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COMPLETE AND SYMMETRICALLY COMPLETE
FAMILIES OF DISTRIBUTIONS

BY Avi MANDELBAUM'AND LUDGER RUSCHENDORF
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Polarization is used to unify and extend classical results concerning the
completeness of generalized order statistics with dominated and non-
dominated distributions.

1. Introduction to completeness.

1.0. The subject of the present paper is completeness of families of probabil-
ity measures and statistics. The development is based mainly on the idea of
polarization. The first section provides a unified introduction to completeness
and prepares grounds for the new results developed in later sections.

1.1. The basic ingredient of a statistical model is a triplet (X, #, ) where
(X, #), the sample space, is a measurable space and # = {P} is a family of
probability measures on it. We adopt the standard convention that statements
with respect to & should be interpreted as simultaneous statements about all P
in 2. For example, “a.s. #” stands for “a.s. P forall P € #”; L?(X, #, P) is
the intersection of L?(X, &, P) over P € 2, and so on. Let = {f} be a family
of %-measurable real-valued functions that includes the zero function. The
family 2 is complete with respect to I (J-complete) if any f in TN LY X, B, P)
that satisfies

(1a) fxf(x)dP=O, VPe®

must also satisfy
(1b) f(x)=0 as. 2.

Informally, completeness says that among the elements in J, the only
unbiased estimator of 0 is the zero function. The concept of completeness was
anticipated by Halmos ([9], page 35) who looked for a proper way to describe
families of measures that are “sufficiently large.” It was later formalized by
Lehmann and Scheffé ([16]-[18]) and has been widely applied since.

The term “complete” was apparently borrowed from functional analysis, as
indicated in [7] (see also Section 38.2). Surprisingly, only a few works have used
the function analytic relation explicitly. Examples are Farrell [4] who considered
completeness in a Banach space setup and Siebert [24].
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1230 A. MANDELBAUM AND L. RUSCHENDORF

1.2. The notion of completeness is often associated with the size of the
family #. However, it is easy to construct examples of pairs £, C &, such that
P, is complete while £, is not (indeed, let #; be a complete family of measures
supported on a subset of X; constiuct #, by adding to £, an incomplete family
of measures which are supported on the complement of that subset). It is also
important to note that completeness is not only a consequence of the fact that
the family £ is “sufficiently rich,” but also a consequence of the fact that the set
T is “sufficiently small.” Indeed, all families of distributions are complete with
respect to the singleton set {0}. Thus, different classes of test functions give rise
to different (nonequivalent) notions of completeness. For a text treatment of
completeness the reader is referred to Lehmann’s books, [14] and [15].

1.3. In statistical application, restrictions on the test functions 7 are of two
categories: quantitative and qualitative. Quantitative restrictions are technical
and constrain the growth of the test functions while qualitative restrictions
constrain their form.

An example of a quantitative restriction is to fix a number p, 1 < p < o0, and
let

(2) T=L"X, R, P).

A family that is complete with respect to J in (2) is called LP”-complete. A
family that is L'-complete will simply be called complete. The L*-complete
families are the boundedly complete families that arise in statistical testing.

1.4. Qualitative restrictions typically constrain the test functions in J to
depend on a statistic T which is of interest. Formally,  consists of all functions
which are measurable with respect to the o-field generated by the statistic 7.
When £ is complete w.r.t. such a family, then the statistic 7' is called a
complete statistic. Completeness of a statistic amounts to completeness of the
family of its distributions which, in turn, can be verified by (1) with test
functions f of the form

(3) f(x) = &(T(x)),

for some real-valued measurable functions g.

