The Annals of Statistics
1987, Vol. 15, No. 4, 1629-1638

A-OPTIMAL BLOCK DESIGNS FOR COMPARING TEST
TREATMENTS WITH A CONTROL!

BY JOHN STUFKEN

University of Georgia

We consider the problem of comparing test treatments with a control in
a proper block design. We give conditions on the parameters of both R-type
and S-type designs that guarantee their A-optimality, and demonstrate how
these conditions can be used to obtain families of A-optimal designs. We give
an example for the construction of the desired S-type designs. A table with
optimal R-type designs (3 < k < 10, £ < v < 30) is also given.

1. Introduction. In this paper, we study the problem of comparing a set of
test treatments with a control under the assumption that the experimental units
can be arranged in a proper block design, a design in which all blocks have the
same size. For a brief review on the available literature in this area we refer
the reader to the introduction of Hedayat and Majumdar (1985). We will use the
notation Dy(v, b, k) for the collection of all connected block designs with b
blocks of size k each, and based on v test treatments (labeled 1,...,v) and a
control (labeled 0). An observation Y;;, obtained by applying treatment i,
0 < i < v, to an experimental unit in block j,1 <j < b,inplot [,1 <l < k, will
be assumed to follow the usual additive linear model without interactions,

Yu=p+7+B8+e;

We refer to p as the general mean, to 7; as the effect of treatment i and to g; as
the effect of block j. The error terms ¢,;, are assumed to be uncorrelated and
have a common mean 0 and a common variance 2. The objective of the
experiment is to estimate the test treatment—control contrasts 7, — 7, 1 < i < v.
We assume that this is done by using their least squares estimates, which we will
denote by 7, — %,. These estimates will obviously be design dependent and the
problem that remains is thus, for given v, b and %, to select a design d €
Dy(v, b, k) that, in some sense, gives us good estimates for the contrasts of
interest. In this paper, we will judge the performance of a design by the so-called
A-criterion. A design d* € Dy(v, b, k) is called A-optimal (in its class) if it
minimizes

) Vary(7; — %)

i=1
over all designs d € Dy(v, b, k). Majumdar and Notz (1983) obtained a sufficient
condition for a design to be A-optimal. Utilizing this condition we will search for
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families of A-optimal designs, both R-type designs (Section 2) and S-type
designs (Section 3).

2. A-optimal R-type designs. The following definition first appeared in
Bechhofer and Tamhane (1981).

DEFINITION 2.1. A design d € Dy(v, b, k) is called a balanced test treatment
incomplete block design (BTIBD) if the following conditions are satisfied:

1. d is incomplete.
2. There are constants A, and A, such that ©_,n,n,;= Ao, 1 <i < v, and

E_l;=1ndi1jndi?j = Al’ 1 < il #* i2 <.

The number n,,;, 0 <i <wv,1 <j < b, is the number of times that treatment i
appears in block j under design d.

Such a design possesses a great amount of symmetry with respect to the test
treatments and it can, indeed, be shown that Var,(7, — %,) is independent of i,
1 < i <v. Moreover, the information matrix for estimating the test
treatment-control contrasts under such a design is a completely symmetric
matrix [see Bechhofer and Tamhane (1981)]. This symmetry was utilized by
Majumdar and Notz (1983) to obtain their main result. Before stating it, we need
one more definition.

DEFINITION 2.2. By a BTIB(v, b, k; t, s), we denote a design d € Dy(v, b, k)
with the following properties:

1. d is a BTIBD.

2. There are s blocks in d each with ¢ + 1 replications of the control, while each
of the remaining b — s blocks contains ¢ replications of the control.

3. d is binary in the test treatments, ie., n,; € {0,1} for1 <i<v,1<j<b.

THEOREM 2.1 [Majumdar and Notz (1983)]. If 3 <k <v, then a

BTIB(v, b, k; t, s) is A-optimal if
g(t,s) = min{g(x, z): (x,2) € A},
where
g(x,2) = (v—1)*(bok(k—1) — (bx + z)(vk — v + k) + (bx? + 2xz + z)) !
+((bx + 2)k — (bx® + 2xz %+ 2))

and
A= {(x,2):x€{0,1,...,[k/2] =1}, 2€ {0,1,..., b} and 2 > 0 if x = 0}
([-] denotes the largest integer function).

