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CHOICE OF KERNEL ORDER IN DENSITY ESTIMATION

BY PETER HALL AND J. S. MARROND?

Australian National University

The selection of the order, i.e.,, number of vanishing moments, of the
kernel in a kernel density estimator is considered from two points of view.
First, theoretical properties are investigated by a mean integrated squared
error analysis of the problem. Second, and perhaps more importantly, cross
validation is proposed as a practical method of choice, and theoretical
backing for this is provided through an asymptotic optimality result.

1.. Introduction. In kernel density estimation, 4s well as in other curve-
estimation settings, it has long been known that improved asymptotic rates of
convergence can be attained through use of a “higher-order” kernel function; see
Parzen (1962), Watson and Leadbetter (1963) and Bartlett (1963). Higher-order
kernels are usually thought of as functions whose early moments are equal to
zero. It has been demonstrated through simulation studies that the asymptoti-
cally indicated benefits of higher-order kernels can also be very significant in
finite-sample situations; see, for example, Schucany and Sommers (1977) and
Gasser, Miiller and Mammitzsch (1985). However, higher-order kernels are virtu-
ally never used in practice for two reasons. First, they have the intuitively
unappealing feature of taking negative values. Second, whereas a good deal is
known about choosing the smoothing parameter, essentially nothing is known
about how to choose the order of the kernel, both from a theoretical viewpoint
and in practical situations.

It is the intention of this paper to address both parts of the second issue. We
hope that, through clear resolution of this matter, the concerns of the first issue
might be outweighed, in many statisticians’ minds, by the advantages of higher-
order kernels.

Two approaches to choosing the kernel order are considered here. First,
intuitive insight is gained through an asymptotic mean integrated squared error
(MISE) analysis. Second, with deeper practical implications, cross validation is
proposed as a method of choosing both the smoothing parameter and the kernel
order, and theoretical backing for this idea is provided.

Our MISE analysis simultaneously takes into account the problems of both
smoothing parameter and kernel-order selection, instead of arbitrarily fixing the
kernel order and concentrating on the smoothing parameter as has typically been
done in the past. Asymptotic representations are found, in ¢wo interesting cases,
for the optimal choices of the smoothing parameter and of the kernel order, and
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also for the minimum MISE. It is seen that if f is not too “smooth,” then there
is a finite optimal order, whereas if f is very “smooth,” then, at least asymptoti-
cally, the optimal order is infinite.

The theoretical backing for cross validation takes the form of an asymptotic
optimality result in the spirit of the results of Hall (1983, 1985) and Stone (1984).
Intuitively, the result says that choosing the smoothing parameter and kernel
order by cross validation is, in the limit, as good as using the optimal values.

Notation is introduced in the second section. The third and fourth sections
treat the MISE analysis and cross validation, respectively. The rest of the paper
is devoted to proofs.

2. The setting. Given a random sample X,,..., X,, from an unknown uni-
variate density f, the kernel estimator of f is given by
n
(2.1) f(x) = (nh)™ ¥ K{(x - X;)/R},
J=1

where K is the kernel function and 4 is the smoothing parameter or bandwidth.
The kernel K is typically said to be of order p € Z if

1’ j=O’
fx’K(x)dx= 0, j=1,...,p—1,
C, J=n,

where C # 0.

A number of authors, including Parzen (1962), Watson and Leadbetter (1963),
and Davis (1975, 1977), have analyzed the estimator at (2.1) by Fourier trans-
form analysis. By these methods, the notion of order of a kernel can be extended
to real values of p by requiring that the Fourier transform « of K satisfy

k(t) =1+ CltiP + O(tP),
as ¢t — 0, where C is a nonzero constant.