1.5. Combplete statistics are most useful when they are also sufficient. A
fundamental example of a sufficient statistic which is often complete is the order
statistic of £ independent observations from a common distribution. The statis-
tical model is the triplet (X*, #% #*), where the superscript % denotes the
usual product and #* = (P*}; 2 is the set of possible common distributions.
The (generalized) order statistic T is

T(xl,...,xk) = {xl,...,xk},

which assigns to the vector sample (x,,..., x,) the set of points {x,,..., x,}. The
set of test functions J which satisfy the qualitative restriction (3) with respect
to the order statistic T are the #*-measurable symmetric functions. It follows
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that the order statistic is complete if and only if any integrable symmetric
function f that satisfies

(4a) [ [ m) dPF =0, VPE,

must also satisfy
(4b) f=0 as. Pk

A family £ for which (4) holds is called symmetrically complete of order k. Thus,
P is symmetrically complete of order % if and only if the k-order statistic is
complete. Symmetric completeness was first treated by Halmos [9] who dis-
cussed discrete measures. Fraser [5] studied symmetric completeness of families
dominated by nonatomic measures. Bell, Blackwell and Breiman [1] coined the
term “symmetrically complete” and used the results in [5] to establish the
symmetric completeness of a wide range of nonparametric families.

1.6. A family £ that is symmetrically complete of some order £ > 2 must be
complete as well (see also Remark 6 in Section 3.2). Indeed, if f satisfies (1a),
then

k
f Y f(x,) dP* = kff(x)dP= 0, VPe 2.
Xk X
Since X*f(x,) is symmetric,
k
Y f(x;) =0 as. 2%,
1
implying that for any measurable set A € %,
k
[f(z)dP= [ ¥ f(x;) dP*/(kP(4)*"") = 0.
A Ak

Hence, f must also satisfy (1b). However, completeness does not imply symmet-
ric completeness and examples could be constructed on a sample space X with
only two points. A key question is, therefore,

1.6A. What conditions should be added to “Z is complete” in order to
guarantee also that “# is symmetrically complete’?

1.7. When symmetric completeness holds, symmetric statistics are uniformly
minimum variance unbiased estimators of their expectation. For square integra-
ble symmetric statistics, the theory of symmetric tensor products of Hilbert
spaces is a natural framework [3]. Thus, it is not surprising that when the
qualitative constraint of symmetry and the quantitative constraint of square
integrability both apply, that the same Hilbert space theory is again natural and
useful. Hilbert space ideas, together with the polarization techniques (see
Section 2) allow one to provide partial answers to 1.6A and unify and extend
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completeness results that have been proved in [9], [1], [5] and [14]. For an
introduction to tensor products of Hilbert spaces, the reader is referred to [23]. A
comprehensive treatment of the subject is developed in Neveu [19].

1.8. The structure of a statistical model is greatly simplified if its family
P = { P} is dominated by a o-finite measure p. It is then possible to parametrize
2 Dby the densities of its members with respect to p, say D = {h}, and deal with
functions (the densities ) rather than measures (the probability distributions
P). For dominated models, it is natural to replace  in (2) by

T=L?(X, B, p)

and consider completeness of the family of densities D. This approach is taken in
Section 3 where the concepts of L%complete and symmetrically complete fami-
lies of densities are identified with the standard concept of a “complete set in a
Hilbert space.”

1.9. The rest of the present work is structured as follows. In Section 2 we
state the polarization results (which are proved later in the appendices). The
Hilbert space relation to completeness is developed in Section 3 and the main
results are given in Section 4.

2. Polarization.

2.0. In this section we state two identities and a lemma that form the basis
of the polarization technique. As before, (X, #) is a measurable space: All
functions considered are either #-measurable or #*-measurable, where #* is the
k product o-field in X*. Functions that are used as integrands will always be
assumed integrable.

2.1. For a function f = f(xy,..., x;), let Sf denote the symmetric function

Sf(xy,..., %) = Zf(x,l,..., %,

where the sum is over all k! permutations ¢ = (0,...,0;) of (1,2,..., k). Given
k functions A,(x),..., h (x), define the function of 2 variables ® fhi by

ko
(5) ( @ hi)(xl""’xk) = hy(x;) -+ hy(xy).

Similarly, if P,,..., P, are measures on (X, #), denote by ®fPi the usual
product measure on (X*, #*).