In the remainder of this paper we will assume that the condition 3 < k < v is

satisfied. We will also adopt the terminology from Hedayat and Majumdar
(1984), where a BTIB(v, b, k; t, s) is called a rectangular-type (R-type) design if
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s = 0 or b and a step-type (S-type) design if s € {1,..., b — 1}. R-type designs
are also known in the literature as augmented BIB (ABIB) designs. Through a
more detailed study of the function g in Theorem 2.1, Hedayat and Majumdar
(1985) obtained the following result on optimal R-type designs.

THEOREM 2.2. A BTIB(v, b, k;1,0) is A-optimal if
(k-2 +1<v<(k-1)>
The main result of this section is the following generalization of Theorem 2.2.

THEOREM 2.3. A BTIB(v, b, k; t,0) is A-optimal if
(2.1) (k—t—1+1<t?v<(k—1t)>
Proor. By Theorem 2.1, it suffices to show that (2.1) implies that

(2.2) g(¢,0) = min{g(x, z): (x, 2z) € A}.

From Theorem 2.6 of Hedayat and Majumdar (1985), it follows that (2.2) holds if
the following two conditions are satisfied:

b(k - t)((k - 2t — 1)(v(k — 1) — t)* — at®(p — 2t — 1))

(2.3)
<v(k-2t—1)(p—-2t—1)(k—1+ (v—-2)2)
and
(2.4) b(k - t)(at?(p - 26+ 1) — (k — 2t + 1)(v(k — 1) — ¢)°)

<v(k—-2t+1)(p-2t+1)(k—1+ (v—2)1),

where a = (v — 1)? and p = v(k — 1) + k. Since the right-hand sides in (2.3)
and (2.4) are nonnegative, these inequalities are obviously satisfied if

(2.5) (k—2t—1)(v(k—1)—t)’—at*(p-2t-1) <0
and
(2.6) at’(p-2t+1)— (k—2t+1)(v(k—1) - ¢)* < 0.

The left-hand side in (2.5) equals —vg,(v), while that of (2.6) equals vg,(v),
where

g(v) = (k=122 — (k—t—1)(k+t - 1)(k — 2t + 1) + 2t*(k — 1))v
+2t(k—t—1)(k—2t+ 1)+ t3(k—-1)
and
gy(v) = (k- 1)t%® — (k- t - 1)(k + t — 1)(k — 2¢ — 1) + 2t%(k — 1))v
+2t(k—t—1)(k—2t—1) + t*(k - 1).
Hence, (2.5) and (2.6) are equivalent to g,(v) > 0 and g,(v) < 0. Since both g,
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and g, are convex functions in v, to establish the validity of Theorem 2.3 it
suffices to show that

() ¢(1) < 0,
(ii)) g,(1) < 0,
(iii) q,((k — ¢)*/t?) < 0,
(iv) g(((B — t — 1)2 + 1)/t?) > 0.
A simple evaluation gives us that
g(1)=—(k—t-1)*(k-2t+1) <0,
which shows (i). Also
g:(1)=—(k—t-1)*(k-2t-1) <0.
This shows (ii). Further, we obtain that
ai((k = t)°/82) = (=2t + 1)k + (6£% — 1)k?
—(t* + 6% + 3t — 2t)k + 2t° + 3t* — ¢2) /12

Since k > 2¢ and since the right-hand side in the preceding equality, viewed as a
function of k, is decreasing on (2¢, o), it follows by replacing % by 2¢ that

a((k-0)/t?) < —(t-1)* <0,

establishing (iii).
Finally,

a(((k—t—1)*+1)/¢%) = ((k—2t—1) (k=1 —t*+ %) + k- 1)/¢2.

To see that this is nonnegative, we merely notice that k < v < (k — t)%/t2
implies that & > ¢2 + ¢. This shows (iv) and completes the proof of Theorem 2.3.
O

We would like to point out that it can be shown that, for fixed % and ¢, at
most one value of v which satisfies (2.3) and (2.4) for all b > v is not covered by
the relation (2.1).

