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CONFIDENCE REGIONS IN MULTIVARIATE CALIBRATION

BY SAMUEL D. OMAN

Hebrew University

The multivariate calibration problem is considered, in which a sample of
n observations on vectors §;, (of “true values”) and Y¥;, (of less accurate but
more easily obtained values) are to be used to estimate the unknown £
corresponding to a future Y. It is assumed that Y = BX + ¢, where ¢ is
multivariate normal and X = h(£) for known h. Current methods for obtain-
ing a confidence region C for £, which consist of computing a region R for X
and then taking C = A~(R), have the disadvantage that although the region
R might be nicely behaved, the region C need not be. An alternative method
is proposed which gives a well-behaved region (corresponding to the uni-
formly most accurate translation-invariant region when A is linear, B is
known and the covariance matrix of ¢ is a known multiple of the identity).
An application is given to the estimation of gestational age using ultrasound
fetal bone measurements.

1. Introduction. An example of the calibration problem in its simplest
setting is as follows: Observations (§,, ¥,),-..,(£,, ¥,) are given, in which the §;
are highly accurate (yet expensive) measurements of a quantity, while the y; are
less accurate (yet also less expensive) measurements. The objective is to compute
a calibration curve, to be used with a future y measurement (say y,) in order to
estimate the corresponding §,.

If the (£,, y,) are a random sample from a bivariate distribution and if (§,, ¥,)
is also to be drawn from the same distribution, then we may simply compute the
regression of the £; on the y,. If, however, these assumptions are not met (for
example, the ¢; might be laboratory values chosen to evenly cover the range of £,
without regard to the frequency distribution of future £’s), then other methods
are called for. In particular, if the data are modeled as

(1) y,=By+ Bk +e, 1<i<n,

for independent N(0, 02) error terms ¢;, then a confidence region for £, may be
obtained by inverting the distribution of §, = 8, + B,£,, where the f; are the
maximum likelihood estimates of the B; [Eisenhart (1939) and Fieller (1954)].
The region may be peculiarly shaped (e.g., two semiinfinite intervals), but is a
finite interval when the regression is significant at the corresponding level.

A useful generalization of (1.1) is the model

(1.23) Y(l) = g(g(l)) + E(i), 0 < i <n,
where now the Y, are g-vectors, the £, are r-vectors (r < ¢) and the ¢ are
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independent N(O, I') error terms. g is of the form

(1.2b) 8(¢) = B, X,
where
(1.2¢) X =X(8) = [m(8),.... b ()]

for known functions A; (e.g., squares or logarithms of components of ) which
enable (1.2) to be expressed as a standard multivariate linear regression model in
the unknown parameters B and T.

Brown (1982) discusses this model and presents the following procedure for
obtaining a 1 — « level confidence region C for §,, the value of § corresponding
to a new observation Y. Use Y, to determine a 1 — « level confidence region R
for X = X(£) (the specific form of R is given in the next section) and take

(1.3) C = (& X(£) € R).

Brown (1982) provides conditions (analogous to those in the univariate case)
guaranteeing that R is a bounded ellipsoid, but points out that even when these
conditions are satisfied, the region C for £, may be peculiarly behaved.

In this paper, an alternative confidence region D for £, is developed. D is
conservative [although it is exact if n = oo, i.e, when B and T in (1.2) are
known, as sometimes occurs in chemical applications, for example, Spjetvoll,
Martens and Volden (1982)] while C given by (1.3) is exact. On the other hand,
our procedure results in regions which tend to be better behaved and more easily
interpretable than those obtained from (1.3). Also, if n = o0, I' = I and the
functions A; in (1.2c) are linear, then D is the uniformly most accurate transla-
tion-invariant region for £, while C is not (unless ¢ = p = r).

