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DISTRIBUTIONS ON PARTITIONS

BY ROBERT KEENER,! EDWARD ROTHMAN? AND NORMAN STARR
University of Michigan

A two parameter family of distributions on partitions is obtained by
mixing a multinomial with a symmetric Dirichlet distribution. Estimates for
the parameters are proposed and studied in various asymptotic limits.

1. Introduction. This paper considers estimation of the parameters for a
family of distributions on partitions. To obtain these distributions, imagine an
infinite population classified into an unknown number m > 1 of species. Further
suppose that this population evolves with time and that the species proportions
D1s---» D, have an equilibrium distribution which is a symmetric Dirichlet
distribution D(A,..., A). At some point in time, after equilibrium has been
achieved, a researcher takes a random sample from the population. The sample
size n is partitioned by the species represented in the sample. Thus the
distribution of this random partition is that induced by mixing the multinomial
distribution with D(A4,..., A). In situations where the “names” of the species
have no import, the partition is the only relevant data from the experiment.

This model or family of distributions arises naturally in genetics as the
sampling distribution for neutral alleles. In that context, the species are types of
alleles at a genetic locus. See Rothman and Templeton (1980) for further
discussion, or Wright (1969) for a derivation based on diffusion approximations.

In most applications, it is perhaps more natural to view a random partition
as induced from a multinomial sample with fixed but unknown proportions
P1s- -5 Pn- An empirical Bayes approach in these problems leads naturally to
estimation for the model considered in this paper. This approach is one way to
allow an unknown number of species and avoid overparameterization.

Instead of denoting partitions as the ordered species counts, it is more
convenient to represent a partition as a sequence G(1), G(2),..., where G(i) is
the number of species which occur i times. D = Y G(i) is the number of
species observed and the sample size is n = X2 ,iG(i). The distributions under
consideration are given by

(ita-1)%
(1.1) P(G(i)=g(i),i=1,2,...)=(’g ﬁd!(.)' i=(1,(L+mf4_1)) ,
_=1g i)! n
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where d = Yg(i) and x!= I'(x + 1) is used to define combinations when the
arguments are not integers. The unknown parameters in this model are A > 0
and m =1,2,.... To obtain (1.1), let Y; be the number of times species i is
observed. Then '

. n <
P(y'i=yi7 t= 17""m) =E(y1 ym)]-_Ilp'y‘
ol
(1.2) m

_ EI(A +§:—1)/(mA +n-1),

Equation (1.1) follows by a simple counting argument.

As limiting and special cases, the model (1.1) incorporates three of the most
natural distributions for partitions. If A = 1, the distribution is that inducec} by
Bose-Einstein sampling as the probabilities in (1.2) all equal (’" tn- 1) . A
Bayesian approach to inference in this case has been studied by Hill (1979). As
A — oo the distributions converge weakly to the distribution induced by
Maxwell-Boltzmann sampling (see Theorem 3.7). Estimation in this case is
considered by Lewontin and Prout (1956); see Johnson and Kotz (1969). Finally,
if m - o0 and A — 0 so that mA — w, the distributions converge weakly to
Ewens’ sampling formula (see Theorem 3.8).

Other authors have studied model (1.1), especially Chen (1980, 1981a,b). He
gives an alternative derivation of (1.1) that may be more natural or convenient in
some settings (cf. the proof of Theorem 3.3). In this derivation, Y;,...,Y,, begin
as ii.d. with a negative binomial distribution. Equation (1.1) then gives the
distribution of G(1), G(2),... conditional on ¥7'Y; = n. His main concern in the
(1980) paper is degenerate convergence of G(i)/m to Zipf’s law. All three papers
have results about joint normality for the G(i) as n — oo with m/n — A: weak
convergence in the (1980) paper, local convergence in (1981b) and weak conver-
gence for a more general model in (1981a). These results complement our
Theorems 3.3 and 3.4 which give asymptotic normality for D and for the
maximum likelihood estimate of m in the same limit.

