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This paper makes two important contributions to the theory of band-
width selection for kernel density estimators under right censorship. First, an
asymptotic representation of the integrated squared error into easily under-
stood variance and squared bias components is given. Second, it is shown that
if the bandwidth is chosen by the data-based method of least-squares cross-
validation, then it is asymptotically optimal in a compelling sense. A by-prod-
uct of the first part is an interesting comparison of the two most popular
kernel estimators.

1. Introduction. Kernel-type estimators of an unknown probability density
function from right-censored data have been studied recently by several authors
[e.g., Blum and Susarla (1980), Diehl and Stute (1985), Foldes, Rejté and Winter
(1981), McNichols and Padgett (1986), Mielniczuk (1986) and Stute (1985)].
Padgett and McNichols (1984) gave a review of available results on kernel
density estimation from censored data. The details of the forms of these
estimators are in Section 2.

As in the complete sample (i.e., uncensored) case, the choice of the smoothing
parameter, or bandwidth, is crucial to the effective performance of the estimator.
Intuitively, if the bandwidth is too small, there is too much “variance” in the
sense that features which belong only to the particular data set, and not to the
underlying density, may be seen in the estimate. If the bandwidth is too large,
there is too much “bias” in the sense that features of the density are smoothed
away.

In the complete sample case, an elegant mathematical quantification of the
preceding intuition may be found in Rosenblatt (1956), Parzen (1962), Watson
and Leadbetter (1963) and Rosenblatt (1971). In particular, they show that the
mean integrated squared error (MISE) has an asymptotic decomposition as a
simple variance term, a simple squared bias term and some negligible terms. In
Section 3, it is seen how this type of decomposition may be done in the case of
randomly right-censored data. Along the way, approximations are found for the
two most popular censored-data kernel estimators which give insight into exactly
how they are related.

Received March 1986; revised February 1987.

'Research supported by National Science Foundation grant DMS-84-00602.

2Research supported by U.S. Air Force Office of Scientific Research grant AFOSR-84-0156 and
U.S. Army Research Office grant MIPR ARO 139-85.

AMS 1980 subject classifications. Primary 62G05; secondary 62G20.

Key words and phrases. Nonparametric density estimation, optimal bandwidth, random censor-
ship, smoothing parameter, cross-validation.

1520

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Statistics. MIKOJS ®

Www.jstor.org



OPTIMAL BANDWIDTH SELECTION 1521

While this asymptotic representation of MISE provides considerable insight,
it is not very useful for selecting the bandwidth because the minimizer of the two
dominant terms contains quantities which are harder to estimate than f itself.
As this is also true in the complete sample case, there has recently been
considerable work done there on data-based bandwidth selectors. One of the
most promising methods is least-squares cross-validation, introduced by Rudemo
(1982) and Bowman (1984). The bandwidth selected in this way has been shown
to be asymptotically optimal under various conditions by Hall (1983), Stone
(1984), Burman (1985), Hall (1985) and Marron (1985). Deeper asymptotic
properties are established in Hall and Marron (1987a, b).

In Section 4, it is shown that least-squares cross-validation is also effective in
the case of right-censored data. In particular, asymptotic optimality, in the same
sense as for the complete sample case, is established. Section 5 contains the
proofs. Finally, a practical method for choosing between the two different
common kernel estimators is suggested.

2. The estimators. The two best known kernel density estimators are based
on estimates of distribution functions. In the censored-data case, a widely used
distribution function estimator is defined as follows.

Let X?,..., X? denote the i.i.d. survival times of n items or individuals that
are censored on the right by ii.d. random variables Uj,...,U, which are
independent of the X?’s. Denote the common distribution function of the X?’s
by F° and that of the U’s by H. Let H* =1 — H. It is assumed that F° is
absolutely continuous with density f° and that H is continuous.

The observed randomly right-censored data are denoted by the pairs (X;, A)),
i=1,...,n, where

X = min{XiO,U,-} and A; =1y _y,,

with 1; ; denoting the indicator random variable of the event [-].

Based on (X;, A;), i =1,...,n, a popular estimator of the survival function
1 — FO(t) is the product-limit (PL) estimator, proposed by Kaplan and Meier
(1958) and shown to be “self-consistent” by Efron (1967). Let (Z;, A)), i =
1,..., n, denote the ordered X,’s along with their corresponding A,;’s. The PL
estimator of 1 — F(t) is defined by

1, 0<t<Z,

N k-l/ p—g \M

P(t) = l—ll(m) ) Z, <t<Z, k=2,...,n,
i=
0, t>2,.