To simplify presentation, the results are stated and proved for the particular
family of kernels

(2.2) K (x)=n"! fo * cos(tx Jexp(—t?) dt,

for p > 2. Observe that K, has Fourier transform
kp(2) = exp(—[t{P),

and so K, is of order p. Also note that K, is a Gaussian probability density.
Many alternatives to (2.2) are possible; for example, exp(—¢?) may be replaced
by (1 + t?)~! without affecting our conclusions. A more common method of
constructing higher-order kernels is through piecewise polynomials; see Singh
(1979), Miiller (1984) and Gasser, Miiller and Mammitzsch (1985). Although the
idea of this paper extends in a straightforward fashion to such kernels, proofs in
the case of unbounded order result in severe technical complications, which seem
to obscure the statistical issues.
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Our decision to work with Fourier transforms, rather than directly with
estimators, is in keeping with efficient practical methods for numerical imple-
mentation of density estimation; see Silverman (1982). Minimal computation is
achieved by taking fast Fourier transforms and constructing estimators in the
Fourier domain. From that viewpoint, variable kernels such as K, are much
better suited to computation than are piecewise polynomials. Silverman (1982)
also gives a method for computing the cross-validatory criterion.

As p - o, K, converges to the “sync kernel” K (X) = (7x)~'sin x, which
is of interest because of certain L? optimality properties; see Davis (1975, 1977)
and Ibragimov and Khasminskii (1982). Unfortunately, density estimates based
on K exhibit erratic L' behavior, due to the fact that |K | is not integrable.
However, the kernel

L(x) = (4/77x2)[{sin(x/2)}2 - {si‘n(x/4)}2],
for x € R, is integrable. Since L has Fourier transform
A(t) = Lig<iey + 2(1 - |t|)1{1/25m51}’

which satisfies A(¢) = 1 in a neighborhood of the origin, then L (like K ;) is a
kernel whose nominal order is infinite. Devroye and Gyoérfi (1985), page 135,
describe a family of kernels similar to L. The theory for any member of this
family is similar to that which we shall give for K, and for L.

3. MISE analysis. The integrated squared error (ISE) and MISE are de-
fined by

ISE = [(f(x) - f(x))" ds,

MISE = E(ISE).

Bias influences the MISE behavior of f [defined at (2.1)] through a character-
istic often termed “smoothness.” Some descriptions of smoothness are based on
various derivatives of f. The more sophisticated of these include Sobolev-type
conditions [Wahba (1972)], Taylor remainder conditions [Stone (1980)] and
Lipschitz bounds on derivatives [Stone (1982)]. Other descriptions of smoothness
are based on the characteristic function ¢ of f [Parzen (1962), Watson and
Leadbetter (1963) and Davis (1975, 1977)].

A version of the second approach is to assume either

(3.1) lo(e) ~ BIe1™*, as |t = oo,
for some a > 1 and B8 > 0, or
(3.2) 9(2)] ~ exp(=B|t|*), ast— oo,

for some a >0 and B > 0. These assumptions are much stronger than is
mathematically necessary (in particular, they imply that ¢ cannot take on the
value zero infinitely often), but are made for clarity of presentation. There are
many ways to weaken (3.1) and (3.2), for example, by working with “integral
averages” of those conditions, but these involve introduction of technicalities,
which tend to obscure the main issues.
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Condition (3.1) is closest to the derivative-based methods of describing
smoothness. It may be very loosely interpreted by saying that “f has only a — 1
derivatives at some point.” For example, it holds if f is a gamma density with
shape parameter a, in which case only a — 1 “derivatives” exist at the origin.

Condition (3.2) provides a way of describing smoothness when f is infinitely
differentiable, although the term ‘“smoothness” loses much of its intuitive
content in this case.

The asymptotic behavior of MISE, and properties of MISE-optimal A and p
under the first type of smoothness assumption, are described by

THEOREM 3.1. Assume ¢ satisfies (3.1).
(@) If K = K, then

}ilnf MISE ~ n_(za_l)/(2“)77_1{/32(2a _ 1)}1/(2a)
)p
x {1+ (2a - 1)‘1}( inf cp)l/@“)

2<p<oo

b

where

G, = (27T +p 7)) [Tre(1 ~ exp(~ 7)),
0

for p < 00 and C,, = (2a — 1)~*. The value p, of p, which minimizes C,, is
finite, and the values of h, p, which minimize MISE, satisfy p — p, and

nl/@Oh [21/p°{r(1 + Po_l)_l}(% - 1).32/0001,“2“{1 — exp(—tP0))? dt] _l/za.
(b) If K = K, then
inf MISE ~ n~C+=>/@07~}{g%(2a — D}*7{1 + (20 - 1) )00,
and the minimizing value of h satisfies
h~ B—l/an—l/@a)‘
(c) If K= L, then
inf MISE ~ n~¢e2/C0r =12 D,{1 + (2a - 17,

