(ny)
G

JE

)-—1/2’

the components {¢;: j € G} of ¢ are mutually independent and
g;~T(4,nx,/2), JeG.

ExAMPLE 3.1. The inverse-Gaussian distribution with the graph
1 2

has probability density function
o5 (15 %, ¥) = 9~ (ug; X1, 1)~ (ua; 422, ¥2)
x o~ (w55 (4 + u5)"Xs» ¥3) o (24; u2X 4 ¥a)s
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which is of the form (3.3) with
0= —3X,
0, = (—% 1t m + M» _%‘Pz + VX3¢ "%‘Pa + VX4¥4> _%‘P4),
a(6) = (2‘”)_2()(1X2X3X4)l/2 e‘[x‘T,
b(u) = urug ugPu(uy + u,),
and
H(u) = (a1, uy'ud, uz (uy + u,)’, ui'ud).
To illustrate how the previous general results may be applied in problems of
inference, suppose we have a sample (u,;,..., 4;(); i = 1,..., n, from the present

inverse-Gaussian model with graph G. Let u = (%,,..., #,). Then the four
quantities

25 = ﬁl - H(z) =n"" Zui_ll - al,
i
2, =H,— Hy(@) =n"! Zu_i_zluz% - y'ag,
i
z3=H; — Hy(u) = n™! Zui_al(uil + ui2)2 - uz'(a, + 172)2’
12
2y = H4 - H4(l_‘) =n! Zui]lu?:, - ﬁZ‘ﬁ§
i

are independent and xZ2-distributed on n — 1 degrees of freedom and with
respective scale parameters (nx,)”%, (nx,)" !, (nx;)~ ! and (nx,) . Based on
these distributional properties, testing of the identity of two or more of the
parameters x;, X, X3 and x, may be carried out by an F-test or a Bartlett-type
test. Suppose next that x;, x,, X3 and x, are taken as identical, the common
value being denoted by x. The likelihood ratio for testing identity of the
parameters ¥, ¥,, ¥5 and ¢, is then simply

£ 4 ’ A _2
Q=L/L=(x/%)""",
where ~ and ~ indicate maximum-likelihood estimation with and without the
null hypothesis, respectively. The ratio x/X may be rewritten as

x/X=1+y/z

where nz.= n(z, + z, + 25 + 2,) is x’-distributed on 4(n — 1) degrees of free-
dom and with scale parameter x, whereas

(2@, + G, + Gy + 1)°
G, + G, + Oy + I,

v L@ -

Furthermore, since 2. is a function of {H; — H(&); j=1,...,4} and y is a
function of %, Corollary 5.4 in Barndorff-Nielsen and Bleesild (1983a) implies
that z. and y are independent. It follows that y/z. is a natural alternative test
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statistic and that, under the null hypothesis, y/z. is asymptotically F-distrib-
uted on (3,4(n — 1)) degrees of freedom.

It may be noted that the base model for (u,, u,, u3, u,) can be interpreted in
terms of four independent Brownian motions and a suitable observational
scheme, in analogy with the interpretation of the [N~, N”] or ®——@ model
discussed in Barndorff-Nielsen and Bleesild (1983b). Under such an interpreta-
tion the two hypotheses x, = x, = X3 = x4 and ¥, = ¥, = 5= ¥, given x; =
X2 = X3 = X4 correspond, respectively, to o7 = 07 = 67 = 62 and to p, = p, =
ps = p, given o2 = o2 = o2 = o}, where o? is the diffusion coefficient and g, is
the drift coefficient of the ith Brownian motion, i = 1,2, 3,4.

3.2. Combinations of inverse-Gaussian and Gaussian models. Let G, C G
be the set of terminal vertices of Gaussian type and .assume for simplicity that
none of these vertices are initial, and let G° be the graph obtained from G by
deleting the vertices in G, together with all the edges leading to those vertices.
Moreover, let u® = {u;: j€ G° and let x = {x;: j € G°), ¥ = {¢; j€ G},
¢={¢: jE€ Gy} and o® = (0% j & G,} be sets of parameters with x; > 0,
Y;20, —o0 <§;< o0ando;>0.

DEFINITION 3.2. The inverse-Gaussian—Gaussian model NGt with graph G
and associated constants {c;;. i < j} is given by the model function

(3.11)  @F (w5 x, ¥, £ 0%) = 9e(u® x, ) [T o(uy ¢ - w4, 07)).
JEG,

In the special case where c¢;; =1 if i > j and c;; = 0 otherwise, this model is
referred to simply as the inverse-Gaussian—Gaussian model with graph G.

Note that with the notation used in Sections 1 and 2 the distribution (3.11)
may also be denoted by [ Ngo, Ng 1(x, ¥, &, o).

The model A7 with associated constants {c,: i <j} is a full exponential
model of order & = 2|G| and with minimal representation "

(3'12) <p§(u; X ‘P, g» 02) = a(ﬂ)b(u) e01-H(u)+02~u,
where 0 = (6., 6,),
- %Xj’ J € GO’
011- = _ 1 -2 .
2aj ’ JE GO,
-3¢+ ) CiyXi¥i — 3 )» Cjiﬁfai_z, JEG°,
J=<i J=<i
0= ieG® ieG,
gjoj_z, j [ GO’
1/2 -1/2
a(8) = (2,,)—|Gi/2( 1 Xj) ( I ojz) e):.‘/x,.p,’
JEG° JEG,

b(u)= 1 (uj—a/zcj.uj) T (/- u/) ™2

jeqG® JEG,
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and
ujic/-ul)’,  jeq,
J € G,.