Different stochastic models for partitions that have been studied include an
empirical Bayes model due to Fisher, Corbet and Williams (1943) and a nonpara-
metric model due to Good and Toulmin (1956). Fisher’s model is obtained
as follows. Let A,,...,A,, be iid. from a gamma distribution with param-
eters A and B. Conditional on A,,...,A,, Y,,...,Y, are independent with
Y, ~ Poisson (A;). Call the positive Y’s.which determine the observed partition
Y,,...,Y,. Conditional on D, these are i.i.d. with

I[(x+ A) B \* 1!
x!I‘(1+A)(1+B) "

(1.3) P(Y=x) « =1,2,....

This distribution is the negative binomial distribution conditioned to be positive
and Fisher's model for partitions is that induced by this distribution for
Y,,..., Y, The main difference between our model and Fisher’s is that we have
D a random variable and n constant, while Fisher has D constant and n
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random. Although the derivation leading to Fisher’s model only makes sense if
A >0, (1.3) gives probability distributions for partitions for any A > —1. In
Section 4, we analyze word frequency data for Shakespeare to compare our
methods with an analysis by Efron and Thisted (1976) using Fisher’s model and
Good and Toulmin’s model. Fisher's model fits better than ours primarily
because negative values for A are allowed. The m.l.e. for A in Fisher’s model is
—0.3954.

Section 2 considers estimation when A is known. In this case D is complete
and sufficient. Estimates are-given for m and EG(}).

Asymptotic distribution theory is used in Section 3 to study the performance
of these estimators in various limiting situations.

In Section 4, data sets are analyzed and Section 5 gives our conclusions.

2. Estimation with A known.

LeEmMA 2.1.  The statistic D is complete and sufficient for the family (1.1) as
m varies with A fixed. The distribution of D is given by

(2.1) P(D=d)=(':;)H(d’n)/(n+n;.zA—1),
where
2.2) H(d, n) = dg;(_l)j(;()(n+Ad;Aj—1).

Proor. By symmetry
P(D=d)= (Z)P(Yiz lfori<d, Y, =0fori>d).
Using Boole’s formula,
P(Y,>1fori<d,Y,=0fori>d)

2.3 a1 ;
(23) = Z(q)(—l)JP(Y,-=Ofori>d—j).

j=o\J
Now, since L¢-{p; ~ B((d — j)A,(m — d + j)A), we have
d—j
Zpi
i=1

I(mA)I(n + (d—j)A)
"~ I(n+mA)T((d-j)A)

and (2.1) follows. It is worth noting that when d > n, the left-hand side of (2.3)
equals 0. Consequently H(d, n) = 0 for d > n, which is hard to verify directly
from (2.2). D is sufficient because (1.1) divided by (2.1) is functionally indepen-
dent of m. To show that D is complete, suppose Ef(D)= 0 for all m > 1.
When m=1, D=1 as, so f(1) =0. When m = 2, since P(D =2) > 0 and

n

P(Y,=0fori>d-j)=.E
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P(D > 2) = 0, we get f(2) =0, etcetera. This argument shows that D is com-
plete even for the restricted parameter space m € {1,...,n}. O

One estimate for m is the maximum likelihood estimator 7. .

LEMMA 2.2. If d = n, the likelihood approaches 1 as m — oo and there is no
maximum likelihood estimate for m. If d < n, the likelihood attains its maxi-
mum at least once and at most twice, in which case the two values are adjacent
integers.