The result of Theorem 2.3 enables us also to obtain large families of A-opti-
mal R-type designs from families of BIB designs. We formalize this in Corollary
2.1 and give an example of its use in Corollary 2.2. Other examples can be found
in Stufken (1986a).

COROLLARY 2.1. If there are a BIBD(v, b, k) and an integer
te {1,2,....,k—1}
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such that

() v>k+tand
(i) (k — 1) + 1 < t2 < &?,

then an A-optimal BTIB(v, b, k + t; t,0) exists.

The proof is a simple verification of (2.1). For parameters satisfying the
conditions in this corollary, the result gives a formal justification for an idea of
Cox (1958), who first recommended the use of R-type designs.

COROLLARY 2.2. If A is a perfect square and v > k + N/?, then a symmetric
BIBD(v, k, A) can be embedded in an A-optimal BTIB(v, v, k + /2, X/2,0).

Proor. We verify the conditions in Corollary 2.1. It is easy to verify that
N/2 < k — 1 under the assumptions in Corollary 2.2. Condition (i) is satisfied by
assumption, while (ii) can be seen from

Aw=Ao—1)+A=k(k—1) + A < k2
and
A>k(E—1)2 (E—1)7°+1. O

We conclude this section by giving a table with all A-optimal
BTIB(v, b, k; t,0) designs, 3 < k < 10, k < v < 30, whose A-optimality follows
from Theorem 2.3 (see Table 1). The given values of b in the table may be
replaced by any multiple of the given number. The BIB(v, b, 2 — t) needed for
the construction of the given BTIB exists for all parameters. Most of them, or
their complements, can be found in Hall [(1986), Table 1.1].

3. A-optimal S-type designs. Families of A-optimal S-type designs are,
with one exception in Cheng, Majumdar, Stufken and Ture (1986), not available
in the literature. The reason for this is twofold. Partly, it is due to the fact that a
characterization of families of parameters corresponding to S-type designs whose
A-optimality can be concluded from Theorem 2.1 is harder than the analogue for
optimal R-type designs. In addition, once a family of such parameters has been
established, we will still have to answer the often difficult combinatorial question
regarding their existence by giving a method for their construction. In the case of
R-type designs, we could refer to the available literature on BIB designs; for
S-type designs, such an easy way out is not available. Cheng, Majumdar, Stufken
and Ture (1986) proved a useful result for the determination of families of
parameters of A-optimal S-type designs. A formulation of their result is

THEOREM 3.1. With g(x,z) and A as in Theorem 2.1, if for some t €
0,1, ...,[k/2] — 1}, s € {1,2,...,b— 1},

(3.1) g(t,s) <min{g(t,s — 1), g(¢, s + 1)},
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TABLE 1
A-optimal BTIB(v, b, k; t,0) designs,3 < k <10, k < v < 30

No. v b k t No. v b k t
1 3 3 3 1 20 15 15 10 2
2 4 6 3 1 21 15 105 5 1
3 5 10 4 1 22 16 20 5 1
4 6 10 4 1 23 16 30 10 2
5 7 7 4 1 24 17 68 6 1
6 8 28 8 2 25 18 306 6 1
7 8 56 4 1 26 19 171 6 1
8 9 12 4 1 27 20 76 6 1
9 9 12 8 2 28 21 21 6 1

10 10 15 5 1 29 22 462 6 1
11 10 30 9 2 30 23 253 6 1
12 11 55 5 1 31 24 552 6 1
13 11 55 9 2 32 25 30 6 1
14 12 33 5 1 33 26 65 7 1
15 12 132 9 2 34 27 117 7 1
16 13 13 5 1 35 28 126 7 1
17 13 39 10 2 36 29 406 7 1
18 14 91 5 1 37 30 145 7 1
19 14 91 10 2

then
&(t, s) = min{g(x, 2): (x,2) € A}.

