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ESTIMATING TAILS OF PROBABILITY DISTRIBUTIONS

By RicHARD L. SMITH
University of Surrey

We study the asymptotic properties of estimators of the tail of a
distribution based on the excesses over a threshold. A key idea is the use of
Pickands’ generalised Pareto distribution and its fitting, in most cases, by the
method of maximum likelihood. The results cover all three limiting types of
extreme value theory. We propose a new estimator for an index of regular
variation and show that it often performs better than Hill’s estimator. We
give new results for estimating the endpoint of a distribution, extending
earlier work by Hall and by Smith and Weissman. Finally, we give detailed
results for the domain of attraction of exp(—e™*) and show that, in most
cases, our proposed estimator is more efficient than two others, one based on
the exponential distribution and the other due to Davis and Resnick. We also
touch briefly on the problem of large deviations from a statistical point of
view. The results make extensive use of existing work on rates of convergence.

1. Introduction. Suppose we have a random sample from an unknown
distribution function F, and we are interested in the upper tail of F, i.e., in F(x)
as F(x) — 1. It seems reasonable that statistical procedures should be based
only on the extreme order statistics in the sample, and numerous such proce-
dures have been proposed. Two problems, in particular, have been studied in
detail.

ProOBLEM 1. Estimation of an index of regular variation. Suppose {1 —
F(tx)}/{1 — F(x)} - t~* as x = oo for each ¢ > 0, and we wish to estimate a.
This problem arises naturally in dealing with long-tailed (Pareto-type) distribu-
tions; applications include insurance claim distributions [Teugels (1984)] and a
number of problems in mathematical economics and the social sciences
[Mandelbrot (1982), Chapter 38]. A simple estimator of a was proposed by Hill
(1975) and from a different perspective by Weissman (1978) and its properties
have been much studied [Hall (1982a), Davis and Resnick (1984), Haeusler and
Teugels (1985), Csorgd and Mason (1985) and Goldie and Smith (1987)]. For the
case 1 — F(x) = Cx~%{1 + O(x~#)} as x - oo, Hall and Welsh (1984) showed
that no estimator of a converges at a faster rate than n=#/(«+28) and Hall and
Welsh (1985) proposed an estimator that achieves this rate of convergence. Other
estimators have been proposed, e.g., de Haan and Resnick (1980) and Teugels
(1981) proposed simple estimators based on order statistics and more recently
Csorgb, Deheuvels and Mason (1985) have studied a very general estimator
which includes Hill’s estimator as a special case. Our approach will lead to yet
another estimator of a. DuMouchel (1983) discussed similar procedures in the
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context of estimating a stable law. He argued that procedures of the above type,
based on the extreme order statistics, may well be superior to fitting a stable law
to the whole sample.

ProBLEM 2. Estimating an endpoint. The opposite problem to Problem 1
occurs with short-tailed distributions and is to estimate the endpoint of the
distribution,

xo = sup{x: F(x) <1},

on the assumption that this is finite. In most applications, the problem is
formulated in terms of the lower endpoint rather than the upper endpoint. Some
general estimators have been proposed by Robson and Whitlock (1964), Weiss
(1971), Cooke (1979, 1980), de Haan (1981) and Ariyawansa and Templeton (1983,
1986), amongst others. The last three papers were concerned especially with an
application to nonlinear optimisation, also developed by Patel and Smith (1983).
We shall consider an estimator equivalent to those of Hall (1982b) and Smith
and Weissman (1985).

These two problems may be considered special cases of the general problem of
estimating the tail of a distribution. In this paper we propose a solution to the
general problem, which covers all three limit laws of classical extreme value
theory. A distribution function F is said to be in the domain of (maximum)
attraction of another distribution function H if F™*(a,x + b,) = H(x) for some
a, > 0, b,. It is known [see, e.g., Galambos (1978) or Leadbetter, Lindgren and
Rootzén (1983)] that H must be the same, up to location and scale, as one of the
three cases ®,(x) =exp(—x7%), x>0, a >0, ¥ (x) = exp(—(—x)%), x <0,
a >0, or A(x) =exp(—e *), —o0 <x < o0, and the domain of attraction of
each of these is completely determined. Our approach starts with a result of
Pickands (1975). Let x, < oo denote the upper endpoint of F and define

