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COVARIANCE HYPOTHESES WHICH ARE LINEAR IN BOTH
THE COVARIANCE AND THE INVERSE COVARIANCE

BY SeREN TOLVER JENSEN
University of Copenhagen

It is proved in this paper that covariance hypotheses which are linear in
both the covariance and the inverse covariance are products of models each of
which consists of either (i) independent identically distributed random vec-
tors which have a covariance with a real, complex or quaternion structure or
(ii) independent identically distributed random vectors with a parametriza-
tion of the covariance which is given by means of the Clifford algebra. The
models (i) are well known. For models (ii) we have found, under the assump-
tion that the distribution is normal, the exact distributions of the maximum
likelihood estimates and the likelihood ratio test statistics.

1. Introduction. The purpose of the present paper is to describe, for the
family of normal distributions, the structure of those statistical hypotheses
(models) which are linear in both the covariance and the inverse covariance.

In Section 2 we show that under such a hypothesis the problem of maximum
likelihood estimation of the covariance has an explicit solution, and that these
hypotheses are parametrized by Jordan algebras (quadratic subspaces). Based on
the theory of Jordan algebras it is then possible to give a canonical form for such
hypotheses. In Section 3 we show that the Jordan algebras are products of
so-called simple Jordan algebras and in Section 4 we prove that the hypotheses
can be decomposed into products of hypotheses parametrized by simple Jordan
algebras. The simple Jordan algebras are classified according to their so-called
degree. The only simple Jordan algebras of degree 1 is the set of real numbers,
and corresponding to that we have the hypothesis under which the covariance is
proportional to a known covariance. In Section 5 we give a canonical form for the
hypotheses which are parametrized by simple Jordan algebras of degree greater
than 3. It turns out that these hypotheses are equivalent to those consisting of
independent identically distributed random vectors which have a covariance
with a real, complex or quaternion structure, and the distributions of the
maximum likelihood estimates are given by Wishart (1928), Goodman (1963) and
Andersson (1975), respectively.

The statistical hypotheses which are parametrized by simple Jordan algebras
of degree 2 are new, and in Section 6 we give a complete solution to the problems
of maximum likelihood inference. It turns out that the distribution problems are
not more complicated than those for the two-dimensional normal distribution.
The mathematical structure of the hypotheses is closely related to the theory of
spinors in quantum mechanics. Based on that theory, we give a canonical form
for such hypotheses in Section 7.
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Finally, in Section 8 we discuss the extension of a covariance hypothesis with
linear structure to a hypothesis which is linear in both the covariance and the
inverse covariance. This extension clarifies the meaning of the relationship
algebra introduced by James (1957). It also shows how the invariant normal
models treated by Andersson (1975) are special cases of hypotheses parametrized
by Jordan algebras.

2. Covariance hypotheses parametrized by Jordan algebras. Let V be
an N-dimensional real vector space with an inner product ( , ). The vector space
of linear mappings of V into itself is denoted L(V). The trace and the
determinant of an A € L(V) are denoted trA and det A, respectively. The
adjoint linear mapping to A is denoted A’. It is defined by (Ax, y) = (x, A'y)
for all x, y € V. A is called symmetric if A’ = A, and the vector space of all
symmetric linear mappings of V into itself is denoted L (V). The identity
mapping of V onto itself is denoted I. For x, y € V the linear mapping 2z —
(y, 2)x of V into itself is denoted xy’. We shall use the facts that (Ax, y) =
tr(A(xy")) and (x, 2)(y, 2) = tr((22")(xy")).

Let X be a normally distributed random vector with values in V and with
expected value EX = 0. The covariance of X is the symmetric linear mapping =
of V into itself such that E((x, X)(y, X)) = (Z2x, y) for all x, y € V. It follows
from (Zx, y) = E((x, XXy, X)) =E tr((XX')(xy")) = tr((EXX")(xy")) =
((EXX")x, y) that = = EXX'. If (e,,...,ey) is a basis of V and (X,,..., Xy)
the coordinates of X, then the matrix B = (EX;X;), ; is called the covariance
matrix of X. Let S = ((e;,e;)); ; be the matrix of the inner product. Then
2(e;) = E((X,e)X) = 2,2 (EX, X )e;, e;)ep, i=1,...,N. Hence the linear
mapping 2 has matrix BS. The matrix of 2 is therefore the covariance matrix of
X if and only if S is the identity matrix, i.e., if and only if the basis is
orthonormal.

When the covariance 2 is positive definite, the distribution of X has density

(27) "V det 3| ~1/2exp( — 1tr(Z~Y(xx"))),
w.r.t. the Lebesgue measure on V. By using the trace inner product tr(A4,A4,) on
L V), it is seen that the family of normal distributions with mean vector 0 and
positive definite covariance is a regular exponential family; see Barndorff-Nielsen
(1978). The canonical parameter is — =77, the canonical statistic is XX’ and
the mean value parameter is 3.

Families of normal distributions having a linear covariance structure have
received considerable attention. To define these families, or hypotheses, let L be
an n-dimensional linear subspace of L (V) such that
(1) 0 = {2 € L|= is positive definite}
is nonempty. The hypothesis H: = € 0 is said to be linear in the covariance. If
(G,,...,G,) is any basis of L then H is the hypothesis that

(2) z= f 0,G;,

i=1

where o,,..., 6, are unknown real parameters such that 2 is positive definite.
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Anderson (1969, 1970, 1973) has given the likelihood equations, an iterative
method for solving these equations and the asymptotic distribution of the
estimates. In order to obtain further results it seems necessary to consider less
general hypotheses. From the point of view of the theory of exponential families
it is natural to consider hypotheses which are linear in the canonical parameter
[Barndorff-Nielsen (1978), Theorem 8.5].

Set @' = {8 € L(V)|0~! € ©). We shall say that the hypothesis H is linear
in the inverse covariance, too, if there also exists a linear subspace M of L (V)
such that

(3) ©~! = {8 € M|} is positive definite}.

In this case, H is a linear hypothesis in the canonical parameter. The likelihood
equation for the mean value parameter X is the linear equation

(4) V& e M: tr(82) = tr(8(XX"))

and the maximum likelihood estimate exists (and is unique) if and only if (4) has
a solution = € © [Barndorff-Nielsen (1978), Corollary 9.7]. It follows from
Lemma 1 that dim L = dim M. Hence the equation has a unique solution = € L.
This solution is a linear function of XX’, i.e., a quadratic function of X, which is
complete, sufficient and unbiased for =. The maximum likelihood estimate exists
if and only if the solution is positive definite. If the hypothesis is given by (2)
and (H,,..., H,) is any basis of M, then the likelihood equations for ¢,,...,0,
become

n
Y tr(H,G,)o; = tr( H(XX")), j=1,...,m.
i=1

It is thus seen that the problem of maximum likelihood estimation of the
covariance has an explicit solution when the hypothesis is linear in both the
covariance and the inverse covariance. We shall give a complete characterization
of such hypotheses.