2.2. 'The polarization identities, which we are about to state, have been used,
no doubt, numerous times implicitly, but we are not aware of any explicit
statement of them [an example is [3], page 743, the derivation of (2.6)].
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Polarization identity for functions.

k k
S@ hi=L(-1)""™ @ hy,
1 *R 1

where the sum is over all subsets R of {1,..., 2} and
hp(x) = X hj(x), hy(x) = 0.
JER

Polarization identity for measures.
k k
Y ®P, =L(-)"""Q P,
4 1 R 1
where Pp = X ;. pP; and P, = 0.
The polarization identity for measures is verified by integrating the identity

for functions with respect to the product measure p* where p dominates P, and

h; is the density of P, wr.t. p. The polarization identity for functions is

essentially an identity for permanents of matrices. It is discussed in Appendix 1.
2.3. For the polarization lemma we need the following

DEFINITION. A subset C of a linear space is called weakly convex if for every
¢;, ¢3 € C there exists a number « strictly between 0 and 1 such that
ac, + (1 — a)e, e C.

POLARIZATION LEMMA. Let & be a weakly convex set of probability mea-
sures on (X, #). Suppose that f(x,,..., x,) is a symmetric function satisfying

(6a) ffde=0, VPe®.
Xk
Then
k
(6b) jfd®1>,.=0, VP,.. PP
Xt =1

The proof of the polarization lemma reduces to a statement about the
completeness of the multinomial distribution with a weakly convex parameter
set. The lemma appears in [17], page 152, as Exercise 12 and is discussed in
Appendix 2.

~ 3. Statistical completeness in the Hilbert space framework.
3.0. The present section provides a Hilbert space framework for statistical

completeness. We start with some necessary notations and proceed with the
relevant Hilbert space theory.
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3.1. Fix a o-finite measure p on (X, #). Let L%(u) = L% X, %, p) be the
usual Hilbert space with inner product (f, g) = [xf(x)g(x) du.

For a subset D C L%(p), let ® FD be the subset of L2(u*) = L*(X*, B*, u*)
defined by .

k k
® D={ ® n;: hl,...,hkeD},
1 1

where ®fhi is defined in (5).
Let S* denote the sub-o-field of symmetric sets in #* and let O% D be the
subset of L(p*) = L% X*, S*, u*) defined by

k k ’
C;)D={ ® h: heD}.
1
The space LZ%(p*) is nothing but the symmetric functions (or p*-equivalent
classes) which are square integrable with respect to the product measure p*.

The inner product in L*(p*) and L2(p*) is denoted by ( f, g),; the expression
(f, ®h;), will be abbreviated to (f, ®A,),.

3.2. It would be very surprising if, when coining the term “complete,”
Lehmann and Scheffé did not have the following definition in mind:

DEFINITION 1. A subset C of Hilbert space H is called complete in H (or just
complete) if the only element in H which is orthogonal to C is the element 0, i.e.,
(f,h) =0, VheC=f=0.

A standard exercise in Hilbert space theory is

" PROPOSITION 2. A subset C C H is complete if and only if span(C) is dense
in H, i.e., span(C) = H.

[Here span (C) is the subspace generated by C and span(C) is its closure.]
Now let D be a subset of L?(p) consisting of probability densities with respect
to p. Elements in D are nonnegative and integrate to 1 with respect to p.

DEFINITION 3. The family D is called L2-complete (or just complete) if for
any f € L(p),

(f’h)=fxf(x)h(x)du=0, VheD=f=0.
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DEFINITION 4. The family D is called symmetrically complete of order k
(with respect to p) if for any f € L2(p*),

(f’ ®h)k = /;{hf(xl’“-’xk)h(xi) h(xk)dl"‘k =0, VheD= f =0.
From Proposition 2 one concludes

32A. The set D is symmetrically complete of order %, i.e., ©% D is complete
in L%(u*), if and only if spanO% D is dense in L(p*).

REMARKS.

1. The name “L%complete” distinguishes it from “boundedly complete” and
“complete” used in the statistical literature. (We actually abuse the notation
slightly, since in the literature completeness refers to distributions, while we
use it for densities.) However, Definitions 1 and 3 coincide by identifying
C =D and H = L%(u). Hence, it is reasonable to omit the “L*” part in
Definition 3 and call D just “complete.”