This result can be used if we determine parameters for which (3.1) is satisfied
and for which we can then show the existence of the corresponding S-type
design. Cheng, Majumdar, Stufken and Ture (1986) showed, proceeding in this
manner, that an A-optimal

BTIB(k% - 1,v(k + 2)(k2 - 1), k;0,v(k + 1)(k2 — 1))

exists if % is a prime or power of a prime, where vy is any positive integer. In this
section, we will derive families of parameters which satisfy (3.1) for the case
t = 0. They will include the preceding result. We will then conclude this section
with a patchwork construction for designs with the obtained parameters. Let us
start by looking at g(0, z), z € (0, b]. It is not hard to show that this function
attains its minimum either at b or, assuming v > 4, at

(3.2) 2 =bk((v = 1)(v+ 1) = (v + 1)) /(v + 1)(v - 3)

if 2z, < b.

We are interested in the latter case. It can be verified that z, < b if and
only if v > (k — 1)2+ 1. Thus, if this condition holds, we define s = [2,] or
s = [2,] + 1 depending on which of the two gives a smaller value for g(0, z).
With this choice of s, condition (3.1) will be satisfied, implying that a
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BTIB(v, b, k;0,s) is A-optimal, if it exists. This observation is useful if a
particular choice of v, b and % is under consideration. It is then easy to obtain s
and an attempt can be made to construct the desired optimal S-type design. A
useful first step in such an attempt is to verify whether the necessary conditions
for the existence of a BTIB(v, b, k;0, s) are satisfied. These are [see also
Hedayat and Majumdar (1984)]

(3.3) (k—1)s=0 (modv),
(34) k(b—s)=0 (modv),
(3.5) (k—2)(k—1)s/v+ (k—1)k(b—5)/v=0 (modv—1).

If one or more of these conditions are violated or the nonexistence of the
desired design is obtained through some other argument, considerations as in
Cheng, Majumdar, Stufken and Ture (1986) may lead to an A-optimal or highly
efficient design in Dy(v, b, k).

For the purpose of deriving families of optimal S-type designs, the form of s is
rather complicated. The problem is made more tractable if we make the ad-
ditional assumption that z, is an integer and, thus, s = z,. A design that will be
obtained under this assumption has the extra feature that any number of copies
of it form again an A-optimal design. It is unknown whether this is true in
general. The following result characterizes all parameters of interest for which z,
is an integer in {1, ..., b — 1}.

THEOREM 3.2. The parameters for which z, € {1, ..., b — 1} and for which
the necessary conditions (3.3), (3.4) and (3.5) are satisfied are given by

v=a’-1, k=48, b =vya(a + 2)(a% — 1) /8¢,

where a > B > 3, § = ged(B, a(a + 2)), ¢ = ged(B6~L, a% — 1) and v is an arbi-
trary positive integer. [ By gcd(a, b), we denote the greatest common divisor of
the integers a and b.]

PrOOF. For z, to be an integer, v + 1 must be a perfect square, say
v=0a?-1. Let k=8> 3. For z, < b, it must be that v > (k —1)2+ 1, or
a > B. From (3.2), we obtain now z, = bB(a + 1)/a(a + 2). Since ged(a + 1,
a(a + 2)) = 1, we see that this is an integer only if & = 0 (mod a(a + 2)/8). If
we set b = y,a(a + 2)/8, we obtain with s = z, from (3.3) and (3.4) [which
imply kb — s = 0 (mod v)] that v,B(a® + a — 1)/8 = 0 (mod a? — 1) or, equiv-
alently, y;8/8 = 0 (mod a® — 1). Therefore, v, = y(a? — 1)/¢ for some positive
integer y. This gives the parametrization for b as asserted in the theorem. It can
indeed easily be verified that (3.3), (3.4) and (3.5) are now satisfied, while
2o = s = YB(a + 1)(a® — 1)/8¢, which is indeed an integer. O

This result tells us thus that a
BTIB(a? — 1, ya(a + 2)(a® — 1) /8¢, B; 0, yB(a + 1)(a® — 1) /8¢)
is A-optimal for any a, B, v, 8 and ¢ as in Theorem 3.2. Although the conditions
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(3.3), (3.4) and (3.5) are also satisfied, this does unfortunately not guarantee the
existence of the design. Patchwork constructions may resolve this problem, either
for individual designs or for certain families of designs of the preceding form. We
give here one example of such a construction. Let a = 8 = k. This results in a

BTIB(k%— 1,v(k + 2)(k% — 1), k; 0, y(k + 1)(k2 — 1)),
the existence of which was shown for & a prime or power of a prime, as referred

to earlier. We add to this the following result.