Denote the PL estimator of F %) by F'\n( ty=1- Pn(t) and let s; denote the
jump of P, (or F,) at Z;, that is,

1-P(2,), j=1,
s;={B(z)-B(2,,), J=2,....,n-1,
P(z), j=n.
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Then for j < n, s; = 0if and only if A; = 0, that is, Z; is a censored observation.
For various properties of the PL estimator, see Breslow and Crowley (1974),
Csorgd and Horvath (1983), Foldes and Rejto (1981), Foldes, Re]to and Winter
(1980), Gill (1983) and Wellner (1982), among others.

The distribution function estimator F is very naturally used to construct a

density estimator by defining

f.(x)=h" j ( )dF(t)

=p! Z st(x hzj).
j=1
This estimator has been studied by Foldes, Rejté and Winter (1981), McNichols
and Padgett (1986), Diehl and Stute (1985), Stute (1985) and Mielniczuk (1986).
An alternative kernel estimator has been proposed by Blum and Susarla
(1980), extending the results of Rosenblatt (1976) to censored data. It is moti-
vated by the fact that a reasonable (and technically easy to handle) estimate of
f %(x)H*(x) is given by

(1)) = () £ K[ iy

Jj=1

Hence, it makes sense to estimate f °(x) by ( f °H*),(x) divided by an estimate of
H*(x). If we reverse the intuitive roles played by X? and U,, then the product-
limit estimator for H* is given by

1, 0<t<Z,

R k-1 n—i 1-A,

H,(t) = n(m) , Zy <t<Zy,k=2,...,n,
i=1 -
0, t>2Z,.

This does not make a good denominator because it takes on the value zero, so
Blum and Susarla propose changing H slightly to

1, 0<t<Z,
n—z+1) 7 7 heg
, a<t<Z,k=2,...,
H(t) = ,=1(n—z+2 k-1 k "
r(in—1+1 '
, Z <t
,=I-[1(n—z+2) "

Hence, define
-X;
fi(x) = [nhH,";(x)] Z K( )1[A =1]-

To get some idea of what the relatlonshlp is between the estimators f, and
., note that from Susarla, Tsai and Van Ryzin (1984), for each j, s =

n? J
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A J-[nﬁn(Zj)]“l. Hence, we may write

() W = 3 ek 5,
(22) e

Since ﬁn and H; are essentially the same, the only significant difference
between the estimators is the argument of the estimate of H *. It will be seen in
the next section that the difference is typically not negligible.

It will be assumed throughout that K is a probability density with compact
support and that K is Holder continuous. Further, it is assumed that f °H* and
f° are Holder continuous of order a > 0. In addition, A — 0 and nk — oo as
n — oo.

3. Asymptotic representation. The main idea of this section is that f,(x)
and f¥(x) are essentially the same as

. fix) = Z H*?})hK(x;X"),
3.1
i) = ¥ etk 5,

respectively, because the convergence of H, and H* to H* is faster (~ n~1/2)
than that of the density estimators (often ~ n=%/%), Essentially, the same idea
has been used by Diehl and Stute (1985) and Stute (1985). For { equal to any of
fos £Fs £, 0r ¥, we choose to analyze its performance by studying the integrated
squared error ISE(f) = [¢°[ f(x) — f °%(x)]>w(x) dx, where w(x) is a nonnega-
tive weight function.

There are three major reasons for working with ISE instead of with its
expected value MISE. First, MISE will typically be infinite for the estimators
based onH Second, ISE is a more compelling error criterion because it assesses
how well f is doing for the data set at hand, instead of only for the average over
all possible data sets as is done by MISE. Third, ISE is more natural for the
automatic bandwidth selection results of the next section. It should be pointed
out that by using methods slightly easier than those used here, all of our results
can be formulated in terms of MISE when it exists. Also, there is an obvious
extension of the theorems of this section to the pointwise convergence of the
estimators when it is assessed by the mean squared error.

The role of the weight function w is to eliminate endpoint effects. Assume in
particular that w is bounded and supported on [0, T'], where T < min(Ty,, Ty,),
where T, = sup{t: G(¢) < 1} for a distribution function G.