2. Definitions 1 and 4 coincide by identifying H = L%(u*) and C = O% D.

3. Since elements in L? spaces are equivalence classes, we have omitted the
“almost everywhere” qualification in Definitions 3 and 4 from the conclusion
< f =0

4. Definitions 3 and 4 are what properties (1) and (4), respectively, reduce to,
whex; the measure p is actually equivalent to # and J= L%(p) resp. I=
L2(p®).

5. It was shown in Section 1.6 that symmetric completeness of order £ implies
completeness of D. The same idea can be used to prove (by induction) that
symmetric completeness of some order £ implies symmetric completeness of
all orders less than k.

3.3. Denote by 1, the indicator function of the set A and let
(7) *={Ae%B:0<p(A) < o}.
Given a set A € #*, define the uniform densitz u, (with respect to p) by

u (x) = (1/p(A)14(x), x € X. The set D = {®ju,; A; € #*} is complete in
L%(p*). Hence, ®* L?(p*) is complete in L*(p*). In fact,

PROPOSITION 5. D is complete in L*(p) if and only if ®FD is complete in
L2(p*).

ProoF. First assume that D is complete. The proof that ®fD is complete is
based on the two relations

k k
(8) & span(D) c span( @ D)

1
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and

k “*®
©) ® wpan(D) © @ span(D).
Then

k k E
L2(p*) = span{ X M(D)} c span{ X span(D)} c span @ D,

1 ) 1 ® 1
which indeed verifies that span (®*D) is dense in L2(u*). Now, (8) is a
consequence of simple manipulations and (9) follows from the fact that if, for
i=1,...,k Y} > h; in L*(p) as n - o, then also ®*Y? > ®*h; in L3(u).
Now suppose that ®fD is complete. To see that D must be complete, just note
that

( f’ hl) = /;(hf(xl)hl(xl) et hk(xk) d'uk’ v hl,“-’ hk € D,
because h; integrate to 1 and p* is a product measure. O

3.4. The definition of symmetric completeness applies to sets of functions that
are not necessarily densities. For example, using observation 3.2A, the following
proposition shows that D = L2(u) is symmetrically complete for all orders. This
is a fundamental and typical application of the polarization identity in that it
reduces “symmetric completeness” statements in L2(p*) to “completeness”
statements in L2(p*).

PROPOSITION 6. The set O% L2(u) is complete in L3(u*).

PrROOF. Let f be a symmetric function in L%(u*) for which (f, ® ), = 0,
V h € L*(p). Then for h,,..., h;, € L¥(p),

1 1 -
(fa ®h’i)k = F( f’S ® hi)k = FZ(_I)Ie IRI( f, ®hR)k =0.
. . R
Since ®%L2(u) is complete, we conclude that f = 0. O
4. Symmetric completeness—main results.

4.0. We now proceed with the set up of Section 3 and use the polarization
results from Section 2 to partially answer question 1.6A.

4.1. As a motivation, we first show

4.1A. If D c L*p) is a set of probability densities which is complete and
convex, then D is symmetrically complete for all orders.

Indeed, suppose that fe L%(u*) satisfies (f,®h),=0, V he D. Let
hy, ..., h, € D. Then (1/|R))hy € D by convexity, and as in the proof of Pro-
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position 6, we get from the polariz‘ation identity,
, ®h, —-1)*"®R*

To conclude that f =0, it suﬂEices to show that ®f D is complete. This follows

from Proposition 5.
An immediate consequence of 4.1A is

f,® = 0.

4.1B. Let U be the set of uniform densities with respect to p over (X, %),
ie.,

(10) U= {uA(x) (A) ——1,(x),A e 93*}

where #* is defined in (7). Then the convex set generaved by U is symmetrically
complete of all orders (cf. Lehmann [14], page 153, problem 13).