LEMMA 1. Let O be given by (1) and suppose I € O. Then the hypothesis H:
3 € O is linear in the inverse covariance, too, if and only if

(5) VA,BeL: AB+BA€L
and in this case ® = 071,

PRrOOF. Suppose © ! is given by (3). Let us first prove ® = @ 1. Let A € L.
For t > 0 sufficiently small I —tA € ©® and (I —tA)"'=1+ tA + t?A? +
«v. €0 'cMHence((I-tA) '-I)/t=A+tA%’+ --- e M.Fort— 0it
follows that L ¢ M. By symmetry M C L. Hence L = M and © = ©~!. Then
(I-tA) ' —T1-tA)/t? =A%+ tA%+ ... € L, and for ¢t — 0 it follows that
A’e L. By AB+ BA = (A + B)? — A2 — B% we have (5). For the converse,
suppose L satisfies (5). By induction A* € L for A€ L and n=1,2,.... Let
A € 0. For t > 0 sufficiently small, I — tA € © and {A = (I — (I — tA)). Since
the eigenvalues of I — A are less than 1 it follows that A~ = #(I + (I — tA) +
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(I-tA)?+ ---)eL. Hence ©c O ! and O ! c(®1)"!=0, and O ! is
given by (3) with M = L. 00

REMARK. The condition I € © is not essential. The covariances are iden-
tified with linear mappings by means of an arbitrary inner product, and one can
just use one of the inverse covariances as the inner product. In fact,
if the covariance of X is 2 then E(C %, X)(Z 1y, X)) = (2, 27 Yy) =
(x,27'y) = (2", y). Thus the covariance of X w.r.t. the inner product
(=t.,)is L

Condition (5) expresses that L is a Jordan algebra of symmetric linear
mappings. The theory of Jordan algebras is extensively treated in the mathe-
matical literature [see Jackson (1968) or Braun and Koecher (1966)]. For the sake
of convenience, we shall summarize the main facts in,_the next section.

Seely (1971, 1972) proved that the covariance hypothesis H admits a complete
sufficient statistic if and only if L satisfies condition (5). (He called such a
subspace a quadratic subspace, but in view of Lemma 1, a more appropriate term
must be a Jordan algebra.)

Since then, condition (5) has appeared in numerous papers. It seems, however,
to be overlooked that condition (5) is closely related to the normal distribution,
while the condition that © ! has a linear structure more generally expresses that
the hypothesis is linear in the canonical parameter. In fact, consider a regular
exponential family and a hypothesis which is linear in the mean value parameter.
Then the following statements are equivalent: (a) The hypothesis is linear in the
canonical parameter. (b) The maximum likelihood estimate of the mean value
parameter is a linear function of the canonical statistics. (c) The hypothesis H
admits a complete sufficient statistic. (d) There exists a uniformly minimum
variance unbiased estimate of the mean value parameter. That (a) implies (b), (c)
and (d) follows directly from the theory of exponential families just as in the case
with the normal distribution treated previously. Although the proofs of the
other implications simplify known proofs in the case of the normal distribution,
we shall not give them here. As we shall do for the normal distribution, it would
in our opinion be more valuable, for other exponential families, to characterize
the hypotheses which are linear in both the mean value parameter and the
canonical parameter.

3. The structure of Jordan algebras. A Jordan algebra over the set R of
real numbers is a real vector space J with a composition * such that a* b = b * a,
(Aa)*b = AMa=*bd), (a, + a)*b=a,*b + a,*b and ((a*a)*b)*a =
(a*a)*(b*a)for A €R and a, a,, a,, b € J.

For an associative algebra A, one can define a new composition by setting

a*b=1(ab+ ba)

for a, b € A, and it is easy to see that A with this composition is a Jordan
algebra; it is denoted A™*. A Jordan algebra o is called special if there exists an
associative algebra A such that J is isomorphic to a Jordan subalgebra of A*. A
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Jordan algebra oJ is called formally real if a*a + b* b = 0 implies @ = 0 and
b = 0. The following structure theorem is due to Jordan, von Neumann and
Wigner (1934).

THEOREM 1. Let J be a finite-dimensional, special and formally real Jordan
algebra. Then J is isomorphic to a product J, X --- XdJ, of Jordan algebras,
where each of the Jordan algebras J,, i = 1,..., k, is one of the following simple
Jordan algebras:

(i) the set R of real numbers;
(ii) R X W, where W is a real vector space of dimension m > 2 with an inner
product ¢ and composition
(6) (A w)* (Mg, wp) = (MAg + ¢(wy, wp), A, + Agwy);
(iii) the vector space H/(D) of r X r Hermitian matrices over D, r > 3, where

D is either the set R of real numbers, the set C of complex numbers or the set H
of quarternions, and composition A* B = 1(AB + BA).

PROOF. See Jacobson [(1968), page 205], Braun and Koecher [(1966), page
331] or Jordan, von Neumann and Wigner [(1934), page 63]. O

REMARK. All the simple Jordan algebras have an identity element. Hence J
has an identity element; it is denoted 1.

The Jordan algebra R is said to be of degree 1, the simple Jordan algebras
R X W, dim W > 2, are said to be of degree 2 and dimension 1 + dim W, and the
simple Jordan algebras H(D), D = R, C or H, are said to be of degree r, r > 3.
Two Jordan algebras of degree 2 are isomorphic if they have the same dimension.
Apart from these cases none of the simple Jordan algebras mentioned in
Theorem 1 is isomorphic. We shall see in Section 7 that the simple Jordan
algebras of degree 2 and dimension 3, 4 and 6 are isomorphic to Hy(D), D = R, C
and H, respectively.

The vector space L(V) is an associative algebra. Since ;(AB + BA) is
symmetric when A and B are symmetric, L (V) is a Jordan subalgebra of
L(V)*. Hence L (V) is a special Jordan algebra, and it is clear that it is formally
real. Any Jordan subalgebra of L (V) is therefore special and formally real.

4. The decomposition of a hypothesis into hypotheses which are
parametrized by simple Jordan algebras. As in Section 2, let X be a
random vector which has a normal distribution with mean vector 0 and covari-
ance 2. Let H: 3 € O be a hypothesis which satisfies the conditions in Lemma
1, i.e,, ® = {2 € L|2Z is positive definite}, where L is a Jordan subalgebra of
L (V). It follows from Theorem 1 that there exists a 1-1 Jordan algebra
homomorphism

1. = L(V)

of a product J = J; X - -+ XdJ, of simple Jordan algebras onto L, i.e., 7 isa 1-1
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linear mapping such that 7(J) = L, 7(1) = I and

) (a*b) = i(7(a)r(b) + 7(b)7(a)) fora,bed.