The statement of the theorem will be uniform over A € [n™1*¢, n™¢], some
€ > 0. This is necessary for the automatic bandwidth selection results of
Section 4.
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THEOREM 3.1. Under the conditions on w, K, f °H*, F°, f° and H stated in
Sections 2 and 3, for h € [n~1*¢, n=¢], we have

ISE(f,) — [an "' + b]
Sllllp P VRS WA -0 a.s,
(3.2)
ISE(f¥) — [an™A™! + b*]
l}lzp an—h L1 b* -0 a.s,
where

|

b= fB(x, R)w(x)dx, b* = fB*(x, h)?

o= ( / K2)( / f;w
and where b, b* are defined by
w(x)
[P

B(x, h) = [K(u)[{°(x — hu) = {°(x)] du,
B*(x, k) = fK(u)[fO(x — hu)H*(x — hu) — f (x)H*(x)] du.

REMARK 3.1. Note that with the Holder continuity conditions on f° and
f °H*, an immediate consequence of Theorem 3.1 is the ISE consistency of fn
and f.

REMARK 3.2. The only difference in the asymptotic representations of ISE
shows up in the bias part. Note that for some choices of f° and H*, b will be
smaller, while for other choices, b* will be smaller. Hence, the estimators f, and
fx are really not comparable from this representation. However, note that, by an
addition—subtraction,

B*(x, h) o H*(x — hu) — H*(x)
Ty - e | T

So in a weak sense, fy has an extra “noise term,” which may make f, slightly
preferable.

dx + B(x, h).

Rates of convergence may be computed in the usual manner of Rosenblatt
and Parzen. Further, Theorem 3.1 yields an asymptotic bandwidth which is
optimal in the same sense as the bandwidths of Rosenblatt and Parzen except
that the random error criterion ISE is used in place of its mean. This is given in
the next remark.

REMARK 3.3. (i) It is well known in the complete sample case that by
allowing K to take on negative values, a faster rate of convergence can be
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obtained. Theorem 3.1 demonstrates that the same is true here. In particular,
suppose

1, Jj=0,
(3.3) ffo(x)dx ={0, j=1,..., k-1,
K, J=k

(for & > 2, this violates the assumptions of Theorem 3.1; however, it is straight-
forward, but space-consuming, to modify the proofs to allow for this). If we
assume that f° and f °H* have k& uniformly continuous derivatives, then

b= h2k( - ) JI(72) P Pwds + o(n?),

b* = h”’(E) f[(fOH*)(k)]zw dx + o( h2*).

Hence, for the estimator f,, the “classical optimal bandwidth” has the form
1/Qk+1)

(/K? )(f(f w/H*)) } n-V/@k+1)
2k(e/R1)?| J((£0)*) |

and the rate of convergence is ISE ~ n=2%/@#*1D_ Here and in the following
remarks, there are obvious analogues for the estimator f*.

To see how Theorem 3.1 implies that 4, behaves like the optimal bandwidth
of Rosenblatt and Parzen (the complete sample case), define

EIl, = n"1h! fK“’Hf ] hzk(k')f[ (19)*]%w.

By (3.2), with obvious notation,

ISE( f,, k) — EIy(h)
Wl EL(M ‘
Let h,, denote the minimizer of ISE(f,, 2) and recall that A, is the mini-

mizer of EIy(h). Then from the inequalities ISE(f,, k) > ISE(f,, h,,) and
EI(hy) = EI(h,), it follows that

a.s.

[ISE( f,, ho) — ISE( f,, k)| - ISE( f,, ko) — EI(h,) | EIy(ho)
ISE( f,, ko) B EIy(hy) ISE( f., ko)
l ISE( fn’ hM) - EIo( hM) EIo(hM)
EI(hy) ISE( f,» hyr)
-0 as.
Hence,
ISE( f,,, hy)
-1 as,

inf,ISE(f,, h)
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which shows that h, is optimal in the same sense as the bandwidths of
Rosenblatt and Parzen, except for the fact that the random ISE criterion is used
in place of its mean.

REMARK 3.3. (ii) If we keep the assumption (3.3), but suppose f° has p < &
derivatives (p need not be an integer by putting a Holder condition of order
p — [ p] on the [ p]th derivative, where [ - ] denotes the greatest integer less than
or equal to p), then it can be shown that b* < Ch?? for some positive constant
C. Hence, by taking h ~ n~/@P*D_ the well known [see, for example, Bretag-
nolle and Huber (1979)] “optimal rate” ISE ~ n~2P/@P*D can be obtained for
our censored-data problem.