THEOREM 3.3. An A-optimal BTIB(k2 — 1, y(k + 2)(k% — 1), k; 0,
v(k + 1)(k?% — 1)) exists if k + 1 is a prime or power of a prime.

Proor. It suffices to show the existence for y = 1. The layout of the desired
design is as follows:
(B + 1)(k%2-1) k2-1
1 control
k-1 A B k

We have to determine the parts labeled by A and B. Start by partitioning the
k? — 1 test treatments into £ — 1 groups G,,..., G, _, of cardinality k£ + 1 each.
For each of these groups G, form the trivial BIBD, with blocks consisting of all
subsets of G, of cardinality k. This gives a total of 2% — 1 blocks of size &, blocks
that we use to form B. Next form an orthogonal array OA((k + 1)k — 1,
k + 1,2) of index unity. The construction of this array is well known if & + 1
is a prime or power of a prime, which is just our assumption. [Actually an
OA((k + 1)%, k + 2,k + 1,2) can even be constructed under our assumption.
See, e.g., Bose and Bush (1952).] Use this orthogonal array to construct a group
divisible design with %22 — 1 treatments in blocks of size £ — 1 in which the
treatments are partitioned in £ — 1 groups and a pair of treatments from the
same group does not appear at all, while treatments from distinct groups appear
exactly once as a pair. Clearly we can arrange this such that the groups are again
G,,...,G,_,. Take k — 1 replications of this group divisible design and let this
be A. It is easy to verify that the design constructed in this way is the desired
S-type design. O

As an example, we will illustrate the preceding construction for &£ = 3. Let
G, ={1,2,3,4} and G, = {5,6,7,8}. The part labeled by B is then formed by
the following eight blocks:

W N
N =
W =
W N
SO W
(o >}
(o JBE NIV}
I
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We use the following OA(16, 2, 4,2) based on the symbols a, b, ¢ and d:

a a a a b b b b c¢c ¢c ¢c ¢c d d d d
a b ¢c d a b ¢c da b c da b c d
Make a one-to-one correspondence between {a, b, ¢, d} and G;, for i = 1,2. Use
this correspondence to replace the symbols in the ith row of the orthogonal
array by the elements of G;. This could, for example, lead to the following 2 X 16
array:
3 3 4 4 4 4
7 8 5 6 7 8
View the preceding as 16 blocks of size 2 and take 2 replications of each of these
blocks. The resulting 32 blocks are used to form the part labeled by A.

Several other patchwork constructions for individual designs can be found in
Stufken (19864a).

4. Concluding remarks. The results in Section 2 extend the main results of
Hedayat and Majumdar (1985). Theorem 2.3 and Corollary 2.1 provide a suffi-
cient condition for the A-optimality of R-type designs, a condition that can
easily be verified. Large families of optimal R-type designs can be obtained from
it. It is unfortunately known that for many families of parameters v, b and &
the best design is not an R-type design. An alternative would then be to search
among S-type designs. Section 3 gives some families of optimal S-type designs
and some ideas for finding optimal designs for specified parameters. The con-
struction of these S-type designs is usually a nontrivial problem. Patching BIB
designs and/or group divisible designs together in an appropriate way may
resolve problems of this kind. After these considerations, there will still be many
parameters v, b and & for which no optimal design has been found. This will be
the case if optimal designs are neither of the R-type nor S-type or if Theorem 2.1
is not strong enough to determine their optimality. In such cases, one could
either search for highly efficient R-type designs [see Stufken (1986b)] or give
consideration to the ideas suggested in Cheng, Majumdar, Stufken and Ture
(1986).

We finally point out that all the optimal designs derived in this paper are not
only A-optimal, but also MV-optimal. ’I"his means that these designs minimize

1<i<vo

over all designs d € Dy(v, b, k).
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