Set K = {a € J|7(a) is positive definite}. Then ® = 7(K) and the hypothesis H
is parametrized by K and . It is clear that K is a convex cone in J. The
problems are to determine K and to describe the structure of .

THEOREM 2. Let J and v be as defined previously. Then there exists a
unique decomposition V=V, + --- +V, of Vinto a sum of k pairwise orthogo-
nal subspaces and 1-1 Jordan algebra homomorphisms t;: J; = Ly(V}), i =
1,..., k, such that

m(a) - 0
(8) )= o e

a=(a,...,a,) €EJ=oJ; X -+ Xej.

ProoF. Let ¢ =(0,...,1,...,0) € J, X -+ XJ, with 1 the identity in .
Set Q; = 1(¢;) and V, = Q«V). By (7), Q7 = 7(¢))7(g;) = 7(g; % ¢;) = 7(¢;) = Q.
Hence Q; is the orthogonal projection onto V;. Since  is linear, I = 7(1,...,1) =
(g + -+ +e)=7(g) + - +7(g,) = Q, + - -+ +Q,, and it follows that we
have an orthogonal decomposition. Let A; = 7(0,..., a;,...,0), a; € J;. Then by
@), A;i=1(0,...,a;...,00xe) = 3(A,Q; + Q;A;). Hence Q;A;= 1(Q;A,Q; +
Q:A;) and AQ; = 3(AQ; + @A,Q) and we have A, = Q;A,Q;. There
exists therefore a Jordan algebra homomorphism 7;: oJ;— L(V;) such that
70,...,a;...,0) = Q;7(a,)Q;, a; € J;. Then

T(ah"" ak) = 27(0)'--a aiv"'70) = EQiTi(ai)Qi

and this is equivalent to (8). Conversely, if V=V, + :-- +V, is an orthogonal

decomposition such that (8) holds, then it is obvious that 7(¢;) is the orthogonal

projection onto V. Hence the decomposition is uniquely determined by </ and 7.
O

REMARK. Since 7(a) is positive definite if and only if 7(a;), i = 1,..., &, are
positive definite, then K = K, X .-+ XK, where K; = {a; € J|(a;) is positive
definite}, i = 1,..., k.

Corresponding to the orthogonal decomposition in Theorem 2, we have
X = (X,,..., X;). Under the hypothesis H the random vectors X,,..., X, are
independently distributed and X; has a normal distribution with mean vector 0
and covariance 7(a;), a; € K;, i = 1,..., k. Thus the problems are reduced to
considering hypotheses which are parametrized by simple Jordan algebras.

The only hypothesis parametrized by the simple Jordan algebra R is H:
3 = al, where a > 0. In the next section we shall give a canonical form of a
hypothesis which is parametrized by a simple Jordan algebra of degree r > 3. It
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turns out that these hypotheses are well known. The hypotheses which are
parametrized by simple Jordan algebras of degree 2 are new, and we shall treat
them in detail in Sections 6 and 7.

5. A canonical form of a hypothesis which is parametrized by a simple
Jordan algebra of degree r > 3. Let M/(D) denote the algebra of r X r
matrices over D, where D = R, C or H. An element A € M(C) has the form
A = A, + A,i, where A,, A, € M(R), and the 2r X 2r matrix over R,

A1 _Az
A, AJ
is called the real matrix of A. Similarly, an element A € M, (H) has the form

A=A +Ayi+ Ayj+ Ak, where A, A,, A;, A, € M(R), and the 4r X 4r
matrix over R,

is called the real matrix of A. The real matrix of an A € M(R) is A itself. In
any of the cases, D = R, C or H, the real matrix of an A € M, (D) is denoted
re A. It is seen that re(AB) = (re A)(re B), A, B € M (D). Moreover, re A is
symmetric if and only if A is Hermitian.

THEOREM 3. Let v: H(D) —» L (V) be a 1-1 Jordan algebra homomor-
phism, D =R, C or H and r > 3. Then there exists an orthonormal basis of V
such that the matrix of T(A) is

reA .- 0
9) reA®I =] : ‘|, AeH(D),
0 co+ redA
where n = N/(rdim D).

Proor. We shall say that a subspace V; of V is invariant if +(A)}(V,) € V},
for all A € H,(D). Since the linear mappings 7(A), A € H(D), are symmetric,
it follows that the orthogonal complement to an invariant subspace is invariant.
There exists therefore an orthogonal decomposition V=V, + --- +V,_ of V into
a sum of minimal invariant subspaces; see Bourbaki [(1959), page 120]. Hence

n(4) 0
(A= + . : |,  AeH/(D),
0 - 7(4)
where 7; H(D) - L(V)), i =1,..., n, are Jordan algebra homomorphisms.

Set p =rdim D and let i be fixed, i = 1,..., n. It follows from Jacobson
[(1968), page 143] that the Jordan algebra homomorphism 7; can be uniquely
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extended to an algebra homomorphism 7;: M, (D) — L(V)), i.e.,, 7(4) = n,(4),
A € H (D). Since V; is a minimal invariant subspace it follows from Bourbaki
[(1958), page 49] that dim V; = p and that there exists a basis (e; ,...,e; ,) of V;
such that the matrix of 7,(A) isre A, A € M,(D). We shall find an orthonormal
basis. Thus let S = ((e; ;, e; z)); ; be the matrix of the restriction of the inner
product to V,. From (x;, 7,(A4)y;) = (1(A)x;, 3;), x;, y; € V;, A € H(D), it fol-
lows that S(re A) = (re A)S, A € H(D). Then it is seen that S = re(cl,), where
c€ D and I, is the r X r identity matrix. Since S is symmetric and positive
definite c is real and positive. Set f; ;= (1/ Ve) e, > J=1,..., p. Then the

basis (f; ,--., f; ») is orthonormal, and the matrix of 7,(A) is still reA, A €
H/(D).

Since V=V, + --- +V,_ is an orthogonal decomposition it follows that
(fuaseees f1, ps==+s fa15-++» [ p) is an orthonormal basis of V and that the

matrix of 7(A) is given by (9). O

REMARK. It can be seen that an A € H (D) is positive definite if and only if
re A is positive definite. Hence it follows from (9) that the parameter set is the
convex cone K = {A € H /(D)|A is positive definite}, D =R, C or H and r > 3.

Since we have the canonical form (9) for an orthonormal basis, it follows that
the hypothesis is equivalent to considering n independent identically distributed
random vectors X,,..., X, of p = rdim D components such that X; has a
normal distribution with a covariance matrix, which is the real matrix of an
r X r positive definite Hermitian matrix over D, D = R, C or H. The real case is
classical; see Wishart (1928) or Anderson (1958). The complex case is treated by
Goodman (1963) and Khatri (1965). Andersson (1975) treats the three cases
simultaneously.