4.2. The statement 4.1A can be extended in at least two directions. In one
direction, the polarization lemma combined with Proposition 5 yields

THEOREM 7. Let D C L?(p) be a set of probability densities with respect to
p. If D is complete and weakly convex then D is symmetrically complete of all
orders.

The second direction, which will now be pursued, is suggested by 4.1B.
4.3. Fraser [5] proved

4.3A. If the dominating measure p is nonatomic, the set U in (10) is itself
symmetrically complete for all orders.

Indeed, suppose f € L%(p*) is such that
(f,®uy), =0, forall A € Z*.
By the polarization identity, for A,,..., A, € #* disjoint we get

1
(1,010, = 57 T (1, 0us,) m(An)" =0,

where Ap = U;c zA;. The fact that f = 0 is a consequence of

LEMMA 8. If p is nonatomic, then {® u,: A, € B*, A,NA;= @,i+j}is
complete in L2(p*).

Lemma 8 was proved independently in [5] and by Itd [10] who used it to
define multiple Wiener integrals with respect to Gaussian random measures.

The reason for taking disjoint sets in proving 4.3A was to be able to express
g8 Licpl A This suggests the following generalized form of 4.1A which is
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deduced from unifying the proofs of 4.1A and 4.3A.

THEOREM 9. Suppose that ®kD contains a subset C which is complete in
L%(p*) and such that for any F h € C there exist a,, ..., a; > 0 for which

ZaJhJ ZajED, forallRC{].,...,k}-
JjER JER

Then D is symmetrically complete of order k.

REMARKS.

1. If D is convex and complete, taking C = ®*D and @, = -+ =a, =1 yields
4.1A.
2. If p is nonatomic, taking C to be the set from Lemma 8 yields 4.3A.

4.4, An obvious question is whether the nonatomic nature of p is necessary
for 4.3A to hold. The answer is

PROPOSITION 10. (a) The set U is always symmetrically complete of order 2.
(b) If |B| > 3, then there exists a discrete measure p for which U is not
symmetrically complete of any order k > 3.

PROOF. (a) Suppose that (f, ®u,), = 0 for some f € L%(p?) and all A € Z*.
Now, the symmetric o-field S? is generated by {A; X A, U A, X A;;
A,, A, € B} or, equivalently, by {A; X A, UA, X A;; A,A, €%, A NA,=
@ or A, =A,}

For A, N A, = @ we have

A XA, UA, XA, = (A UA,)® - (A2U A2),

hence, {A% A € B) generates S2. We conclude that [,fdu? = 0 for all C € S2.
Taking C equal first to {f > 0} and then { f < 0} implies that f = 0.

(b) First, let k=3, A, A, € ®, AyNA, = 8, A, # ,i=0,1,and x, € A,
i = 0, 1. Define

S, =A; XAy XA UAJX A XAjUA, X Aj X Ay,
S, =A; XA XAgUA XAg XA UAG XA XA

and p = e, + je,, &, denoting the one point measures supported on {x;}. For
=15 — 1g, [pshdp® = 0 holds for all A € #*, i.e.,

(h,®uy); =0, forall A€ Z*,

h

while, clearly, 4 is not equal to zero a.s. p>.
In the general case, k > 3, consider a similar construction where S, is the
symmetrized version of A, X Ay X A; X X*73, etc. O
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REMARKS.

1. The statements 4.1B, 4.3A, Lemma 8 and Proposition 10 all still hold if #* is
replaced by a subset of #*, as long as that subset is a semiring that generates
2 (cf. also Fraser [5] concerning &/).

2. Proposition 10 is related to the results of Rao [22] and Grzegorek [8] stating
that S* is generated by A*, A € # for k = 2, while for £ > 3 equality does
not hold except in the trivial case # = {J, X}.

4.5. Several of the results for dominated families discussed in the previous
sections have analogs for nondominated families. Plachky [20] and Landers and
Rogge [13] proved the following analogue of Proposition 5 (Plachky considered
the case of bounded completeness).