4. Automatic bandwidth selection. For data-based bandwidth selection,
we propose least-squares cross-validation, which was invented for complete
sample density estimators by Rudemo (1982) and Bowman (1984). This is
motivated as follows. Let f denote either f, or f¥. Since the third term of

ISE( f jfw 2fffw+f(f

is independent of A, we would like to choose 2 to minimize the sum of the first
two terms. The first term is known. To gain insight into how the second term
may be estimated, note that by the type of argument given in Section 3, we can
replace H; by its expected value. In this sense, the integral of the second term
can be nearly unbiasedly estimated by

_ w(X;)
(4.1) ! Zf(X)H*(X)l[A =1]
where f: is the “leave-one-out” version of f, given by
1 x— X
(x) = K h
b ) Ei (n— DH:(X,)R ( h ) %=
when f is f, and by
1 x— X,
* K L1154 -
200 = £ G| T e

when f is f*. Thus, we define %, to be the minimizer of the least-squares
cross-validation criterion

oV(h) = [[F()]'u(x)ds = 207 3 fi(X) ;I",f(X)) Lo mny

THEOREM 4.1. Under the conditions of Theorem 3.1, fzc is asymptotically
optimal in the sense that

ISE( ]}) -1 a.s
f,h) o

inf,, ISE(
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REMARK 4.1. Theorem 4.1 says that ﬁc is optimal under either of the
assumptions stated in Remark 3.3(i) or (ii). This generalizes the important
asymptotic optimality results of Hall (1983), Stone (1984), Burman (1985), Hall
(1985) and Marron (1985) to the case of censored data.

REMARK 4.2. The fact that CV(h) essentially provides an estimate of
ISE(f, h) suggests a practical method of choosing between f, and f}. In
particular, if CV(k) for f= f, is smaller than CV(h) for f = fx, then the
estimator f, should be used, as its ISE will probably be smaller.

REMARK 4.3. The hazard rate r%x) = f °%(x)/[1 — F%x)] can be estimated
by using one of the density estimators f, or f} together with a reasonable
estimator of 1 — F°. Thus, it is straightforward to use the results of Csérgé and
Horvath (1983) to prove hazard rate analogues of all of the results of this paper.

5. Proofs of theorems. All proofs are given for the estimator f,(x), as it
will be obvious how to adapt them to handle f*(x). The symbol C will be used
for a generic constant. Note first that, using the notation (3.1), by adding and
subtracting f(x),

(5.1) ISE( f,) = ISE( f,) + II + III,

where

=2 ["[ fi(x) = 1 °)] [ () = Fu()] () di,
L= [“[ f(x) = fi(2)]"w(z) dx.
0

PROOF OF THEOREM 3.1. We analyze each of the terms ISE( f,), II and III
separately. First, by a “variance-bias squared” decomposition and standard
computations of the type in Rosenblatt (1971),

(5.2) MISE( f,) = E(ISE(f,)) = v + b,
where
o e ] s

and where b is defined in Section 3. The fact that ISE(f,) behaves like
MISE( f,) is contained in the following lemma.
LEMMA 1.

ISE( f,) — MISE( £,)
MISE( £,)

sup -0 a.s.

h

The fact that term III is negligible is contained in
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LEMMA 2.
111

P MISE() |~

It follows from the Schwarz inequality, Lemma 1 and Lemma 2 that ITI may
be replaced by II in the statement of Lemma 2.

This last fact, together with (5.1), (5.2), (5.3), Lemma 1 and Lemma 2,
completes the proof of Theorem 3.1. O

Before proving Theorem 4.1, we give the proofs of Lemmas 1 and 2.

ProOOF OF LEMMA 1. Let N = #(A; =1). For » = 1,..., n, conditioning on
[N =v], {X;: A, =1} is a set of » i.i.d. random variables with density f °H* /p,
where

p=["1°()H (x) dx.