6. Maximum likelihood inference for a hypothesis which is parame-
trized by a simple Jordan algebra of degree 2. The hypothesis is given as
described in the beginning of Section 4 with </ a simple Jordan algebra of degree
2. Thus let W be a real vector space of dimension m > 2 with an inner product ¢
and : R X W— Ly(V) a 1-1 Jordan algebra homomorphism, i.e., 7 is a 1-1
linear mapping such that

» 7(>‘1>‘2 + ¢(wy, wy), Ay + Agw;)
(10)
= %("'(Ap w)7T(Ag, wp) + T(Ay, wp)T(Ay, wl))

for (A, w,),(Ay, wp) € R X W. The random variable X has a normal distribu-
tion with density

(11) (27) V2 det (A, w)| ‘1/2exp( - é('r(}\, w) 'x, x)),

and the parameter set is K = {(A,w) € R X W|r(A, w) is positive definite}.
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LEMMA 2. (A, w) is invertible if and only if N? # ¢(w,w) and in this case

(12) (A w) 7t = (N - ¢(w,w)) 1A, —w),

(13) K={(\,w)eRXWA>0,N>¢(wuw),
(14) |det (A, w)| = ¥ — ¢(w, w)|"?,

(15) trr(A,w) = NA,

(16) tro(A,w)7T(Ay, w,) = NA A, + Nop(w,, w,).

PRrROOF. (12): Since = is linear we have 7(A,w) = 7(A,0) + 7(0,w) = A1 +
7(0,w) and 7(A, —w) = 7(A,0) + 7(0, —w) = Al — 7(0, w). Hence 7(A, w) and
7(A, —w) commute, and it follows from (10) that 7(A,w)r(A, —w) = 7(X% —
o(w, w), \w + M(—w)) = (¥ — ¢(w, w))L.

(13): Since the set of positive definite linear mappings is an open and convex
subset of L V), we have that 7(A,w) is positive definite if and only if
ar(A,w) + (1 — a)I is invertible for all a« € [0,1]. Now it follows from (12) that
ar(\,w) + (1 — a)] = 7(aX + 1 — @, aw) is invertible if and only if (aX + 1 —
a)? # a%p(w, w). Since ¢(w,w) > 0 this holds for all a € [0,1] if and only if
A > 0and A% > ¢(w,w).

(14) and (15): Let u € W be such that ¢(u, w) = 0 and ¢(u, u) = 1. It follows
from (10) that

(0, u)r(A, w)7(0, u) '
= (27(¢(u, w), Au) — 7(A,w) (0, ©)) (0, u) ™"
= (2A7(0, u) — 7(A, w)7(0, u)) (0, u) ' = 2AI — (A, w)
=7(2X,0) — 1(A\,w) = 7(A, —w).

Hence det 7(A, w) = det 7(A, —w) and tr 7(A, w) = tr 7(A, —w). Then, by (12),
(det (A, w))? = (A2 — ¢p(w, w))V and tr7(A,w) = tr i(7(A, w) + 7(A, —w)) =
tr7(A,0) = tr AT = AN.

(16) follows from (10) and (15). O

Let a hypothesis be given by
2 = ooI + Z oiGl',
i=1
where G,,...,G,, € L(V) are known and o, ..., 6, are unknown real parame-

ters [cf. (2)]. Suppose without restriction that trG;, =0, i = 1,..., m. Then it
follows from (10) and (15) that the hypothesis is parametrized by a simple
Jordan algebra of degree 2 if and only if

GlGj+ Gle= (2/N)(tl’G,GJ)I, i, j= 1,...,m.

In this case, W=R™, A =0, w=(0y,...,0,) and the matrix of the inner
product ¢ is ((1/N)tr G,G)); ;-
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LEMMA 3. If x is an observation on X, the likelihood equations for (A, w) €
K are

17) NA = (x,x),

(18) VueW: No(u,w) = (7(0, u)x, x).

Let (y, z) = (t,(x), ty(x)) € R X W denote the solution to (17) and (18). Then

(¥,2) €EK={(A\,w)€ER X WA >0, A > ¢(w, w)} and the density (11) can be

written

Ny - ¢(w, 2))
2(>\2—¢(w,w)) .

Proor. It follows from (4) and (12) that the likelihood equation is
(20) V(c,u) €R X W:trr(c,u)r(A,u) = trr(c, u)(xx’).

Now tr 7(c, u)(xx’) = (1(c, u)x, x) = (1(¢c, 0)x, x) + (7(0, w)x, x) = ¢(x, x) +
(7(0, u)x, x) and, by (16), tr7(c, u)7(A,w) = NcA + Né(u, w). Hence (20) is
equivalent to (17) and (18). Moreover,

(21) N(cy + o(u, 2)) = (7(c, u)x, x).

It follows from (13) that (c, u) is positive semidefinite if (c, u) € K. With
c=¢(2,2)”? and u = —2z we have N(¢(z, 2)"%y — ¢(2,2)) > 0,ie., y>0and
y2 > ¢(z, z). Finally, (19) follows from (11), (12), (14) and (21). O

(19) 27) VAN - ¢(w,w)) " exp

REMARK. According to the general results in Section 2 the statistic (Y, Z) =
(t(X), t,(X)) is complete, sufficient and unbiased for (A, w), and (Y, Z) is the
maximum likelihood estimate of (A, w) if (Y, Z) € K.

We shall now introduce representations of a subgroup of the so-called Clifford
group on the sample space V and on the parameter space W, respectively. The
representations (or group actions) are used to find the distribution of (Y, Z). The
theory of the Clifford group is well known and the reader is referred to Bourbaki
[(1959), Section 9] or Chevalley [(1954), Chapter 2].

Let C(W, ¢) denote the Clifford algebra of W and ¢. It follows from Jacobson
[(1968), page 75] that there exists a 1-1 Jordan algebra homomorphism o:
R X W- C(W,¢)* and an algebra homomorphism #: C(W, ¢) = L(V) such
that

(22) VA, w)eR X W: (A, w) = n(as(A,w)).
Especially, we shall use that
(23) VA €eR:o(A,0) =Al,

(24) V w,,w, € W: 1(0(0, w,)0(0, w,) + (0, wy)0(0, w,)) = ¢ (w,, wy,)1,

where 1 denotes the identity element in the Clifford algebra. The so-called main
involution in the Clifford algebra is an antiautomorphism s — s*, s € C(W, ¢),
characterized by o(A,w)* = o(A,w), (\,w) €ER X W. Since n(o(A,w)*) =
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n(e(A, w)) = 1(A, w) = 7(A, w) = n(o(A, w)), it follows that
(25) VseC(W,¢): n(s*) =n(s).