In the next section, (1.3) is explicitly defined and discussed, and the proposed
method is motivated. The procedure is explicitly defined in Section 3 and
illustrated in Section 4. Section 5 compares the proposed method with asymp-
totic results obtained by Fujikoshi and Nishii (1984) and by Brown and Sundberg
(1987).

In the problem of Section 4 (which motivated the present paper), the objec-
tive was to determine whether combining ultrasound measurements of two fetal
bone lengths (as opposed to using one measurement only) would extend the
period during which ultrasound techniques provide sufficiently precise estimates
of gestational age. This question could not be satisfactorily answered using (1.3),
because of the peculiar behavior of the confidence regions, whereas it can be
answered using the proposed procedure.

Although Brown (1982) and Hunter and Lamboy (1981) contain numerous
references to related work in calibration, it appears that Brown’s method (1982)
is the only one proposed to date for obtaining exact confidence regions using the
model (1.2) [in particular, when the functions 4; in (1.2c) are nonlinear]. Brown
also discusses Bayesian approaches to the problem, as do Hunter and Lamboy in
the univariate case.
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2. Discussion of C and motivation for D. Let B denote the least-squares
estimate of B from the multivariate regression of the Y,;, on the X ;) = X(ém),
1 <i<n, denote g(£) = BX(¢) and define the SSE matrix S = Y, —
BX(,)][Y(,) BX ;)" and the “X ‘X ” matrix M = X, X; X(;). To 31mphfy nota-
tion we shall occasionally omit the index (0) [e.g., from £ ] and suppress the
dependence of quantities on &£.

Since the covariance between the ith and jth columns of B is (M -, ,;I'; one
has

(2.1) I~¢?Bo ~ N(I'~*/?Bo, v'M~'I)

for any constant vector v € R? and square root I''/2 of T (I'*/2I'*/2 = T'). Also,
S has the Wishart distribution

S~ W(n-p,T),

independently of B. Using this, Brown (1982) proves that for Y = Y, indepen-
dent of {Y,): 1 <i<n},

(2.2) iV=(ﬁ)——1——(Y—1‘3X)ts-1(Y—1§X)~F( )
’ g \g)1+a(X) a.m)

where
m=n—-p—-—q+1

and a(X) = XM 'X. A1 — a level confidence region R for X is then the set of
all X such that

(2‘3) VS qFa(q7 m)’

where F, denotes the upper a fractile. Consequently, (1.3) defines a 1 — a level
confidence region C for £ Also, a point estimate £* may be obtained by
minimizing V as a function of §.

Brown (1982) provides conditions sufficient to guarantee that R is an ellipse,
but also observes that the corresponding region for £ need not be well behaved.
To see this, consider thecase g =p=2,r=1, n = o0, B=T = I (known) and
X(§) = (& ¢(§)) for a strictly increasing, differentiable function ¢. Let x%(m)
denote the upper a fractile of the x%(m) distribution. Then R, C and ¢* are as
shown in Figure 1(a). This procedure has several undesirable properties:

1. C may be empty, even though £* is defined. Although empty confidence
regions are theoretically permissible, they are unpleasant to explain.

2. Suppose for the moment that ¢ is linear. After a transformation, the
problem is equivalent to obtaining a confidence region for £ in the assumed

model y (2) ~N((§)’I).

In this case, Y,, the distance from Y to the horizontal axis, should be used to test
the validity of the assumed model, large distances leading to rejection. However,
once the model is accepted, Y, has no further role to play, and a confidence
interval for ¢ should be of constant width centered at Y.
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For general ¢, this suggests that atypical Y should lead to questioning the
assumed model, although not necessarily to larger confidence regions once the
validity of the model is accepted. With C, however, as Y moves away from
the curve, the confidence interval becomes increasingly shorter, thus giving the
false impression that accurate inference about ¢ is being made when, in fact, the
entire model is suspect.

3. Since C is short with low probability and long with high probability, it
should be possible to derive an alternative procedure with lower expected length.