PROPOSITION 5. A family & is complete if and only if
k k
R 2= { ® P; Pe2,1 sisk} is complete.
1 1
Using Proposition 5’ and the polarization lemma we get

THEOREM 7'. A family # which is complete and weakly convex is symmetri-
cally complete of all orders.

Moreover, the polarization identity for measures can be used to verify

THEOREM 9'. Suppose that ®f9” contains a complete subset C such that for
any ®FP, € C there exist a,,...,a, > 0 for which

YaP/Y a,€P forallRc (1,...,k)}.

JER JER
Suppose also that C dominates # in the sense that f € LN X, %, P) which
satisfies [fdP = 0,V P € C must also satisfy f =0 a.s. P,V P € #. Then 2 is
symmetrically complete of order k.

4.6. We end this section with a generalization of 4.1B which allows one to
deduce a completeness result for U-statistics and also generalize Halmos’ treat-
ment of discrete distributions. Given a o-finite measure p, fix 2 =1,2,... and
define a set of densities V}, by

7
Vi,={—=————< )2 rl : A,,..., A, disjoint sets in ZF*;
k {Eﬁﬂ'iﬂ(Ai) i=1 A
(11)

m
Yr<kr,..,r,= 1,2,3,...}.
i=1

Let &, , be the set of all probability measure densities with respect to p in V.
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THEOREM 11. Fork =1,2,...,

(a) V, is symmetrically complete of order k;
(b) &, 1, is symmetrically complete of order k.

Proor. We only prove part (b) since the proof of part (a) is similar. For

A € #*, let p, be the p-uniform distribution on A, i.e., the distribution on %
with density (1/p(A)) 1, w.r.t. p. Define

k
* = { ® Bas; A;€EB*, Ai=AjorA,NA;=0 foria&j}.
i=1
If ® p, €C* then

. Y u(4)) P, 4 forRc{l,...,k}
—_— (A )u, € , forRc {1,...,k}.
ZjeRM(Aj) jer A Tk

The symmetric completeness of order & of &, , now follows from Theorem 9’
and the following lemma. O

LEMMA 12. C* is complete.

Proor. If f € L}(C*) and

k
1
dQpuy==——— dp* =0,
-/f i=1 Ha, I (4,) '[‘hx XAkf #
for all A; € #* suchthat A;,N A, = & or A; = A, for i # j, then jAlekfduk =
0, for all A; € #*, since each product A, X --- A, can be written as a finite sum

of products B, X --+ XB,, B; € # with B, N B;= & or B, = B, for i # j. This
implies that f = 0 a.s. p¥, i.e., C* is complete. O

REMARKS.

1. As in the remark following Proposition 10, the collection of sets #* in
Theorem 11 can be replaced by a semiring generating %.

2. Theorem 11 includes, as a special case, the result of Halmos [9], i.e., if &
contains all finite discrete measures on (X, %), then £ is symmetrically
complete of any order. For the proof note that for any discrete measure p on
(X,%), <P

3. By reasoning analogously to Remark (2), Theorem 11 implies that, given an
arbitrary o-finite measure u on (X, &), the set of all probability measures
which are absolutely continuous with respect to p is symmetrically complete
of all orders. Fraser [6] proved this result when p is the Lebesgue measure on
R! and Bell, Blackwell and Breiman [1] extended it to nonatomic p. Similarly,
one concludes that the set of all nonatomic measures on (X, #) is symmetri-
cally complete of all orders. This result is proven in Lehmann [14] for X = R?!
and in [1] for a general X.
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4. In the theory of unbiased estimation one often considers the sets of distribu-
tions on (X, #)

P, = {P: &kf2(x1”...,xk) dP* < oo},

P = {Pe %;: P absolutely continuous w.r.tj B},

for f a fixed function in L2(P*). Theorem 11 implies that both % and P, ,
are symmetrically complete of all orders. In particular, U-statistics are com-
plete and hence uniformly minimum variance unbiased estimators of their
means.