Using Theorem 2.3 and (3.11), it may be established, as for 4, that A7 is
reproductive in u with 8 = (6,, 8,) as reproductivity parameter. Moreover, since
(3.12) is of the same form as (3.3) further results analogous to those for the A
model hold for the #;7 model. Here we just mention that

. . 2 .
(¢/- (uyed = ) /(uymy)’, jE G,

(3-13) pj(u) = . . N\ 2 . . . \2
(CJ. (uj'r2’ - szuj)) /((cl . ul)‘(cj ) )’ j€G,,

and that the p(u), j € G, are mutually independent and
F(%,XJ/2), jEGO)
r(4,07%/2), JjeG,.

Also, the components of ¢ = p(&) and v = H — H(%) = p — ¢ are mutually
independent and

(3.14) p(u) ~ {

r(3,nx,/2),  JjeG"
(3.15) g~{ ,
F(Esnoj /2)s JGG01
and
_ I'((n-1)/2,nx./2), e GO,
(3.16) H,— H(z) ~ ( )/2 /%) ]
F((n -1)/2, noj_2/2), Jj € G,.

Finally, c|7]'/2L is exact for (%, ¥, £, 62).

ExaMPLE 3.2. The inverse-Gaussian-Gaussian distribution Ng° with the
graph

has probability density function
od (1 X5 ¥, §,0%) = 07 (w35 X1, ¥1)9 ™ (ugs Ulxay ¥2) @™ (435 UdX3s ¥3)

X(p(u4; (uqy + ua)(gu 042)):
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which is of the form (3.12) with
8, = (= 3x1> — 3X2> — 3xas —§00°%),
b, = (—% L VXoWas —3¥e  YXa¥s — 383000, — 35— 3 304_2,5404_2)»
a(8) = (27) *(xixox50;2) 7 e Va2,
b(u) = uy2uz Puz ¥ (uy + uy) 7,
and
H(u) = (u7, uz'ud, uz'ud, (up + uy) 'ud).
3.3. Combinations of gamma and inverse-Gaussian models. Let G° denote

the initial vertices of G and let G, be the graph obtained from G by deleting all
vertices in G° and all edges leading from those vertices. Furthermore, let

a={a;: jEG, B={(B:jE€G’, x=1{x; JE€Go}and ¥ = {Y;: j € G,} be
sets of parameters such that a; > 0, ;> 0, x;> 0 and y; > 0.

DEFINITION 3.3. The gamma—inverse-Gaussian distribution [Tgo, Ng ] with
graph G and associated constants {c;;: i < j} has probability density function

[YGO, <p50](u; a, B, X, ‘P)
3.17 B ..
(3.17) = IT v(z;0,8) [1e (uj;(C"u’) Xji ¥5)-
jeqg° JE€Gy .
In the special case where c¢;; =1 if i > j and c;; = 0 otherwise, this model is
referred to simply as the gamma-inverse-Gaussian distribution with graph G.

The corresponding family of distributions with «, 8, x and ¢ varying freely is
a full exponential model of order 2 = 2|G| and with minimal representation

(3.18) [ve0, 96,] (5 @, B, x, ¥) = a(8)b(u) €% H+0xx,
where
0 aj7 J € GO’
Yo\, J€Gy,
—Bj + Z CiXi¥i> Jj€ G,
. 2
» -3y, + Z CiiyXi¥i» J € Gy,
<i
icGo
_|G0V2 o; 1/2
a(8) = (27) H (Bj’/r("‘j)) 1_[ X;l >
jeqG® JjE€Gy

b(u) = T1I u;! 1—!; (uj—s/zcj . uf),

jeqg® JEGy
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and
log u;, j€ GO,
ui (el u’)?, J € G,.

H(u) - {

Furthermore, because of (3.18), results analogous to those for the #;; and A"
models hold for the class of gamma-inverse-Gaussian distribution with graph G.
In this case, however, the formula c|j|'/2L is not exact for (&, B, %, ¥).

ExaMPLE 3.3. The gamma-inverse-Gaussian distribution with the graph

1 2
G:

has probability density function
[Y,2) 9, 4)] (w5 @, B, x, ¥)
= y(uy; ay, B) (w5 @y, B9 (g3 (uy + )X, ¥5)
X~ (w45 (g + 43)"X45 V1)
which is of the form (3.18) with
0, = (e, @y, = X3, = 3X4)5
= (=81 + VXa¥s» =By + Xa¥s + Xa¥ar — s + Xaba, —304),
a(8) = (27) 7'BBs/ (T (o) T(ey))(x5x4)""”

b(u) = uy'uy 'uy¥u¥(u, + uy)(uy + uy),
and

H(u) = (108 u,,log u,, u:;l(ul + u2)2, uzl(uz + us)z)-

As indicated in the beginning of this section, it is possible to have all three
types of vertices in the graph G and still preserve reproductivity and the
exponential form (1.1) for the model with graph G. The simplest instance of such
a model is indicated by the graph 0—e—O.

Various independence properties of the reproductive combinations considered
in this section have already been established by means of the general theory of
reproductive exponential models. Certain results on conditional independencies
in such combinations follow easily from a very general theorem concerning
Markovian-type models on graphs established by Kiiveri, Speed and Carlin
(1984). For a detailed discussion of this the reader is referred to Barndorff-Nielsen
and Blaesild (1984b). Here we restrict ourselves to noting that the “main
theorem” of Kiiveri, Speed and Carlin (1984) can be applied to those reproduc-
tive exponential models discussed in the present section for which the associated
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constants satisfy
C' L= { 1’ i - j s
v 0, otherwise,

cf. definitions (3.1), (3.11) and (3.17). For instance, for the N; distribution in
Example 3.1, the theorem shows that (u,, ;) and u, are conditionally indepen-
dent given ug. :
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