Proor. Using Stirling’s formula, as m — oo,
m! mA —1)! n! m?
( )! —H(d,n) ~
(m—-d)! (n+mA-1)! d! (mA) d!
When d < n, this approaches 0 as m — o0, so the maximum is attained. To
finish the proof we will show that if m is allowed to vary over [0, c0), L will

attain its maximum at a unique point m* and decrease as m moves away from
m*. Suppose

L(m) =

H(d n).

d a1 ]
—log L = - .
am 8 (m) Eo m-—i. ;zo m + z/A =0
Then
? a1 = 1
logL(m) = — —_ —_—
gz 8L == L (m = i)’ zzo (m+i/A)

Consequently L has no local minima and this completes the proof. O

An alternative estimator for m derived to be unbiased when m < n is given
by
H(D-1,n)

#A(D)=D+D 7D

LEMMA 23. m is unbiased for m < n. Consequently m is UMVUE for
me {1,...,n}.

Proor. Using (2.1),

Em(D) = ED + d§2 d("’;)H(d— l,n)/(n +mA - 1)

= ED + mm)il(m; I)H(d,n)/(n+ ";LA - 1)
=ED+m(n+mAn—A—1)/(n+n’L1A—1)_

The lemma now follows from the formula for ED given in Corollary 3.2. O
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To use the estimator i, a practitioner must calculate H. Using (2.2) for this
task is not advisable because the alternating character of the sum may lead to
numerical instability. A better method is to use the recurrence relation in the
next lemma.

LEMMA 24. H(l,n) = (n+;3 - 1) and H(n,n) = A™. For 2 < d < n,
H(d,n+1)={(n+Ad)H(d,n) + AdH(d - 1,n)}/(n + 1).

ProoF. The expression for H(1, n) comes directly from (2.2). To show that
H(n,n)=A™"if m=n,

H(n,n)/(”"'n"l4 - 1) =P(D=n)
=P(Y,=1,1<i<n)
=n!El_Ipi

i=1

n!A"T'(nA)
T I(n+nA)’
Finally, using (2.2),

H(d,n +1) Zd‘,(—l)j(‘?)(n+Ad—Aj)

j=0 J n+1
_ Z (_l)j{n+Ad(n+Ad—Aj— 1)(d)
j=o n+1 n J

_%(jt_il)(n+A(d—l)r—lA(j—l)—1)}

and the lemma follows. O

The recursion can also be derived probabilistically by calculating the chance
that D = d in a sample of size n + 1 by conditioning on the value of D after
sampling n. After observing d in a sample of size n, the chance the next
observation is a new species is [A(m — d)]/(n + mA).

Assessing how well the model fits a given data set is an important task
because the estimate of m is very model dependent. One possible way to
investigate the fit is to compare the observed G(1), G(2),... with estimates of
their expected values g, = EG(j). Good estimates of EG( j) are described in the
next theorem. Using these estimates, a natural test statistic for a formal
goodness of fit test is x2 = Z(G(J) — ¢ j)2/¢i - An interesting open problem is to
find approximations for the null distribution of x2 (perhaps in the limit used in
Theorem 3.3). Standard results are not directly applicable due to the lack of
independence in this model.
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THEOREM 2.5. The UMVUE for q; is

i _1\H(D-1,n—j
E(G(/)D) =D(j ZA_ 1 1) (DH(Dl,n) )

ProOOF. Let
S(d, n) = {g c(1,2,...): ig(i) _d, g‘,lig(i) _ n}

The conditional distribution of G, given D, is given by

= (i+A—1)\5?
R ) (Gl

Mz.e()!  H(d,n)
for g € S(d, n). Let g(i) = g(i) for i # j and &()) = g(jJ) — 1. Then

I itA-1 8@
d! n( A-1 ) +A-1
E(G(j)D=d) = T (J )
(G(/)ID = a) geg,n)n&g(,)z H(d, n) A-1

P(G=gD=d) =

v (d-1)! {ﬁ( 1)“"} (jtlfizl)
zes(d—1, n—j L1z B0\ i- H(d,n)
=d(;+A-1)H(d-1,n J)

A-1 H(d,n)
and the theorem follows from the Lehmann-Scheffé theorem. O

The next corollary gives a formula for EG() and can be used substituting 7
for m to find the maximum likelihood estimates of these quantities.