4. Suppose ¢(¢) = b, The optimal (uniformly most accurate translation-
invariant) procedure then gives the confidence interval

Y, + bY, — (1 + b2)¢]°
(2.4) {5: % 21+(b2 )4 sx'f"_a(l)}
of constant length
(2.5) 2[x2_.(1)/(1 + b%)]"”.

On the other hand, C gives an interval with varying length whose maximum
value is 2[ x2_ (2)/(1 + b?)]'/2 and whose expectation is necessarily greater than
(2.5).

The idea of our proposed procedure is indicated in Figure 1(b). For given ¢,
construct the tangent to the curve at (£ ¢(£)) and the corresponding strip S;
such that P(Y€ S;) =1 — a. Thenforgiven Y, D= {{: YE S;}isal — a level
confidence region for £. Explicitly,

Y - g+ (9, - 9(8))]°
1+ ¢/(¢)
Comparing D with C, note the following:

(2.6) D= ¢ < xa1))-

1. D is never empty, as it always contains the (possibly multivalued) estimate £
which minimizes the distance from Y to the curve.

2. If the curvature of (-, ¢(+)) is not too great relative to the width of the strips
S¢, D should be an interval whose length either increases or decreases slowly
as Y moves away from the curve. It is difficult to give precise results in
general, but an illustration is provided in Section 4.

3. D’s maximum length is roughly proportional to (x%(1))!/%, as opposed to
(x2(2))'/2 for C. For arbitrary q > r, if D and C are approximately spherical,
then the ratio of their maximum volumes should be of the order
[x%4(r)/x%(q)]/? which is quite small if g > r.

4. If ¢(§¢) = b¢, then (2.6) reduces to the optimal (2.4).

3. The region D. To define D in the general case, let £ denote the set of all
¢ for which (1.2) is assumed, and assume the #; to be differentiable for { € Q. In
the r = 1 dimensional case, it is reasonable to assume that there is no ¢ € Q
which is simultaneously a critical point for all the functions g;. Analogously, for
general r we require that there be no ¢ € Q and nonzero vector ¢ € R” such that
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the directional derivative of each g; along c at ¢ is zero. Explicitly, if

(3.1) Coxr = G(£) = ( Zf‘(&)),

J

then for each £ € Q, G is assumed to be almost surely of full rank r.
As in (2.6), define the statistic

(32) U=(n-p-r+[JY-2)](ISJ) [JY -2,

where o is the orthogonal projection matrix onto the column space of G and
where ()~ denotes a generalized inverse; note that both £ and </ depend on £
and B.

D is to be of the form D = {£: U < const.}. Observe that D so defined is the
set of all £ such that the projection of Y onto the tangent plane to 2(-) [at £(£)]
is within a specified distance (measured in an appropriate norm) of g(£). In other
words, analogous to Figure 1(b), £ € D exactly when Y is in an ellipsoidally
cross-sectioned cylinder which is perpendicular to the tangent plane to g2 at 2(£)
and which is “centered” at g(§).

The constant used to define D cannot be a percentile of U’s distribution,
since as a result of the dependence of </ on B this distribution depends on B and
T'. However, we may proceed as follows. Let xZ denote a central x%(m) variable
and x2,(\) denote a noncentral x2,(m, A) variable (with mean m + A). Define

2
Xm
Gm n= 2,
" Xa/n
and
2
Xm(A)
. G A) =
(3 3) m,n( ) xi/n ’

where the variables in the ratios are independent. Then for a > 0, define

(84) K, (x)=K(m,n,l,a,x)= j(;wP[Gm,n()\a) < x]P(x} € dA).

THEOREM. For any x,
P[Gr,(n—p—r+1) = x] 2 P(U = x) 2 K(r! n—-p-r+l,q, a(g):x),
where

(3.5) a(§) = X(£)'M'X(¢).
Thus, if x, is such that

(3'6) Ka(f)(xa) =1-agq,
then

(3.7) D={¢Ux<x,)

is a confidence region for £ of level at least 1 — a.
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The proof uses the following result, which is also useful in computations.