By means of the 1-1 linear mapping w — 0(0, w) of W into C(W, ¢), we shall in
the following consider W as a subspace of C(W, ¢), i.e., we shall write w instead
of 0(0, w) and W instead of {0(0, w)jw € W}. Set

(26) F={seC(W,¢)s*=s" ,Vwe W:sws"! € W}.

It is clear that T is a group. If s € T the linear mapping w — sws~! of W into
itself is denoted x(s). The group of all orthogonal linear mappings of W into
itself is called the orthogonal group of ¢ and is denoted O(¢). The subgroup of
all orthogonal linear mappings with determinant 1 is called the special orthogo-
nal group of ¢ and is denoted SO(¢).

LEMMA 4. The linear mappings x(s), s € T, are orthogonal, the mapping
x: I' = O(¢) is a group homomorphism and x(I') 2 SO(¢).

Proor. Let s € I' and w € W. It follows from (24) that
¢(x(s)(w), x(s)(w))1 = x(s)(w)x(s)(w) = sws™'sws™* = sw?s~*
= s(¢p(w, w)1l)s ! = ¢(w, w)l.

Hence x(s) is orthogonal. It is clear that x is a group homomorphism. Let
s € W with ¢(s,s) = 1. Then it follows from (24) that s~! = s = s* and, if
weW, sws™!=2¢(s,w)l —ws)s™! =2¢(s,w)s —we W, ie, s€T and
x(8) = —p(s), where p(s) denotes the reflection through the hyperplane or-
thogonal to s. Now it is well known that any orthogonal linear mapping can be
written as a product of reflections. If 7 € SO(¢) there exists, therefore, unit
vectors s,,...,s, € W such that 7 = p(s;) - -+ p(sg) = (—=1)*x(5,) - -+ x(8p) =
(—1)*x(s, -+ s). Since det 7 = 1 and det p(s;) = —1, i = 1,..., k, k must be
even and 7 = x(s; *** ;). Thus # € x(I'). O

The Clifford group of O(¢) is the group of invertible elements s of C(W, ¢)
such that sws™! € W for every w € W. Thus T is a subgroup of the Clifford
group, and Lemma 4 is only a simple special case of Chevalley [(1954), Theorem
11.3.1].

Let O(V) denote the group of all orthogonal linear mappings of V into itself.
If s € T then it follows from (25) and (26) that n(s) = n(s*) = (s~ !) = n(s) 7},
i.e., n(s) € O(V). Moreover, the restriction n: I' = O(V) is a group homomor-
phism. We shall see in Section 7 that it is induced by the classical spin
representations of I'. The representation x: I' = O(¢) is called the vector
representation of I'. The group I acts on the sample space V by (s, x) = n(s)(x)
and on the parameter space R X W by (s, (A, w)) = (A, x(sXw)). The hypothe-
sis has the following important transformation property.

LEMMA 5. Let c€R and s€T. If X has a normal distribution with
covariance 7(\,w), (A, w) € K, then cX has a normal distribution with covari-
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ance 7(c?\, c2w) and (s} X) has a normal distribution with covariance

(A, x(s)(w)).

PrOOF. The covariance of c¢X is c2r(A, w) = 7(c2A, c2w). The covariance of
n(s)(X) is n(s)7(A, w)n(s). By using (22), (25), (26) and the definition of x we
have

n(s)r(A, w)n(s) = n(s)n(a(X,w))n(s*) = n(s)n(a(A,0) + (0, w))n(s™")
=n(s0(A,0)s~! + s6(0, w)s™!)
=n(a(,0) + ¢(0, x(s)(w)))
=n(o(X, x(s)(w))) = (A, x(s)(w)). o

Similarly, the solution (y, 2) = (¢,(x), ty(x)), x € V, to the likelihood equa-
tions (17) and (18) has the following properties.
LEMMA 6. Letc€R ands € T. Then
(27) ti(ex) = c’t(x),  ty(ex) = c®ty(x),
(28)  ti(n(s)(x)) =ti(x),  ta(m(s)(x)) = x(s)(tox)) forxe V.
ProOOF. It is clear that (27) holds. Since 7n(s) is orthogonal it follows that
ti(n(s)(x)) = 1/N(n(s)(x), n(s)(x)) = 1/N(x, x) = t,(x).
Let u € W. By (18) we have that
No(u, tx(n(s)(x))) = (7(0, u)n(s)(x), n(s)(x))
= (n(s)'7(0, u)n(s)(x),x) (asin the proof of Lemma 5)
= (7(0, x(s7)())(=), x)
= N(x(s7)(u), to(x)) [since x(s7%) = x(s) " = x(s)]
= No(u, x(5)(tx(x))).
Hence t,(n(s)(x)) = x(s)(¢x(x)). O
THEOREM 4. If N/2 > m — 1 then (Y, Z)- is the maximum likelihood esti-
mate of _(J\, w) € K with probability 1 and the distn'bytion of (Y, Z) has density
(= 8(z,2) T NOy s
exp| — 4 ’
k(m, N)(A - ¢(w, w))™* 72— s(w,w)) |
w.r.t. the restriction of the Lebesgue measure to K, where
k(m, N) = q(m=D/29N-IN-N2(N/4)T(N/4 — m/2 + 1/2).

If N/2 = m — 1 then Y2 = ¢(Z, Z) and the maximum likelihood estimate never
exists. The case N/2 < m — 1 cannot occur.

(29)
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REMARK. We shall see in Theorem 6 that N has to be divisible by a(m), -
where a(m) is given in Table 1. Hence N/2 = m — 1 if and only if (m, N) = (2,2),
3,4), (5,8) or (9, 16).

PROOF. We shall first find the distribution of (Y, Z) when w = 0. Then the
covariance of X is 7(\,0) = AL, A > 0. The distribution of Y =1/N(X, X) is a
x 2-distribution with N degrees of freedom and scale parameter A/N. Set Z, =
Z/Y. It follows from (27) that the distribution of Z, does not depend on A. Since
Y is complete for A we have that Y and Z, are independently distributed. It
follows from Lemma 5 that the distribution of X is invariant under the
transformations 7(s), s € I'. Hence it follows by (28) that the distribution of Z,
is invariant under the transformations x(s), s € I. By Lemma 4 we have,
therefore, that the distribution of Z, is invariant under all orthogonal transfor-
mations with determinant 1. Set T = ¢(Z,, Z,)"/%? = ¢(Z,Z)"/?/Y and U =
Z,/T=Z/(YT). Then T and U are independently distributed and U is uni-
formly distributed on the unit sphere. Since Y? > ¢(Z, Z) we have that 0 < T <
1. The maximum likelihood estimate exists if and only if T < 1.