COROLLARY 2.6.

R S e [ S

Proor. Follows immediately from (2.1) and Theorem 2.5. O

3. Asymptotic distribution theory. A key tool is the generating function
for D given in the next lemma. Let

(n+mA -1 - Aj)(mA — 1)!

V) =
(n+mA —1)!(mA — 1 - Aj)!’
so that
2".’,‘( dej m! -
3.1 P(D=d)= -1)“" - — 0\,
@) (D=d)= 2 U i@,
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Since H(n,d) =0 for d > n, this formula holds for 1 <d < m even when
n<m.

LEmMA 3.1. For any complex x,
m—1 m ) . .
ExP =Y (j )x’"‘/(l —x)’00.
j=0

Proor. Using (3.1),

m d ) m!x%gm=7
ExP = —1)% - -
dglj‘él( ) (m_ d)']'(d_])'
_y ¥ a-j[m=J (m) (m=i)J
= —-x . . |0 x
Z 2035
=2 (1- x)m_jxj(’;?)e(’"‘f)
j=1

and the lemma follows. O
Differentiation in Lemma 3.1 gives the next corollary.

COROLLARY 3.2. The mean and variance of D are

ED =m(1 - 60)
and

VarD = m(0<l) + (m—-1)§9® - mﬁ(l)z).
Define

n+mA-1

Using Stirling’s formula, E(m — D) = m# + O(1) as m — oo uniformly in n,
and keeping an extra term in Stirling’s formula, Var D = ¢2m + O(1) as m — oo
uniformly in n, where 62 = (1 — ) — A%(1 — §'/4).

6= (ﬂ—)A

THEOREM 3.3. If m,n - o so that m/n — K > 0, then

P(D = d) 1 (d = m+ mo)® 1

= = _— + —_—
( v P omo? °\ Y )
uniformly in d. Also if d,n — o0 so that A\ = d/n - A, € (0,1), then

A \¢ AA* = A
H(d, n) -~ (1 + A}\*)n(}\* _ }\) \/n?l -(l-A}\*)o)*z ’
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where \* = A*(d, n) is the unique positive solution of
AA* A
= * —_
o) el (2]
and o*? = (A* = N)[A — AA* =N/ + A}\*)]/}\*2 In this same limit,

E[G(j)D=4d] ~ (J ;“i’ 1 /(1 + AN’

and m(d) ~ n\*.
Proor. It will be convenient to use an alternative stochastic derivation of
the model (1.1) for this proof. Let X(p) have the negative binomial distribution
T(A + k)
P(X =k)=pA(1 -p)———=
for k=0,1,..., and let X,(p),..., X,(p) beiid. as X(p). Let
N(p) = X.X(p),
1

D(p) = #{i<m: X,(p) > 0}

and

G*(J,p) = #{i<m: X,(p) =j},
for j =1,2,.... Then a straightforward calculation shows that

P(G*(i,p) = g(i),i=1,2,...IN(p) =n) = P(G(i) = g(i), i = 1,2,...).

Letting Z,(p) = I{X,(p) > 0}, D(p) = L7,Z(p) and by a local central limit
theorem for lattice distributions [such as Theorem 22.1 of Bhattacharya and Rao
(1976)],

P(D(p) =d,N(p) =n)
= m~YVarZ(p)Var X(p)} ~/*
0 d— mEZ(p) n—- mEX(p)
ymVarZ(p) * ymVar X(p)

uniformly in d and n as m — o, where ¢ is the standard bivariate normal
density

,p(p)] +o(1/m),

1 1(x2—2pxy+y2)

o(x, y,p) = mexp -3 1=

p(p) = Cor(X(p), Z(p))
_ {Ap(l - p)p* }1/2.

and

l—pA
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Inspection of the proof of this local central limit theorem shows that the result
stated holds uniformly for p in a compact subset of (0, 1). By a one-dimensional
version of the same theorem,