Let E, denote expectation under this conditional distribution. The method of
the proof of Theorem 1 of Marron and Hirdle (1986) shows that under the stated

assumptions, for £ = 1,2,..., there exist constants C > 0 and y > 0 so that
ISE( f,) — E,(ISE( £,)) |**
n v _ n _.Yk
(5.4) s:pE,[ E,(1SE(1))) < CvYk

To analyze E,(ISE({,)), note first that

B4 =10 = & (57

JE@) 20 = ) = 122 a

B ) + = 1)),

- (=)

where B(x, h) was defined in Section 3. Next note that

Ev[ f;(x) - Evf;z(x)]z = Varv[ Xn: nH*(IX)hK( z _hXi)]‘[AFl]:l

i=1

14 1 K x_Xi
TR H(X)h ( h )
0
=L -1 —l( K2) (x) (_ -1 )
npn h f H(x) pn h~
Thus, by a variance-bias squared decomposition,
E,(ISE(f,)) = v + b,

where

14 14
v,= —v+ o(—n_lh_l)
np np
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for v defined in (5.3) and where

b, = (L)Zb + 2(i)(i - 1)]0°°B(x, ) O(x)w(x)-dx

np np )\ np
14 2 0
+—-1 (x)w(x) dx
(o =) [ )
for b and B as in Section 3. Hence,

B,(1SE( ,)) = MISE(f,) + (2o = 1)o+ o n~h™

+

(é)z - l)b + 2;:—;;(% - 1)/0°°B(x, R)fO(x)w(x) dx

(2 =] [t as
+|— — x) w(x .
np 0
Now for small > 0 and for n = 1,2,3,..., restrict attention to » between
np — n*%*7 and np + n*/**". For such », »/np < 2 and

14
— -1
np

for a constant C,. It follows from (5.2) and (5.3) that, for a different value of C
and for n sufficiently large,

(5.5) inf MISE( f,) = Cn™*.

< Cln—1/2+‘r

Hence, for small , large n and another C,

E,(ISE( f,)) — MISE( f,)
MISE( f,)

< Cn—s+2'r

h
Thus, for such », from (5.4),

ISE( f,) — MISE( f,) |**
sup (1) - (1) < Cn™k,
MISE( f,)
Now, let T, be a subset of [n~'*¢, n™¢] so that successive members of I, are

separated by a distance less than or equal to n~* and so that #(T,) < n" for

some p > 0. Then, using obvious notation and letting M( f, h) = [ISE(f, h) —
MISE( f, h)]/MISE(, k),

P|sup |M( f,, k)| 28] < P[sup |M(f,, k)| > f]
h heT, 2

+P| sup |M(f,, k)~ M(f,, })|

€
|\h—h|<n™* 2

é( )p’(1 - p)" [sule(fn,h)l 2]
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where the last equality comes from a continuity argument and the assumptions
that K is Holder continuous and has compact support. Letting A, ., =[np —
n1/2+'r’ np + n1/2+f]’ !

P[St’llle( for 1) > 8]

= V€§n,7( V)py(l p) [Sule( fn’ h)l i _]
+ X (Fpra-pm
(5.6) rEAL .
s L (3pa-pr L pfptin)]> 5]+ 20
= I (2o w{ 7] swm ()" - 20-m)
vEA, , h

< CnPn~"* + 20(-n"),
where ® denotes the standard normal c.d.f. But, for k sufficiently large, the first

term on the right side of (5.6) is summable on n and, since the second term is
also summable on n, the proof of Lemma 1 is complete. O

Proor oF LEMMA 2. Using the assumption on the support of w and using
the compactness of the support of K, observe that for n sufficiently large,

sup Il = sup [ 30 | 3755 = (%) | ol ( n )“f=” w(x)

1 1
20 i - (e [ 10w et ).

where T" = (T + Ty)/2 and where ( f °H*), was defined in Section 2. Lemma 2 is

now a consequence of the results of Csorgé and Horvath (1983) together with
(5.5) and the fact that there is a constant C so that

(5.7) sup fw[(fOH*)n(x)rw(x) de < C as.
n Y0

To verify (5.7), note that by adding and subtracting f °(x)H*(x),
[71CH) () Pw(x) de = U+ V 4+ W,
0

where
U= [71(7°H), £ ) d,

v=2[[(f°H"), -  °B*][  H*] w(x) dx,

W= f[fOH*]2w(x)dx.
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Now W is deterministic and independent of A. An argument similar to (but
slightly easier than) that used previously on ISE( f,) gives

supU - 0 a.s.
h

An application of the Schwarz inequality to V yields (5.7), which completes the
proof of Lemma 2. 0O