LEMMA. U may be written as
(3.8) U= (n-p-r+1)(Y- BX)'Q,A'Q4(Y - BX),

where the columns of the q X r matrix @, are an orthogonal basis for the
column space of G and where A = Q(HSQ)

ProOF. Use @, to form an orthogonal matrix @ = (Q,)|Q ), so that

J=QLQ!

_|{I o

L‘[o 0]‘

Writing JSJ = @ - LQ'SQL - Q' shows that
(9) = q[4" 0]e

for

0
for A as defined following (3.8). Substituting in (3.2) then gives
(3.9) U=(n-p-r+1)ZA7'Z,
where

Z=Qu(Y-28),
proving the lemma. O

PROOF OF THE THEOREM. Condition on B in (3.9) (recall that Q) does not
depend on S or Y). Z and A are independent given B, with

2B ~ N(Q4(g - 8), @,TQq)
and
A|lB ~ W(n - D, Q(t1)rQ(1))‘

It follows that U|B is a multiple of Hotelling’s T'2. Explicitly [see Muirhead
(1982), page 211],
UIB =D Gr,(n-—p-—r+1)(A)’

where G, ,(A) is defined in (3.3) and

A= [Q(ll)(g = é)] l(Q(tnrQa))_l[Q(tl)(g - g)] .
Thus,
(3.10) P(U < x) = f0°°P[G,,(,,_,,_,H)(A) < x]P(A € d)).

Now write
A= [r7%(g - @)l 'N(N'N) N [T (& - g)],
where I'"/?T''/2 = T and N = I''/?Q,,. Because of the dependence of £ and N on
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B, the distribution of A is intractable. However, we may clearly write
0<A<|T™%(g-g)lI*=W.
Since the integrand in (3.10) is decreasing in A, it follows that
P[G, (n—p-rin<x] 2 P(U<x)

(3'11) > '/(;OOP[Gr,(n—P—r-H)(}\) = x]P(W € d)\)

From (2.1) one has
W =|T"*(B - B)X(§)|* ~ ax*(q)
for
a=[X(§)]'MX(¢);

substituting into (3.11) then proves the theorem. O

A convenient computational formula is

1

(a+1)°T(g/2)

il P(Gm+2,~,,,sx)F(q/2+j)( a )i
j a+1/’

K(m,n,q,a,x) =
(3.12)

X !
Jj=0 J:

which is obtained using the mixture representation

00
P[G, .(a\) <x] =e 2§ (aM/2)'P|Gpszj,0 < %] /1!
Jj=0
and integrating out A in (3.4).

In practice, the function K ,(x) must be evaluated by numerical methods.
Since a(¢) in (3.5) is of order n~!, the series in (3.12) converges rapidly for n
sufficiently large. Also, it is easy to obtain analytic bounds on the error incurred
by truncating the summation. Note from (3.4) that K (x) is monotone decreas-
ing in a, and thus x, = x (a) defined by (3.6) is monotone increasing in a.

To implement the procedure one may first compute the x (a) for a grid of
values of a in [0, a,], where a, = sup;cqa({). For given Y, one may then
determine D sequentially by computing U(¢) [using (3.8)] for various §’s and
checking whether U(¢) < x(a(£)). This is essentially the way (2.3) is used to
determine the region C in (1.3), except that in (2.3) the critical point does not
depend on £. An alternative method, not requiring inversion of K, to determine
x,, is to write U<x,= K, (1 —a) ® K (U) <1 — a. For each £ one may
thus simply evaluate k&, = K ,(U(§)) and declare { € D if kg <1 — a.

Two further remarks are in order.