1 (n - mEX(p))’ 1
P(N(p)=n)= B Var X () ex {— amVar X(p) } + o(-‘/—;—),

uniformly in r» and p in a compact subset of (0,1) as m — oco. By division,
taking p = mA/(n + mA) so that EN(p) = n,

2l mA dn mA
(n+mA)_ (n+mA)_n
1 (d— m+ md)* N 1
- ‘/EoeXp 2mo? © Vm )’
uniformly in d as m, n - oo with m/n — K > 0, proving the first assertion of

the theorem. The second assertion follows from this and (2.1) using Stirling’s
formula. Finally,

j+A_1)m—d+1 n! (n+mA-1-j)
A-1 d (n=j) (n+mA-1) 7

where R is the ratio of P(D = d — 1) with a sample of n —j to P(D =d)
with a sample of n. Taking m = [nA*], R - 1 and the approximation for
E(G())|D = d) follows easily from Stirling’s formula (a derivation from the
approximation for H is also possible but more tedious). The approximation for 7
can be obtained in a similar fashion. O

E[G(/)ID = d] - |

Asymptotic normality of D is a special case of Corollary 3.6 of Holst (1981).
The local version of this result, given in Theorem 3.3, is necessary to approxi-
mate H. :

Our next result gives the limiting distribution of the maximum likelihood
estimator.

THEOREM 34. If m,n - oo so that m/n — A, the distribution of (it —
m)/ Vm converges to N(0, §2/02), where 6 — 6,

Proor. We will verify the stronger assertion that
m-m D-m(1-6) 8

(3.3) Tm T o2 -0,
in probability. Let d = d,, be a sequence such that
d+ml—m
T =a,=0(1)

and (abusing notation) let 7, be the m.le. corresponding to d,. Then
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L(m)/L(m — 1) > 1 and L(m + 1)/L(m) < 1. By Stirling’s formula (suppress-
ing the dependence of d and % on n),

o k)

L(m-1) m-d\n+mA-1 m

and

L(m+1) m+1 ( mA+A-1 )A1+0(1
L(m) Am+l1-dln+mA+A-1 m)

We next claim that 7/m — 1. If not, we can assume (taking a subsequence) that

m/m — K # 1. If K < co, then

. L(m) . L(m+1) K AK \4
lim———— =lim — = *1,
L(m-1) L(m) K-1+6\AK—-1/A
a contradiction. If K = oo, then
L(m) n—d n
=1l O(T),
L(m-1) m

also a contradiction. Let ¢ = (1t — m)/m. Taylor expanding,
L(m) L(m+1) ol s 1 1 o’ N a L0
L(m—-1) L(m) (E ) T T oym (

Using this, it is easy to derive a contradiction unless (3.3) holds and the theorem
follows. O

1
&2 + —)
m

We suspect that (/7 — m)/Vm is asymptotically normal as n — oo with
m/n — K and believe a proof could be constructed along the following lines.
Keep extra terms in the expansions used to prove Theorem 3.3 and show that

exp(—d*?/2) 1 ) 1
YD L) o2

V27mo? Vn ( . /m) n
where d* = (d + @m — m)/Vms? and y is a smooth function of both its
arguments. This result then implies that

(34) P(D=d)=

A

m—m '
e 02‘/n_t(d+0m—m)—>0,

in probability. This gives a limiting distribution for (M — m)/ Vm which is
N(0, 62 /02), so f and . are asymptotically equivalent in this limit assuming
(3.4) holds.

Our next limit gives a Poisson approximation for the distributions of D.

THEOREM 3.5. Ifn = oo and m ~ (NMn/A)Y 4D, the distribution of m — D
converges to P()).
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Proor. Using Lemma 2.1,
m!gu+h
Rlji(m—k—j )

In this limit, m@ - A and (m!/(m — k — j))8YU*® — A\**. The theorem fol-
lows from dominated convergence. To dominate the summands, use

m—k—1 .
P(m—-D=k)= ;0 (-1)’

m!. . . ;
z%'—];—'—.)—' <m* and QUR < gitk, O
m—k—j)!