and the minimizing value of h satisfies h ~ Dy 'n~'/@%, where

3 2 (1 ,—2a 2 /@
D, = {5(201 -1)B fl/zt (2¢-1) dt}

REMARK 3.1. Since p, < oo, there is something to be gained in using the

finite order kernel K, rather than the sync kernel K. However, the gain is not

in the rate of convergence, but only in the size of the multiplicative constant.
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REMARK 3.2. A comparison of the kernels K, and L can be made by
considering the ratio of their minimum asymptotic MISEs. For large a this ratio
is close to 2, which fits in with optimality results for K, [Davis (1977), Section
3], and which can be thought of as the price paid for using the integrable L
instead of K .

The asymptotic behavior of MISE, and properties of the MISE-optimal A
and p under the second type of smoothness assumption, are contained in

THEOREM 3.2. Assume ¢ satisfies (3.2).
() If K = K, then

inf MISE ~ n"(log n)n=Y(28) "V,
P

the minimizing value of p diverges to + oo, and the minimizing value of
h ~ (2B/log n)'/=,

(b) The same holds true if K = K, except that p = oo.

(c) If K =L, then '

inf MISE ~ n~Y(log n)"/*(37) " 'g2-(/ag-1/a,
and the minimizing value of h satisfies h ~ (2! %8 /log n)'/*.

REMARK 3.3. The other side of Remark 3.1 is that if f is very smooth, then
there is no first-order asymptotic gain in using any finite-order kernel K ,, even if
p increases with n. When one uses K, or L, there is no extra parameter such as
p to determine kernel order. Window size A implicitly determines order. For
related work on how % should be chosen in this type of setting, see Cline and
Hart (1986).

REMARK 3.4. Note that the ratio of smallest asymptotic MISEs in parts (b)
and (c) of Theorem 3.2 is 2, which fits in with the optimality results of Section 4
of Davis (1977) and also agrees with Remark 3.2.

REMARK 3.5. The arguments used to establish Theorem 3.2 may be em-
ployed to show that if

lim inf exp(|£*)|¢(£)| > 0,
|t]— 00

for some a > 0, then for each £ > 0, the bandwidth A minimizing MISE satisfies
h = O{(log n)~?/®*¢} as n - o0, no matter whether K = K,, K, or L. This
fact will be used in the next section.

4. Cross validation. The results of the previous section provide insight into
the theoretical issues of choosing kernel order, but are not directly useful in
practice because their application would require detailed knowledge of the
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unknown f. The analogous difficulty for smoothing parameter selection has been
overcome through cross validation, and we propose doing the same here.

The squared-error cross-validatory criterion is an unbiased estimate of
MISE - [f 2, given by

CV = [f2-2nt Y f(X),
i=1
where f: denotes the leave-one-out version of f given by
fi(x) = {(n -~ )R} ' L K{(x - X;)/R}.
J*i
See Rudemo (1982), Hall (1983, 1985), Bowman (1984) and Stone (1984) for
discussions of the idea of selecting the smoothing parameter % to be the

minimizer of CV.
In the case K = K, let (h, p) denote that value of (h, p), with

(4.1) 0<hx< (logn) 2

(any fixed & > 0), which minimizes CV. If K = K or K = L, let / denote the
value of & within the range (4.1), which minimizes CV. These adaptive choices of
h and p work as well as “optimal” choices of £ and p in the following
asymptotic sense. Let ISE* and MISE* denote the minimum values of MISE
and ISE, respectively, minimized over values of p_ > 0 and h satisfying (4.1). Let
ISE* denote the value of ISE evaluated at (4, p) (if K = K p) or at h Gf
K=K_orK=L).

THEOREM 4.1. If f is bounded, then ISE*/ISE* and ISE*/MISE* both
converge to unity with probability 1.