1. For n = o [i.e, when B and I are known; cf. Spjotvoll, Martens and
Volden (1982)], D is exact. Indeed, if (n — p — r + 1) 'S is replaced by I' and B
by B in (3.8), then clearly U =, G, ,_,_,+1), and since a = 0, (3.4) shows that
K (x) is U’s distribution function. For finite n, the theorem’s upper bound on
P(U < x) may be used to measure the degree of conservatism of D.
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2. If in addition, the functions 4; in (1.2c) are linear and ¢ = r, then Gin (3.1
is invertible and J = I in (3.2). n~'U then reduces to V in (2.2) and the theorem
gives the same region as (2.3).

4. Examples. We first illustrate our method on a problem, described in
Oman and Wax (1984, 1985), of estimating gestational age by ultrasound mea-
surements of two fetal bone lengths: the femur length F and the biparietal
diameter ( BPD) (essentially the diameter of the skull along the axis between the
ears). (F, BPD) measurements were obtained for n = 1114 women whose week of
pregnancy W was accurately determined, with the object of forming a calibra-
tion curve to estimate the W, corresponding to a future pair (F;, BPD,) of
measurements. .

Since increasing (with W) biological variability limits the usefulness of esti-
mates based on F; alone to about the 31st week of pregnancy, a central question
asked by the researchers was whether the confidence interval for W}, obtained by
combining F; and BPD, would be short enough (less than 5.5 weeks long) to
justify using ultrasound based estimates of gestational age past the 31st week. As
F and BPD are highly correlated, it was not clear whether using both measure-
ments would result in significantly shorter confidence intervals.

In an attempt to answer this question, Brown’s (1982) method was used to
compute confidence intervals for W, for various combinations of ¥, and BPD,.
The results were summarized in Oman and Wax [(1985), Figure 8], which
presents the rounded lengths of these intervals. The difficulties in interpreting
this figure were discussed in Section 4.7 of that article. In particular, the fact
that longer intervals were obtained for typical (¥, BPD) combinations necessi-
tated the paradoxical “conclusion” that intervals based on F and BPD could be
used only through the 26th week, as opposed to the 31st week for intervals based
on F alone.

Figure 2 shows the widths of the confidence intervals obtained using the
present method, for all (¥, BPD) combinations in a 99% confidence ellipse. The
intervals are better behaved than those of Oman and Wax, their length tending
to increase as weeks of pregnancy increase. Figure 2 thus permits the conclusion
that F and BPD can be used through approximately the 31st week, indicating
that the use of F' and BPD together does not extend the period of usefulness of
ultrasound techniques over that obtained from F alone. Although disappointing,
this conclusion is at least nonparadoxical and can be explained by the high
correlation between F and BPD.

We now describe the implementation of the theorem in obtaining Figure 2. In
terms of the model (1.2), Y = (F, BPD)!, ¢ = Wand X = (1, £, £2)% The matrices
at the beginning of Section 2 are

B= [—42.917 4514 —0.0402
, —39.187 5292 —0.0492
and
S=[8281.00 4,900.48}
14,484.23 |°