To find the distribution of T, let u € W with ¢(u,u) =1 and set Z, =
o(UT, u) = ¢(Z,, u) = $(Z,u)/Y. 1t follows from (17) and (18) that Z, =
(70, )X, X)/(X, X). Hence

(1-2,)/2=(1/2(1-10,u)X, X)/(X, X)
=(r(1/2,-u/2)X,X)/(X, X).

By (10) we have that 7(1/2, —u/2)? = 7(1/2, —u/2). Hence 7(1/2, —u/2) is an
orthogonal projection onto a subspace of V of dimension tr 7(1/2, —u/2) = N/2
[cf. (15)]. We have, therefore, that (1 — Z,)/2 has a beta distribution with
(N/2, N/2) degrees of freedom. By a simple transformation it is seen that Z2
has a beta distribution with (1, N/2) degrees of freedom. Since U is uniformly
distributed on the unit sphere, we have that ¢(U, u)? has a beta distribution
with (1, m — 1) degrees of freedom. Let a > 0. From EZ2° = E¢(UT, u)?® =
E(T?*°E(¢(U, u)*®|T)) = ET?°E(¢$(U, u)?® we obtain

I'(N/4+1/2)T(m/2 + a)

I'(N/4+1/2 +a)T(m/2)"

Since ET? < 1 it follows that N/2>m — 1. If N/2=m — 1 then ET?® =1,
a > 0, and T = 1 with probability 1. Since T depends continuously on X and the
support of X is V, it follows that T = 1 in this case.

Assume that N/2 > m — 1. Then it follows from (30) that T2 has a beta
distribution with (m, N/2 — m + 1) degrees of freedom. Hence the distribution
of T has density

c(m, N)tm=Y (1 — 2)V4 2712 o<t<1,
where c¢(m, N) = 2/B(m/2, N/4 — m/2 + 1/2). The distribution of Z, = TU
therefore has density

(c(m, N)/mK(m))(1 - ¢(z,, 21))N/4—m/2—l/2: ¢(21,2,) <1,

(30) ET? =




COVARIANCE HYPOTHESES 315

where K(m) = #™/2/T((m + 2)/2) is the Lebesgue measure of the set
{2z, € W|é(z2y, 2,) < 1}. Since Y has a x>-distribution with N degrees of freedom
and scale parameter A/N, it is seen by a simple transformation that the
distribution of (Y, Z) = (Y, YZ,) has a density which is given by (29) with w = 0.

Now for an arbitrary parameter w € W, A2 > ¢(w, w). Let f(y, 2, A\, w) and
&(y, 2, \, w) denote (19) and (29), respectively. By (19), the distribution of X has
a density which depends only on (y, z). Hence the distribution of (Y, Z) has
density g(y, 2, A, 0)f(y, 2, A, w)/f(y, 2, A,0) = &(3, 2, A, w). O

The convex cone K = {(A\,w)ER X WA >0, N> ¢(w,w)} is called a
spherical cone. The next theorem shows that the statistical analysis of the
distributions (29) on K is particularly simple. Thus the distributions may also be
useful in analysing directional data.

It is possible to extend the actions of T to a larger group such that the action
on K becomes transitive. In fact, we could just take the group generated by
{o(A, w)|\% # ¢(w, w)}. Since

(N, w)r(y, 2)r(A, w) = (N2 + 22¢(2, w) + yp(w, w), (2Ay + 2¢(w, 2))w
+(?\2—¢(w,w))z), (y’z) EK,

it is straightforward to generalize Lemmas 5 and 6. Hence the distributions (29)
could be found by using the uniqueness of an invariant measure on K. This
would, however, not simplify the proof of Theorem 6. In this connection it shall
be mentioned that the so-called irreducible self-dual homogeneous convex cones
are either the set of positive real numbers, the spherical cones or the cones of
positive definite matrices given in the remark to Theorem 3; see, e.g., Hertneck
(1962) or Vinberg (1963).

Let W, be a subspace of W of dimension &, 0 < k < m. It follows from (6)
that R X W, is a subalgebra of the Jordan algebra R X W. We shall consider the
hypothesis H,: w € W,. Let q denote the orthogonal projection onto W;, and set
Ky = {(A\,w) €R X Wy]A > 0, A > ¢(w, w)}.

THEOREM 5. Suppose N/2 > m — 1. Then the maximum likelihood estimate
of (A, w) under H, is (Y, g(Z)) and the likelihood ratio test statistic for testing
(31) | Q roezs) )T

Y? - ¢(9(2), 9(2))
Under the hypothesis H, the statistics (Y, q(Z)) and @ are independently
distributed. The distribution of (Y, q(X)) is given by (29) with W, m and K
replaced by W,, k and K, respectively, and Q*'N has a beta distribution with
(N/2 — m + 1, m — k) degrees of freedom.

ProoF. Under the hypothesis H, the likelihood equations for (A, w) € K|
are given by (17) and (18) with W replaced by W,. Let u € W,. Then
(7(0, )X, X) = No(u, Z) = Np(u, 9(Z)). Hence (Y,q(Z)) is the maximum
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likelihood estimate of (A, w). It follows from (19) that the density (11) can be
written

N(Ay — ¢(w, q(2)))
2(>‘2 - ¢>(w,w))

and that @ is given by (31). Let Y, T and U be as in the proof of Theorem 4. Set
T, = ¢(q(U), g(U))"/? and U, = g(U)/T,. Then ¢(Z) = (YTU) = YTq(U) =
YTT,U, and Q*N = (1 — T?)/(1 — T*T?). We shall first find the distributions
when w = 0. Then Y, T and U are independently distributed, Y has a x?-distri-
bution with N degrees of freedom, T2 has a beta distribution with (m, N/2 —
m + 1) degrees of freedom and U is uniformly distributed on the unit sphere in
W. By a well known result we have that U, and T are independently distrib-
uted, that U, is uniformly distributed on the unit sphere in W, and that T'2 has
a beta distribution with (&, m — k) degrees of freedom. By a simple transforma-
tion it is seen that T2T2 and (1 — T?)/(1 — T2T?) are independent variables
which have beta distributions with (¢, N/2 — k + 1)and (N/2 —m + 1,m — k)
degrees of freedom, respectively. Hence @*/V and (Y, q¢(2)) = (Y, YTT,U,) are
independently distributed, and the distribution of (Y, ¢(Z)) is found as in the
proof of Theorem 4. Since the density depends only on (y, g(2)), the results for
an arbitrary parameter w, € W,, A’ > ¢(w,, w,)) follows as in the proof of
Theorem 4. O

@) VAR - p(w, w)) " exp| -

REMARK. The likelihood ratio test statistic for testing the hypothesis that
w=0isQ = (1 — T?)*and 1 — T? has a beta distribution with (N/2 — m +
1, m) degrees of freedom.