REMARK 4.1. Theorem 4.1 is most meaningful when the value of A which
minimizes MISE lies in the interval (0,(log n) ***9). From Remark 3.6, a
simple sufficient condition for this is

1iminfexp(|t|<l/4)‘*)|¢(t)| >0,

for some & > 0. This restriction can be weakened considerably, for example, by
asking that it hold in integral average form. Conditions of this type ask that f
be not too smooth. It is unreasonable to expect that cross validation will produce
an optimal estimator regardless of the smoothness of f. If f is so smooth that ¢
vanishes outside a compact interval, then the minimum MISE is of order n~!
[Ibragimov and Khasminskii (1982) and Devroye and Gyorfi (1985), page 133ff.].
But the cross-validatory criterion is equivalent to a quantity that estimates ISE
with an error of order n!, so cross validation is doomed to failure.

REMARK 4.2. The idea of using cross validation as a method for choosing
between density estimators (as opposed to simply selecting the smoothing
parameter) has been discussed before by Rudemo (1982) and Marron (1987).
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REMARK 4.3. Cross validation also provides a practical solution to the issues
raised in Remarks 3.1 and 3.3, in that choice can be made among K, K, and L
(together with any other density estimator) by taking the one w1th smallest
minimum CV.

REMARK 4.4. It should now be quite clear that the results of this section,
and also those of Section 3, would be very cumbersome if {K,: p > 2} were a
family of piecewise polynomials.

REMARK 4.5. An interesting feature of the proof of Theorem 4.1, is that the
methods used (based on martingale methods and Burkholder’s inequality) could
be used to give much simpler proofs of the results of Hall (1983, 1985), Stone
(1984), Marron (1985, 1987) and Marron and Hardle (1986). The Fourier trans-
form aspect of our proof also provides a new viewpoint into the structure of such
results.

REMARK 4.6. It is important to keep in mind that there can be significant
differences between the effects described by the theorems in this paper and what
happens in a practical situation. In the case of Theorems 3.1 and 3.2, there are
two levels of approximation. First, the concept of MISE demands that instead of
optimizing ISE for the data set at hand, we minimize the average of ISE over all
possible data sets. Second, Theorems 3.1 and 3.2 are only asymptotic in char-
acter. Their validity depends on things like 2 being “small,” which can require
very large n when A ~ (log n)~/% In the case of Theorem 4.1, the results of
Hall and Marron (1987a) indicate that the rates of convergence in Theorem 4.1
can be very slow, particularly when f is quite smooth. In general, the perfor-
mance of cross validation as a device for minimizing ISE becomes poorer as
smoothness of the density increases. The difficulty is a feature of the problem,
not a deficiency of cross validation. Indeed, there is a sense in which cross
validation copes with this difficulty best of all possible smoothing parameter
selection methods [Hall and Marron (1987b)].

5. Proofs.

PROOF OF THEOREMS 3.1 AND 3.2. We give only an outline. If the symmetric
kernel K has Fourier transform k, then the estimator f defined at (2.1) has
MISE given by

7 MISE = (nh) " [ + [“16(1 ~ )" ~ 07" [0l

where «, = k(h - ) denotes the Fourier transform of A~ 'K(:/h). Here we have
used Parseval’s identity.
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Minimum MISE is achieved only under conditions of consistency, and that
entails 4~ — 0 as n — oo. In this circumstance, if ¢ satisfies (3.1) and if p > a — },

A “lol2(1 ~ k)

0
Bzhz“”lj(; t721 — exp(—t?)}’dt, ifK= K,,2<p<oo,

Zp2e-1(2q — 1) D2, ifK=1L,
and
foo 2°YPr(1+p7'), ifK=K,,
o g, ifK=L.
Therefore
(nh)_l2‘1/pf(1 +p 1)+ Bzhz““lfwt“z""{l - exp(——tp)}2dt,
0
a MISE ~ ifKEKp’
(nh)™'2 + 2h%*"Y(2a — 1) "' D",
if K=1L,

whence the result. [The fact that p, < cc may be deduced from an expansion of

C, in powers of p~'; note that I'(1 + &) =1 — C8 + O(6) as & — 0, where

= —0.5772... is minus the Euler constant.]
If ¢ satisfies (3.2) and K = K, then it can be shown that the first-order
asymptotics do not change if we take p = oo. It may be proved that

o . | (2aB) 'h*exp(~2BR"°), - fK=K_,
J el )~ 2T T L
0 (21~ °aB) "h3*lexp(—-2'~BA~°), if K = L.
Therefore
(nh)—l + (2aﬂ)_1h“_]exp(—-2ﬁh_“), fK=K,,
(nh) 72 + (2t~%pB) h3*lexp(—2'"Br"*), fK=1L,

whence the result.