CALIBRATION CONFIDENCE INTERVALS 183

16 15 ‘2¢ 25 3¢ 35 48 45 HEe 55 € 65 7% 75 €€

1 poesEERRRR:
1 egggttun‘-nv
1 888099 R RR By
1 B8BAHOOS ¥R NEET
1 7BRRBBCODPAEERN
1 77686085908 #¥HY
1 777768888959 #¥ ¥
1 77777788888090% %%
1 67777777688RBBEO**
1 €6677777778688999
1 66666777777788689
1 6666666777777 78888
1 666666666777777788
1 GEC666666677777777
1 56€€66666666777777
1 556666666666667777
1 5555666666666666777
1 SHEEE5CE666666666€7
1 555E 555 566666666666
1 5555555556666 66666
1 £55555555556666666
1 55555555 £555566€66
1 5£55555555555556666
1 5555555565£55555566
1 5555555555555555555
1 £55555555555£585565
1 44555555558 H5E£55555
1 4444555555555555555
1 4444455555£5555555
1 4444444555555555565
1 4444444 44555555555
1 44444444 44455555555
BPD 1 4444444444444555555
1 4444444444444445555
1 4444444444444444455
65 1 4444444444444444444
1 444444444444444444
1 4444449444444444444
1 4444444454444444444
1 4444444444444444444
1 4444444444444444444
1 4444444444444444444
1 444444444444444444
1 444444494444444444
1 444444444444444444
1 444444444444444444
1 444444444444444444
1 4444444444444444444
1 444444444444444444
1 334444444444444444
1 333344444444444444
1 333333444444444444
1 333333334444444444
1 33333333344444444
1 33333333333444444
1 2333332233234444
1 33333333333333344
1 33323323333333333
1 3332333333233333
1 3333333333323333
1 3333333333333333
1 3233333333333333
1 333333233333333
1 333323333333333
1 333333333333333
1 333333323333333
1 32233332333333
I 33333333233333 -
1 33333333333333
1 33333333333333
I 3333333353333

16 15 20 25 30 35 40 45 S8 55 66 65 70 75 8¢
F
FIG. 2. Confidence interval lengths (weeks). F is the femur length (mm) and BPD is the biparietal

diameter (mm). Entry is the rounded length of the 95% confidence interval for a given (F, BPD)
combination using the quadratic model.
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We first compute a, as described following (3.12). In (3.5),

v )

= -1
a(£) = a(W) = 7753 [Wz—m2 Mo w2 = m, |

where M is the “X ‘X ” matrix [see Oman and Wax (1984)] for the centered obser-
vations and m,, m, denote the sample means. We obtain max,, _y . qa(W) =
= 0.0117.
If we now determine x* so that K,(x*)=0.95 and use x* instead of
X, 05(a(W)) in (3.7), then the monobomcn;y of x005(a) guarantees that D is
(slightly, since a, = 0) conservative. To compute x*, in (3.12) write

a, \’
ZP( 1+2j,11145x)( )

a,+1

K(1,1114,2,a,,x) =
( g, X) o+ 1]
Truncating the sum after two terms gives an error of at most 1.337 X 1074,
and approximating the G’s by x? variables gives x* = 3.93.
Next, note that in (3.1)

10
G=B|1 RZ;
2w
thus, in (3.8) A is a scalar and we may take Qu = G. The result is
[Z24(Y; = B = BaW = BaW?) (B2 + 26W)]°

U(W) = 1111

Z? 12]=1( Bix + 2ﬁi3W) ij(ﬁ;? + 2Bj3 ) ’

which is easily computed. Comparing U(W) with x* for a grid of W values then
gives the desired interval.

We next examine the conservatism of our regions using Brown’s (1982) paint
finish data. In Brown’s Section 5.3, pigmentation is estimated via a quadratic
model with orthogonal polynomials, with 27 observations on P (pigmentation)
and the response variables Y;,Y,. Thus n =27, p=3,g=2and r = 1.

Letting £ = P — 1, we find in (3.5) that

a(€) = [1/27 + £2/18 + (2 - 3¢?) /54]

For a grid of values of ¢ covering the range of the experimental data, Table 1
contains §, the critical point x,(£) in (3.6) [obtained by truncating (3.12) at
J = 3, which results in an error of at most 0.001 in computing K ] and P[G, o <
x,(£)], the upper bound on the coverage probability of D which results from the
theorem. We remark that we also used our procedure to compute 95% confidence
regions for £ using the nine values of Y considered by Brown, and obtained
intervals too wide to be of any use. This may be due to near zero (statistically
speakmg) components of §. Specifically, the quadratic coefficient in the regres-
sion of Y, on ¢ and &2 is highly nonsignificant ( p-value = 0.94), and its small
value causes a “flatness” in the second component of the estimate g of (1.2b). As
a result, for a wide range of £ values U, in (3.7) remains less than the critical
point x,(£) and our method results in overly wide intervals.
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TABLE 1
Confidence region characteristics for the paint data
£ X,05(£)° P[G, 5 < xo.oes(f)]b
0.0 5.19 0.968
0.1 5.18 0.968
0.2 5.14 0.967
0.3 5.08 0.966
04 5.01 0.965
0.5 4.93 0.964
0.6 4.87 0.963
0.7 4.85 0.963
0.8 4.87 0.963
0.9 4.98 0.965
1.0 5.19 0.968