In this limit /% and 7 behave as indicated in the next corollary.
COROLLARY 3.6. Ifn — o0 and m ~ (Mn/A) AV, then i — (D + ) - 0

in probability and m — D — [A] (the greatest integer < \) provided M\ is not an
integer.

Proor. By the last theorem, if m — d = O(1), then m(d) —d = A + o(1).
The result about 74 follows by approximating the likelihood by e *A™~¢/
(m — d)!. Details are similar to those for Theorem 3.4 and are omitted. O

Our last two results deal with limits where the joint distributions of the G’s
converge.

THEOREM 3.7. As A — oo,
m'n! 20)
i — . - o YA i
P(G(i) = g(i),i=1,2,...) (m_de/EHdU(w }
and
S@m!
(m—d)'m™’

where S'? is a Stirling number of the second kind [ Abramowitz and Stegun
(1970)].

P(D=4d) -

ProoF. The first result follows easily from (1.1) and the second from (2.1)
and (2.2) using the identity

1 & a(d).
s = 37 £ -0

The limiting distribution for D is called Arfwedson’s (1951) distribution and is
discussed by Johnson and Kotz (1969). O

THEOREM 38. If m — co and A — 0 so that mA — w, then

PG - a(0), 1) = o[ {(7* 8~ [T atiie0])
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and
(0 — 1)

(n+o—1)!
where 8% is a Stirling number of the first kind.

P(D=4d) - WIS,

ProoF. The first assertion follows easily from (1.1) using the fact that I'(-)
has a simple pole at —1. Another proof is given by Watterson (1976). The
limiting distribution is Ewens’ (1972) sampling formula which arises frequently
in genetic models without selection. He derives the distribution for D. For an
independent derivation, use Lemma 3.1 to show that

(n—1+ wx)!(w— 1)
T htre-Dl(ex-1)"

Ex?
The result then follows from the identity

Z2(Z+1)---(Z+n-1)= ) |S™|zm. O
m=0

In this limiting situation, D is complete and sufficient for w and the limiting
distribution for D forms an exponential family: Ewens gives tables for finding
confidence intervals for w.

In practice, A is usually unknown and it is natural to try to estimate m and
A jointly using maximum likelihood. If either of these last two distributions fits
the data, it may be the case that the likelihood is maximized as A — oo or as
m — o0, mA — w. This happens in some of the data sets we have considered and
can wreak havoc on computer programs which ignore this possibility. There are
several interesting open questions concerning joint estimation using maximum
likelihood. In particular, are the estimates unique and are they consistent and
asymptotically normal in the limit n — oo with m/n — A? These questions seem
rather challenging, especially uniqueness with the discrete character of m.to
worry about.

4. Examples. The first two data sets considered are from Mosteller and
Wallace (1964) and concern word usage by Hamilton and Jefferson. In these data
sets, G(s) is the number of manuscripts in which a specific word (“can” for
Hamilton and “may” for Jefferson) occurs exactly s times. In these data sets the
number m of manuscripts surveyed is known, so the estimators 72 and 7 can be
compared with the true value. Also if the authors use “can” and “may” a fixed
proportion of the time and the manuscripts are all of comparable length, then
neglecting “pigeonholing,” the distribution of the partition should be that
induced by Bose-Einstein sampling, so the true value of A should be roughly 1.