« MISE ~ {

PROOF OF THEOREM 4.1. We treat only the case K = K, 2 < p < co. Other
cases are similar. Write «, , for the Fourier transform of the function

h7IK, (-/h), let &(t) = n~'Lexp(itX;), n = n(h, p) = [P161PA — k5, )%
li/\(t) = {n(n - 1)}_1 Z‘:‘dexp{it(Xj - Xk)}_
J#*

CVo=CV + [f2+2n7 g{f(x,.) - ff2},
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and note that for a constant C > 0,

wMISE = n~t [7(1— 912)xd , + [ 6P = k4 ,)" = C{(nh) " + 0},
0 0
= (%522 ® 2 of% A=
(1) wISE = [ [P’} , + [ 1ol =2 (Red)xs

(5.2) 7CV, = fo 61262, + fo 9|2 — 2]0 (Re §)ky , + 2[0 Re{(3 - 9)9)-

Minimizing CV is equivalent to minimizing CVj,.

Fix & a, b > 0, let 5 denote the set of values of A satisfying n™* < h <
(logn) %1+ and & the set of values p satisfying 2 < p < n®. A little algebra
shows that if ¢ = ¢(a, b) and C = C(a, b) are chosen sufficiently large, then

l"hnpl(t) - Khz»pz(t)l < Cn_(“”)exp{—%(n“’t)z},
uniformly in ¢ > 0, values h,, h, € # satisfying |h, — hy| < n™¢, and values
D1, Dy € P satisfying |p, — p,| < n~°. We may now deduce from (5.1) and (5.2)
that for some C, > 0,
[ISE(Ay, p,) — ISE(ky, ps)|
+|CVy(hy, p1) — CVy( kg, P2l < Cin 72,

uniformly in such values of h,, h,, p;, p, and all n-samples {X;}. A similar
argument shows that for sufficiently large b, the left-hand side of (5.3), with
p,=p and p, = oo, is dominated by C,n~? uniformly in h,, h, € # and
n® < p < oo; use , ,, to approximate , ,, and note that for ¢ > 0,

I o(8) = Kn, ()l < Co{ (BE)PI(Rt < 1) + (ht) PI(ht > 1)}

and that the integral over (0, ) of the right-hand side is dominated by
C,(hp)~ . If we now show that for any 6 > 0 and r > 0,

sup  (P[|ISE(h, p) ~ MISE(k, p)| > 8{(nk) ™" + n)]

heX,2<p<oo

oo

(5.3)

(5.4) +P[|CV(h, p) — ISE(h, p)| > 8{(nh) " + "'}])

=0(n""),
then we shall have Theorem (4.1) for A restricted to n™¢ < h < (log n) ~21+9),
[See, e.g., Marron (1985) for the argument.] The case A < n™¢ for large a is

easily treated separately.
To prove (5.4), note from (5.1) and (5.2) that

m(CV, — ISE) = 2 Re{( — $)8}(1 — 4,,)
(5.5) ¢ e
+2fO Re(260 — ¥ — |91%)x;,

#(ISE ~ MISE) = 2 Re{($ = )8} {(1 = n )4, ~ 1}

(5.6) + fo “[1912 = E3I? - 2(1 — n7)Re{( — )8} x4, -
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Let f, ,(x) = E{f(x|h)} and Y; = f, (X)) — f(X,) — E{f, (X,) - f(X,)}, and
notice that, uniformly in 4 and p, '

JE(2)i(x - he) dz‘ < {fK;(z) & [1%(he) dz}w <Cn i,

Ifh,p(x)l =

E(Y?) < Gof(fap = 1)" = Con™* [T162(1 = ks )" = G,

and E|Y}’ < C{h~'/2. Therefore by Rosenthal’s (1970) inequality [see also Hall
and Heyde (1980)],

1 W
= En 1YY

B [“Re((3 - 9)3)(1 ~ 53.,)
< B)|(nE(¥2))" + | Y)]

< BCY{(nn)"* + nt=th=12},

where B, depends only on I Since ™'y < h{(nh)™! + 1)?, then, by Markov’s
inequality,
Pﬂfo Re{(¢ — ¢)o}(1 —k, ,)| > 8{(nk) " + n}]