8%0.05(£) is an upper bound on the 95th fractile of
U'’s distribution.

PP[G 54 < x005(£)]is an upper bound on the cover-
age probability of the nominal 95% interval.

5. Comparison with other methods. Suppose for the moment thatp = r =
1, X(¢) = ¢, and that B = B and T are known. Defining ¢* = BT ~'Y/B‘T B,
so that Y* = £*8 is the projection (in the norm determined by I'~!) of the new
observation Y onto the span of B8, we may write the log-likelihood (except for
terms constant in £) as

(5.1) (Y~ 8)T"H(Y - 8) = (Y - &) T"'(Y - £°B)

+(& - ¢)°BT .

Thus £*, the sufficient statistic for £, is independent of the ancillary statistic
(Y — £B)T~YY — ¢*B), which is the squared I'"! distance from Y to the
calibration curve. In particular, the size of a confidence interval for ¢ should not
increase with this distance.

Now suppose that B and I' are unknown, denote their estimates from the
calibration experiment by 8 and S and define £ = §5-1Y/$S~ 6. Equation (5.1)
suggests that

(Y - £B)'T-XY — £8) =(Y — £8)S™U(Y — £B) +(¢ - £)?8'5 8
= H + Q.

Thus, approximately, inference for £ should be based on @ and be independent of
H. To emphasize this point, consider the simpler problem in which n observa-
tions Y, ~ N(u,;, 6%) are available, with ¢ and p; unknown (but with repli-
cations). Let s2 denote the usual estimate of 2. Suppose now that it is desired
to estimate p, based on Y, ~ N(p,, 62). The width of the confidence interval for
po should depend on s? and not on the distance of Y, from the estimates fi,; the
proper role of this distance is in testing the consistency of Y, with the n
observations Y.



186 S.D. OMAN

A diagnostic statistic based on H has been proposed by Brown and Sundberg
(1987), for the case of general p, ¢ and r [but with the A; in (1.2c) assumed
linear]. Williams (1959) also considers testing consistency of Y, with the
calibration data. Also, a confidence region whose size increases with H has been
obtained by Brown and Sundberg (1987) using a profile likelihood approach.
Their results are asymptotic and again assume linear #4; in (1.2c).

Confidence regions based on @ (again, assuming arbitrary dimensions) have
been obtained by Fujikoshi and Nishii (1984); however, they require A4; in (1.2c)
to be linear, and their results are asymptotic due to the intractable distribution
of Q.

Now @ may be written as (Y — £8)'S™Y(Y — ¢B), where Y is the projection
onto £ in the norm determined by S~%; it is the use of this norm which
complicates the distribution of €. In our approach, we compute the Euclidean
projection ¥ and then normalize ¥ — ¢8 by its approximate covariance matrix.
Although the resulting score statistic is not invariant under arbitrary linear
transformations, it has a distribution sufficiently tractable to make possible
nonasymptotic results which can be generalized to arbitrary dimensions and,
more importantly, to general functions 4; in (1.2c).

Finally, suppose in (1.2) that B is known and I' = ¢%I. Then estimating 0y
based on the observation Y, may be viewed as a problem in nonlinear regres-
sion, using the g observations in Y. This suggests trying to adapt results on
exact confidence regions in nonlinear regression [e.g., see Hartley (1964)] to the
present case. However, once B and I' are assumed unknown, the distributions
involved become intractable.
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