In the data for Madison, m = 262, n = 172 and d = 106. Assuming A =1,
the estimates for m are m = 272.1 and m = 274, both close to the correct value.
The log of the likelihood at 7 is log L = —8.273. With A = oo, the estimates
are m = 160.7 and m = 161 with log L = —9.464, and under Ewens’ sampling
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TABLE 1
Madison: Uses of “may”

Model
A=1 A= ESF A unknown
s G(s) EG EG EG EG EG EG
1 63 65.09 65.12 59.35 59.27 69.76 63.36
2. 29 25.27 25.14 31.80 31.67 20.81 27.00
3 8 9.72 9.67 11.21 11.22 8.25 10.18
4 4 3.70 3.70 2.92 2.96 3.67 3.59
5 1 1.40 1.41 0.60 0.62 1.74 1.21
6 1 0.52 0.54 0.10 0.11 0.86 0.39

formula (ESF), & = 116.7 and log L = —10.203. Simultaneous maximum likeli-
hood estimation of m and A produces a mildly surprising result, m = 217 and
A =1.998 with log L = —8.079. The likelihood is only 18% smaller than the
likelihood when A = 1, and the estimates are far from their correct values. This
behavior occurs in other data sets and will be discussed in the concluding
remarks section. Table 1 gives m.l.e. estimates EG and UMVUE estimates EG
for EG(s) under the four models fitted. Note that joint estimation of m and A
does not degrade the estimates for EG(s) and that the m.l.e. and UMVUE
estimates are generally quite close.

In the Hamilton data set, m =247, n =139 and d =90. When A =1,
M = 250.2, m = 253 and log L = —8.541. When A = oo, m = 145.6, m = 146
and log L = —12.247. Under Ewens’ sampling formula, & = 1094 and log L =
— 8.338564. Finally, estimating both m and A, m = 10,000,001, A = 1.094 X 10~°
and log L = —8.338546. Again these estimates are far from the correct values.
Table 2 gives the estimates for EG(s).

Our next example deals with species of birds on Malaysia. The data were
communicated to us by Dr. Marina Wong. For these data, n = 702 and d = 83.
When A =1, m=29397, m =93 and log L = —58.2117777. When A = oo,

TABLE 2
Hamilton: Uses of “can”

, Model
A=1 A=o0 ESF A unknown
s G(s) EG EG EG EG EG EG
1 60 58.04 58.12 53.97 53.84 61.48 61.48
2 20 20.76 20.62 25.75 25.62 17.21 17.21
3 5 7.33 7.28 8.04 8.07 6.41 6.41
4 2 2.55 2.56 1.85 1.89 2.67 2.67
5 2 0.88 0.89 0.33 0.35 1.19 1.19
6 1 0.30 0.31 0.05 0.05 0.55 0.55




DISTRIBUTIONS ON PARTITIONS 1479

TABLE 3
Species of birds
Model .
A=1 A= ESF A unknown

s Gs) EG EG EG EG EG EG
1 24 9.7 9.5 0.1 0.1 23.5 19.2
2-3 12 16.2 15.9 24 24 18.7 18.4
4-5 12 12.6 12.5 10.0 10.0 94 10.3
6-9 8 17.6 17.4 42.1 42.1 10.4 12.1
10-13 8 10.7 10.6 24.2 24.3 59 7.0
14-20 7 9.6 9.6 4.0 4.0 5.8 6.9
21-27 6 4.0 4.0 0.0146 0.013 3.2 3.6
28-37 6 2.0 2.0 — — 2.6 2.7
> 37 0 0.7 0.8 — — 34 2.6

m = 93.0167, m = 83 and log L = —318.2087725. Under Ewens’ sampling for-
mula, & = 24.28 and log L = —51.0344975. Finally, estimating both m and A,
m =189, A = 0.189678 and log L = —50.1369247. Estimates for EG(s) (summed
over various ranges of s) are given in Table 3. From these estimates and from
log L, Ewens’ sampling formula fits these data nearly as well as the model where
m=rmand A =A.