7. A canonical form of a hypothesis which is parametrized by a simple
Jordan algebra of degree 2. We shall still consider the hypothesis given at
the beginning of Section 6. The purpose of this section is to give a concrete
representation of the mapping 7. It follows from (22) that = = no, where o:
R X W — C(W, ¢)* is a Jordan algebra homomorphism and %: C(W, ¢) — L(V)
is an algebra homomorphism. The Clifford algebra is determined only up to an
algebra isomorphism. It follows from Chevalley [(1954), page 66] that a concrete
representation of C(W, ¢) is given by Table 1. We shall say we are in case (b) if
m =5,9,13,17,... and in case (a) otherwise. Thus we can suppose that ¢ is
represented by a Jordan algebra homomorphism

(32) 0y, m: R X W— M,(D)
in case (a) and a Jordan algebra homomorphism
(33) O = (ol,mUZ,m): R X W_)Mr(D) XMr(D)

in case (b), where r and D are given in Table 1. In case (b) it is clear that the
mappings o; ,,: R X W— M(D), i =1,2, are also Jordan algebra homomor-
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TABLE 1
m C(W, ) r D a(m) = rdimD

8a +1 M,(R) X M, (R) 24a R 24a

8a + 2 M,(R) gta+l R ga+1
8a+3 M,(C) gta+1 C gta+2
8a + 4 M,(H) gta+l H gta+3
8a+5 M (H) X M,(H) gtatl H gta+3
8a+6 M,(H) gta+2? H gta+d
8a+17 M,(C) gta+3 C gtat+d
8a+8 M,(R) Qta+d R Qta+d

phisms. Since the elements o(A,w), (A,w) € R X W, generate the Clifford
algebra, it follows that ¢, ,, and o, ,, are different.

LEMMA 7. Let o: R X W — M(D) be a Jordan algebra homomorphism,
D=R,CorH andr=2,3,4.... Then there exists an algebra isomorphism p
of M (D) such that p(o(\, w)) is Hermitian for any (\,w) € R X W.

PROOF. Let e,,...,e,, be an orthonormal basis of W and set G, = re a(0, e;),
i=1,...,m. Since o is a Jordan algebra homomorphism, we have that G? =
rea(0, e,)® = re o(¢(e;, ¢;),0) = I and that G,G, + G,G; = re20(¢(e;, ¢,),0) =0
for i #j. Hence we have that the group ¢ generated by the invertible matri-
ces I,G,,...,G,, consists of the 2™*! matrices +I and +G; --- G;,1<i, <

- <i,<m, k=1,...,m. Set B =3YG'G, where the summation is over the
group 4. Then B is a positive definite matrix, which is the real matrix of an
element in My (D). Since G;'= G; we have that BG;= LG'(GG,) =
Y(GG;YG = ¥(GG,))G = LG!G'G = G/B. Hence G/ = BG;B™'. Let F = B'/?,
i.e., F is the uniquely determined symmetric matrix such that F% = B. It can be
shown that F is the real matrix of an element in M,(D). Then F(re A)F~! is
also the real matrix of an element in M, (D). Hence there exists a linear mapping
p of M(D) onto itself such that rep(A) = F(re A)F~!, A € M/(D). It is clear
that p is an algebra isomorphism. Moreover, (re p(o(0,e¢;))) = (FG,F~'y =
F-1G!F = F7'BG,B™'F = F'F?G,F*F = FG,F™ ' = re p(0(0, ¢;)), i =
1,..., m. Since ey,...,e, is a basis of W, it follows that rep(o(A,w)) is
symmetric for any (A,w) € R X W. O

Since the Clifford algebra is determined only up to an algebra isomorphism, it
follows from Lemma 7 that we can suppose that the Jordan algebra homomor-
phisms o; ., i = 0,1,2, given by (32) and (33) map R X W into H,(D). Then o is
represented by a Jordan algebra homomorphism

(34) o, m: R X W— H/(D)
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in case (a) and a Jordan algebra homomorphism
(35) (al,m7o2,m):R X W_)Hr(D) ><IIr(D)

in case (b), where D and r are given in Table 1. This shows that there does exist
at least one statistical model for any simple Jordan algebra of degree 2.

THEOREM 6. Let 7: R X W — L(V) be a Jordan algebra homomorphism
and let 6: R X W — C(W, ¢) be represented by (34) in case (a) and by (35) in
case (b). Then there exists an orthonormal basis of V such that the matrix of
(A, w) is

reoy, (A, w) .- 0
(36) re 00, m()\’ w) ® In = ‘ .
0 coereoy (A, w)
in case (a) and
res, (A, w)® I, 0
(37) i ‘
0 rec, (A, w)® I,

in case (b), (\,w) € R X W, where n = N/a(m) and n, + n, = N/a(m), re-
spectively, and 0 here denotes a matrix of zeros.

Proor. The proof is analogous to the proof of Theorem 3 except for the
following changes: In case (b) we obtain an algebra homomorphism p;: M,(D) X
M, (D) — L(V;) and the matrix of p,(A,, A,) is either re A, or re 4,, A,, A, €
M,(D). For the matrix S we obtain (re o; (A, w))S = S(re o; (A, w)), (A, w) €
R X W, where i is either 0, 1 or 2. Since the elements o(A, w), (A\,w) € R X W,
generate C(W, ¢) it follows that (re A)S = S(re A), A € M (D). O

It can be seen that the matrices n(s), s € C(W, ¢), have the form py(s) ® I,
in case (a) and the form

pl(s) ® Inl O
0 p2(S) ® In2

in case (b). The restrictions of the p’s to the group I' are called the spin
representations of I'. Hence the group homomorphism »: I' = O(V) is said to be
induced by the spin representations.