APPENDIX 1

The polarization identity. The polarization identity is an immediate con-
sequence of the following representation for the permanent of a k X & matrix
A =[a; j]:

Permanent identity.

k
per(4) = £(-1* " I1( T ay),
R i=1\jeR

where

k
per(A) = Z I-.Eaiai'
o 1=
The permanent identity reduces to the polarization identity by letting a,; =
h;(x;). A proof of the permanent identity using the inclusion—exclusion principle
can be found in Jacobs ([11], Satz 3.13, page 31).

REMARK. The polarization identity can be derived from a relation which is
stated on page 52 of [2] and attributed to P. Cartier. It is also a consequence of
the Mobius inversion formula ([21], page 2).

APPENDIX 2

Completeness of multinomial families. We were not able to follow the
outline suggested in Lehmann [14] to prove the polarization lemma. [To see the
difficulty just try to prove that ¥, ; = 0. Note that Lehmann’s equation (1)
does not guarantee

(,P, + a3P;)/(a; + az) €2, onlythat (a,P; + ayP,)/(a; + ay) € 2.]

Reecently, Kallenberg et al. [12] provided a proof that follows Lehmann’s sugges-
tions. Here is an alternative proof which was derived independently. It may be of
independent interest since it also provides a sufficient condition for completeness
of the multinomial distribution.
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DEFINITION. Call a set S C R* a weak simplex if it is a subset of the
(k — 1)-simplex

k
{a = (a0, 0): 0,20, Yo, = 1}
i=1

and it contains the % unit vectors and is weakly convex.

PROOF OF THE POLARIZATION LEMMA. Let f be a symmetric function. Then

k k
ffd( Zaia) = 2 (. F xyJo  apfrapg - app,
i=1

where the sum is over % x, = & and ( k )= Rl /x! - x,).

Xyyeees Xy,

Let us fix P,,..., P, € #. Define a set S by

k
S = {a= (ayye.eyaz): @ >0, EaiPie.@}.

i=1
Then S is a weak simplex and the lemma will follow if we prove that the

multinomial distribution, indexed by a weak simplex, is a complete family. More
precisely,

PROPOSITION. Let S be a weak simplex in R*. Then for all n, the family of
multinomial distributions {B(n; a = (ay,..., ), a € S} is complete.

REMARK. The polarization lemma follows by taking & = n.

Proor. We must show that if

n
E f(X,,...,X,) = Z(xl’m’xk)afl e @ (%, %) =0, VaES,

then f = 0. The proof is by induction on k. Start with the binomial case, £ = 2.
Let X ~ B(n, a) and suppose that

n
E f(x)= )Y (Z)a"(l —a)" " *f(x) =0, Vasuchthat(a,1-a)eS.
x=0

The set {a: (a,1 — a) € S} is a weak simplex in R'. Hence, it must contain n
distinct a;,...,a,. The n X n matrix [af(1 — «;)*"*] is nonsingular, being
equivalent (up to nonsingular matrices) to a Vandermonde matrix. Hence,
f(x)=0,x=0,1,...,n.

Now assume that the preceding proposition holds for £ — 1. We shall use the
fact that if (X,,..., X,) ~ B(n;(ay,..., a;)), then

Xl - B(n’ al)’

Qg Qg

Xo,..., Xs|X;=y~Bln—y; ceey .
2y kl 1= (n y’l—al’ l—al
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For a=¢(1,0,...,0) + 1 — )0, ay,...,a;) = (5,1 — &)ay,...,(1 — &)ay), we
have

0=Euf (X, X0) = X ()00 = "B [f(Xusoo XX, = 5]

I
<
105

n n—
(y)sy(l - 8) yE(az,...,ah)f(y’ X2’”~’Xk)°

First, note that the set S’ = {(ay,...,a;): (0, ay,..., a,) € S} is a weak simplex
in R*~!, Now fix (a,,...,a;) € S'. The set

S = {e: (e,(1 — &)ay,...,(1 — &)a) € S}

N

is a weak simplex in R!. By the binomial case
E(az,...,ak)f(y’ X2’°°°’Xk)=0’ y=0’1y~~~,n~

The last argument can be repeated for every (as,...,a;) € S’. Using the
induction hypotheses we conclude that f = 0.0
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