Our final example concerns word frequency data for Shakespeare compiled by
Spevack (1968) and analyzed by Efron and Thisted (1976). For these data,
n = 884,647 and d = 31,534. With such a large data set, we found it impossible
(with our programs at least) to find unbiased estimates using the recursion
formula for Lemma 2.4. When A = 1 (the Bose—Einstein model), from (2.2),

) = (52 1)

and using this identity, most of our results simplify considerably, allowing easy
estimation in this case. Due to these difficulties with the size of the data set, we
fit our model using maximum likelihood estimation for the Maxwell-Boltzmann
(A = ) and Ewens’ sampling formula cases and using the unbiased estimates
for the Bose—Einstein case (A = 1). The results are given in Table 4 along with
the fitted values under Fisher’s model obtained by Efron and Thisted [these
values are close but not exactly the maximum likelihood estimates under Fisher’s
model; see Efron and Thisted (1976) for more details] and fitted values for a
conditional version of our model. When A =1, m = 32,699, and when A = oo,
M = 31,534 and under Ewens’ sampling formula, & = 6385.4.

From Table 4 we see that as A decreases, the fitted number of singletons
increases, but never reaches a value acceptably close to 14,376. Fisher’s model, by
allowing negative values for A, can be fitted adequately. When the m.le. of A is
negative, there is no estimate for m in Fisher’s model.
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TABLE 4
Model
A=1 A= ESF Fisher® Conditional

s G(s) EG Eé Eé Eé EG

1 14376 1124.0 0.0 6339.7 14376 14249

2 4343 1084.0 0.0 3147.1 4305 4165

3 2292 1045.3 0.0 2083.1 2281 2199

4 1463 1008.1 0.0 1551.1 1471 1420

5 1043 972.1 0.0 1232.0 1050 1017

6 837 937.5 0.0 1019.3 798 777

7 638 904.1 0.1 867.4 633 619

8 519 871.8 0.2 753.6 518 509

9 430 840.8 0.6 665.0 433 429
10 364 810.8 1.7 594.2 369 368

“These estimates are from Efron and Thisted (1976).

In our model, if we condition on the value of D, we get

© ;. _ 8(i)
o (R
P(G(i) = g(i),i=1,2,...|D=d) = H(d, n)1=,8(i)!
’ i=1 °

This gives a family of distributions and as in Fisher’s model, values of A in
(—1,0) make sense. Unfortunately, by the sufficiency, once we condition on D,
all information concerning m is lost.

Expected values for the G(j) under this conditional model are given in
Theorem 2.5 and the approximation of E(G(j)|D = d) given in Theorem 3.3 is
still accurate although the proof needs some modification. [Conditional
on D = d, the nonzero X(p)’s are conditionally iid. with mass function
pA(1 — p)*T(A + k)/{k!T(A)1 — p*)} for k= 1,2,.... Then G(j) and N are
asymptotically jointly normal and the proof proceeds as the proof of Theorem
3.3.] A* when A < 0 is the unique negative solution of A = A*{1 — (AAN*/(1 +
AX*))4}. This approximation was used to obtain the fitted values in the last
column of Table 4. A was obtained by minimum x?2 on these 10 cells. The fitted
value for A was —0.4149, close to the value of —0.3954 obtained by Efron and
Thisted. Although our conditional model has only one free parameter (A),
compared with two parameters (A, p) for Fisher’s model, the fit obtained is
nearly as good.

5. Conclusions. The Dirichlet multinomial model (1.1) for partitions fits
the data sets in Section 4 quite well. The maximum likelihood and unbiased
estimates were always close and there is little reason to advocate one over the
other. For the first three data sets considered, Ewens’ sampling formula fits
reasonably well. Whenever this happens, it will be difficult to estimate m and A
separately with much accuracy. This occurs because pairs m, A with constant
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product mA give nearly identical distributions for the partition by Theorem 3.8.
In the final data set, negative values for A seem necessary to obtain a good fit.
These can be obtained by conditioning on D in our model or by fitting Fisher’s
model. Using either approach, there is no reasonable estimate for m.
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