< Bn(Cp~m12)’,

(5.7)

The version of B, given by Rosenthal (1970) is unduly large. Following the
proof of Burkholder’s (1973) Theorem 21.1, we see that we may take B, to be the
infimum of y7/(1 — ye), where (in Burkholder’s notation) e = 62(8 — 6 — 1)2,
y = B%, n = 87, and the infimum is over values of B8, 8 such that 0 <8 < 8 — 1
and ye < 1. For our purposes we may take B =1 + sl !loglog for any s > 0,
and 8 ~ 17! {257 %(logl)’(loglogl)~2}~'/2 for large I, which gives B, <
{Cyol(log 1)*/2}%. Therefore if I = log n and if A < (log n) %1*9), then for large n
the right-hand side of (5.7) is dominated by

n{CiCio8 1 (log )" *h2} < n{11*(log n) ***9}' = O(n"7),

for all » > 0. Therefore

> 6{(nh)_1 + n} =0(n™"),

p[} [7Re((3 - 9)3H1 - 1)

for all r> 0. The analogous result, with 1 — x replaced by {(1 — n=')kx — 1}«
[see (5.6)], also holds.
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To treat the remaining terms in (5.5) and (5.6), notice that
T, = —fo Re(266 — & — |92)k,, , = (n(n— 1)} 'L H(X;, X,),

J*k
T,=(1-n"1" fo “[1912 = E13[2 — 2(1 — n")Re{(d — ¢)3}]x2 ,

= {n(n - 1)} LXHy(X;, X,),

J*k
where H,(x’ y) = IIjl(x’ y) + I-Ij2(x’ y): u(t) = E(COS tX)’ U(t) = E(Sin tX)’
(5.8)  Hy(x,y) = jo “(cos(tx) — u(t)} {cos(ty) — u(t)}xf. ,(t) dt,

and Hj, is defined similarly on replacing cos by sin and u by v. Let H stand for
any one of the four H,’s,andput Z, =%, _, _; H(X;, X;)and S, =%, _;_,Z.
Since E(Z}X,,..., X;_;) = 0, then {S,} is a martingale, and so by Burkholder’s
inequality and Holder’s inequality [Hall and Heyde (1980), formula (3.67), page
87],

1

s,=E Z%‘, H(X;, X,)
(5.9) l1<j<ksn
1 n
= E|S,| < {181(1 - I")7*} n@/2-1 Y E|Z))

J=1

Conditional on X, Z; is a sum of j — 1 independent and identically distributed
random variables, and so by Rosenthal’s (1970) inequality,

E(z)1X;) < B([(j - VE{(HX( X, X,)X;}]7* + (j - DE(H(X;, X,)/1X;}).

Notice that |H(x, y)| < C;;A™! uniformly in A, 2 < p < o and real x, y; and
also, in the case H = H;; defined at (5.8),

E{H2(x, Xl)}
- fo " fo "E[{cos(sX,) — u(s)}{cos(tX,) — u(t)}] {cos(sx) — u(s))
X {cos(tx) — u(t)}xf, (s)kf, ,(t) dsdt
=77l + 1) + uls - ©) = 2u(s)ue)) {cos(sx) - u(s))
X {cos(tx) — u(t)}«}, ,(s)kf, ,(t) dsdt

< Ch™},

uniformly in A, 2 < p < o0 and real x, by the Cauchy—-Schwarz inequality (since
u? is integrable). Identical bounds are valid for other H ’s. Substituting into (5.9)
and using the bound given earlier for B,, we have, for large /,

s, < l(2+s)l(nlh—l/2 + n(’/2)+1h").
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Take I = logn, assume & < (logn) %1*® and observe that by Markov’s in-
equality,

P{'n'2 TY H(X, X,)

1<j<k<n

> 8(nh)_1} <8 'n"tnis,

< 8—11(2+e)1{(10gn)—2(1+8)l+ n—(1/2)+1}
_ n—eloglogn—log& = O(n—r)
b

for all » > 0. In consequence, P{|T;| > 8(nh)~'} = O(n™") for all r > 0, uni-
formly in 4 and p, for j =1,2.
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