The representations (34) and (35) are not uniquely determined. Representa-
tions for small values of m can be found by induction by using the method in the
proof of Theorem I1.2.5 in Chevalley (1954). Since the correctness of a represen-
tation can easily be checked by the conditions that reg; ,(A,0)=AI and
(re o; ,(0, w))? = ¢(w, w)I, we shall only give the results. For W = R™ and ¢ the
usual inner product on R™ (i.e., for an orthonormal basis of W), we have found
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the following representations for 2 < m < 9 [i.e., a(m) < 16]:

Te 00,2()\’ (wy, w2)) =

A w, w, )

w, A—w
or
(38) re o 5((a + 8)/2,((a - 8)/2,¢)) = (‘CI lc’)’
a c 0 f
(39) re gy o((a + b)/2,((a — b)/2,¢, f)) = | ¢ bor 0
0,3 ’ i 0 —f a c
f. O c b
reo, 5((a + b)/2,((a — b)/2,¢, f, 8, b))
a c 0 f 0 g 0 h
c b —f 0 -g 0 -h 0
0 -f a c 0 & 0 -g
(40) {f o ¢ b - 0 g 0
10 -g 0 -B a ¢ 0 fl’
g 0 A 0 c b -—f 0
0 -h 0 g 0 -f a ¢
h 0 -—g 0 f 0 c b

02,5()‘1('”1: Wy, w3,w4,w5)) = "1,5(}\,("’1,“’2’"’3,"’4, - us)),
60,4(>‘:(w1:w2:w3:w4)) = 01,5(>\’(w1’w2’w3’w4’0))’
re 61,9((a + b)/2! ((a - b)/2’ (N d’ f’ i) 8 j’ h’ k))

A, B C D
(41) B A, -D C

¢ D A, -BJ|

-D C -B A

where

a c 0 d a ¢ 0 -—-d

_le b —-d 0 _ c b d 0

4, = 0 -d a c|’ 4; 0 d a cl’

d 0 c b -d 0 c b

0 —f 0 i 0 —¢g 0 J

| f 0 - 0 _|& 0 —j 0

B=1o -i -fI C=1o -j 0 -g

i f 0 J 0 g 0

319
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and
0 h 0 k
_|-h 0 -k 0
D=1 "9 & 0 -hl
-k 0 h 0
02,9(>\(w1,...,w8,w9)) =039 A (wv'--’ws’ _WQ))’

(
00,6(>"(w1’ wG)) = 01 9(>‘ (wl,...,ws,0,0,0)),
0, 2N, (wy, ..., wy)) = 0y, 9(>‘ (wy, ..., w;,0,0)),

9, sy (wy, ..., wg)) = 9, oA, (wy, ..., us,0)).

It is seen from (38), (39) and (40) that the simple Jordan algebras of degree 2
and dimensions 3, 4 and 6 are isomorphic to the Jordan algebras Hy(D), D = R,
C and H, respectively. Furthermore, it follows from Theorem 6 that Theorem 3
holds also with r =2 and D =R or D = C. Since o0, ; and o, ; are different it
also follows that Theorem 3 is false with » =2 and D = H. By the linear
mappings (38), (39) and (40) the distributions (29) with m = 2, 3 and 5 are
transformed into the two-dimensional real, complex and quaternion Wishart
distributions, respectively.

The statistical models considered in thls section seem rather peculiar and we
have not found a statistical interpretation for them. It shall be noticed, however,
that Jordan algebras were first introduced in an attempt to formulate the
foundations of quantum mechanics. Thus the given covariance matrices closely
correspond to so-called Dirac matrices which are used to describe the spin of a
particle. It is also seen from Lemma 5 that the distribution of the observation X
transforms in a way which is similar to the way the so-called wave functions
transform. (A wave function f: W — V transforms into the function w —
7(s)f(x(s) " Y(w)) under the orthogonal transformation x(s); see Varadarajan
[(1970), Chapter 12].)

8. Extension of a covariance hypothesis with linear structure. As we
have seen in Section 2, the covariance hypotheses which are parametrized by
Jordan algebras are the only covariance hypotheses with linear structure for
which there exists a complete, sufficient and unbiased estimator. On the other
hand, Theorems 2, 3 and 6 show that these hypotheses are very restrictive. For
most covariance hypotheses with linear structure one has, therefore, the problem
to choose between various estimators of the covariance. This problem can in
some cases be reduced by considering an extension of the hypotheses.

Thus, let L be a linear subspace of L (V) and suppose I € L. Set ® = {2 €
L|Z is positive definite} and consider the hypothesis H: 2 € ©. Let L, be the
Jordan subalgebra of L (V') generated by L and set ®, = {2 € L,|Z is positive
definite}. Then the hypothesis H,: = € L, is the smallest hypothesis which
includes H and which is linear in both the covariance and the inverse covariance.
Hence one can first estimate = under the hypothesis H,. This estimate is
sufficient and unbiased. The problem is therefore reduced to estimating a
parameter of dimension dim L from a statistic of dimension dim L,.
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The case where the elements of L commute has received considerable atten-
tion. In this case the Jordan algebra L, is isomorphic to a product of the simple
Jordan algebras R. Hence the statistical problem is equivalent to considering
dim L, independent random variables, which have T-distributions with known
degrees of freedom, and to estimating the scale parameters under a linear
hypothesis of dimension dim L. In the simplest case where dim L = 2 and
dim L, = 3 one has three random variables X,, X,, X, with scale parameters
B1,85: By + By, B, > 0and B, > 0, and it can be seen that the likelihood function
may have two local maxima.

Let L, be the associative subalgebra of L(V') generated by L. Set L, = L, N
L(V) and O, = {Z € L,|2 is positive definite}. It is clear that L, is a Jordan
subalgebra of L(V) and that L C L,. Hence H,: 3 € L, is also a hypothesis
which includes H and which is linear in both the covariance and the inverse
covariance. The Jordan algebra L, is isomorphic to a product J; X --- X, of
simple Jordan algebras, and the structure of the hypothesis H, is given by
Theorems 2, 3 and 6. Theorem 6 can, however, be simplified in this case. If J; is a
simple Jordan algebra of degree 2, then it follows that «J; is of dimension 3, 4 or
6. [The mapping (34) is only an isomorphism if m is 2 or 3, and the mappings
0, » and o, ,, given by (35) are only isomorphisms if m = 5.] Hence oJ; is Hy(D),
where D = R, C or H. Moreover, if J;, = Hy(H) it follows that (37) holds only
with n, = 0 or n, = 0. [The mapping (35) with m = 5 is not an isomorphism.]
We can say, therefore, that the structure of the hypothesis H, is given by
Theorems 2 and 3 with r > 2.

If the hypothesis H is a model of an experimental design, then the algebra L,
is the relationship algebra introduced by James (1957). Thus the role of the
relationship algebra seems to be that it gives an extension of the hypothesis to a
hypothesis which is linear in both the covariance and the inverse covariance.

Let ¢ be a subgroup of the group O(V) of all orthogonal linear mappings of V
into itself. Andersson (1975) considers the hypothesis H;: = € ©,, where 0, =
{2 € L, is positive definite} and Ly ={Z2 € L (V) |V G € 4: GLG' = Z}.
The hypothesis H, is said to be given by invariance under a group action. It is
clear that Ly =L, N L(V),where L, = {A € L(V)|VG € 9: GA = AG}isan
associative subalgebra of L(V'). Hence it follows from the preceding considera-
tions that the structure theorem in Andersson (1975) is a special case of
Theorems 2, 3 and 6, and that a hypothesis parametrized by a simple Jordan
algebra of degree 2 cannot be given by invariance under a group action except in
the cases where the Jordan algebra is Hy(D), D = R, C or H.
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