ProOF OF THEOREM 4.1. Here again, only the proof in the slightly harder
case of f = f, is given. We note that by a computation similar to that used to
verify Remark 3.3(i), Theorem 4.1 follows from (3.2) and the result that

|CV(h) = ISE(f,, h) = [CV(K') — ISE(f,, )] |

(58) ap MISE( f,, ) + MISE(f,, ) -0
To prove (5.8), it is enough to show that
2 fUX)w(X; )
CV(h) — ISE(f,, h) — — 1= 0 dx
( ) (f ) E:l H* (X)) [a,=1] f(f (x)) w(x)
sup MISE(,, &)

-0 a.s.
This may be rewritten as

|2n‘1(n - 1)_12?=1Zj¢iUijl

iy MISE(,, ) as.,
where
—hK X - X; w(X;)
Y # ( h )H*(X)H*( )I[A-l 8,-1]
X FO(x)w(x)
- [rx(5 ) ()
(X, w( X,
_%I[AFI]*-‘/[fO(x)Pw(x)dx
= U+ Z,;,,
defining '
y_ -1 Xi_Xj lU(X)
vk K( h )H,’f(X) *(X)l[A—l ;=1
(X fox)w(x)
_fh K( - ) Hi(X,) dxlpy g
fO(X,)W(X)

~ )l t [l @ () d
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and

7. =

L)

h‘lK(Xi_Xj) w(X;)

h H;:(XJ) 1[A,=1, A_,=1] - fO(Xi)w(Xi)']‘[A,=l]

1 1
X[H:(Xi) B H*(Xi)]'

Theorem 4.1 then follows from the following two lemmas.

LEMMA 3.
|n "M n - 1) 7ELTL U
s1’11p MISE( f, h) -0 a.s.
LEMMA 4.
| (n - 1) 7T,
s1’11p MISE( f, h) -0 a.s.

Proor oF LEMMA 3. This proof combines the ideas of Lemma 2 of Marron
(1985) with those of the earlier proof of Lemma 1. Recall that in the proof of
Lemma 1, the notation E, meant expected value taken over {X;: A, =1},
conditioned on the event { N = »}. The censored observations {X;: A; = 0} were
ignored in the definition of E, since they did not appear in the quantities being
analyzed. The censored X,’s do appear in the following, so it will be understood
that E, denotes expected value as before, only also conditioned on {X;: A; = 0}
[or, equivalently, E, denotes integration over {X,: A, =1}, which are ii.d.
random variables with density f °H* /p].

Forv=1,...,n, U= U}y + Z},, where

h ) H;:(XJ)H*(XL) l[Ai=1, A,=1]

Uy = h‘lK(

v (x— X)) w(x)
5 5 g 1) et

_%";{X—) # o [l u(x) ds

and

- [f°(x)]2w(x)dx]-
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Using the method of proof of Lemma 2 of Marron (1985), it can be shown that,
for 2 =1,2,... and n sufficiently large,

nNn-1)7'Tr % Uy
MISE( f, h)

2k

supE, < Cn™k,
h

regardless of the realization of {X;: A; = 0}. In a similar manner [i.e., approxi-
mate H}(x) by H*(x), including another »/np — 1 term and using the cumu-
lant-style argument of Marron (1985)], we can obtain

—an/

SUPE,| MISE(F, h)

] < Cn7"-.

These two inequalities may now be used in a computation similar to that
yielding (5.6) in the proof of Lemma 1 to finish the proof of Lemma 3. O

ProoF orF LEMMA 4. Write

nMn-1)7"E X2z, =

i j#i

n-lz[fm(X) - 1%X,)]

1 1
* [H;(X,) - H*(X;) ]I[A‘=1lw(Xi)‘
(5.9)

< {n_l Z [ fai( X3) = fO(Xi)]21[A,=1]w(Xi)}1/

172
1 /

{ —IZ[H*(X) H*(Xi)]l[At=1]w(Xi)}

The expression inside the first square root on the right-hand side of (5.9) is the
leave-one-out version of the average squared error and will be denoted by
ASE( f,;). Using the methods of Lemma 1 of Marron (1985) and Theorem 2 of
Marron and Hirdle (1986), it can be shown that, for 2 = 1,2,..., there is a
constant C so that

ASE( fnl) - MISE( fn’ h) 2k C —vk
MISE(f,, h) =

The proof of Lemma 4 is then completed by a computation like that leading to
(5.6) in the proof of Lemma 1, which includes the uniform convergence result for
the product-limit estimator H;' used in the proof of Lemma 2. O
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