F(u +y) — F(u)
F(y) = :
1 - F(u)
the conditional distribution function of X — u given X > u. Define the gener-
alised Pareto distribution (GPD) by
1/k

G(y; 0, k) = 1-(1-ky/s)”’", k+0,0>0,
1—exp(—y/0), k=0y0>01
the range of y being 0 <y<o (k<0) or 0 <y<o/k (k> 0). Pickands
showed that the GPD is a good approximation of F,, in the sense that
(1.1) lim sup [|F(y) — G(y; o(u), k)| =0,
U—Xo 0<y<xg—u
for some fixed & and function o(), if and only if F is in the domain of attraction
of one of the three limit laws. The constant %k is —a™' if H=®,, +a~! if
H=%, and 0if H=A.
Pickands used this result to derive an estimator of the upper tail of F' which is
consistent for any of the three domains of attraction. His estimates for 2 and

U<x4,0<y<xy—u,
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o(u), however, are based on simple functions of the order statistics and are not
asymptotically efficient.

We now state our approach. Suppose we have a large number of independent
observations X,,..., X, with a common distribution function F. Fix a high
threshold u, let N denote the number of exceedances of u and let Y,...,Yy
denote the excesses. That is, ¥, = X; — u, where j is the index of the ith
exceedance. Conditionally on N, the excesses are i.i.d. with distribution function
F,. Our proposal is to approximate F, by the GPD, G(-; o, k) say, estimating o
and % by the maximum-likelihood estimates, 6, and %y, based on Y;,..., Yy.
Combined with N/n as an estimator of 1 — F(u), this gives the tail estimator
(1.2) 1-Flu+y)=n"'N(1- I%Ny/é‘N)l/k",
for 0 <y < oo (if £y <0)or 0 <y < éy/ky (if £y > 0).

This general approach allows us to derive a number of other estimators as
special cases. If £y > 0, then u + 6,/ky is an estimator of the endpoint of the
distribution. This is effectively the same estimator as that of Hall (1982b) and
Smith and Weissman (1985), but the present derivation seems more intuitive. If

k N <0, then ay= -1 /kN is an estimator of the index of regular variation
which is different from Hill’s (1975) estimator. Hill assumed
(1.3) (1-F(x))/(1 - F(u)) = (x/u)™",  z>u,

and derived from this the maximum-likelihood estimator of a, which in our
notation is
-1

(1.4) ay = N{ g:llog(l + Y,./u)}

If (1.3) is satisfied exactly, then Hill’s estimator is asymptotically efficient, but if
(1.3) is only an asymptotic relation, then it may be that &, is asymptotically
more efficient than ay; see Section 4. Csorg6, Deheuvels and Mason (1985) have
generalised Hill’s estimator in a quite different way, using weighted linear
combinations of the ordered values of log(1 + Y, /u).

The use of &, as an estimator of a is theoretically justified (via Pickands’
result) by the fact that F is in the domain of attraction of ®, if and only if
{1 - F(tx)}/{1 — F(x)} > t~* as x = oo for ¢ > 0. The third limit law, A, has
been less extensively studied, though the idea of using the exponential distribu-
tion as an approximation to F, has been developed by hydrologists under the
name peaks over threshold (POT) method. Smith (1984) has included a discus-
sion and references. Davis and Resnick (1984) took a different approach, showing
that tail estimates based on Hill’s estimator are consistent for many F in the
domain of attraction of A. We shall compare both the POT approach and the
Davis—Resnick method with ours based on the GPD.

“ The main theoretical question, other than the choice among different estima-
tors, is the choice of threshold u. If u is too large, then N will be small and
hence the estimators will have high variance. If u is too small, then the
approximation of F, by the GPD will be poor and the estimates correspondingly
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biased. Our results lead to a quantification of this bias versus variance trade-off
and hence to asymptotically optimal choices of w.

A different, but general, approach to tail estimation has been taken by
Breiman, Stone and Gins (1979, 1981). Recently Laycock and Phang (1986) have
studied closely related methods for the prediction of extreme values, though
their methods are based on classical extreme value theory rather than the
threshold approach. For a more direct approach based on classical extreme value
theory, see Cohen (1984, 1986). Joe (1987) has also considered tail estimation
using classical extreme value theory as well as the GPD.

The plan of the paper is as follows. The basic idea underlying all our results is
presented in Section 2. The detailed working out of this method, however,
requires separate consideration of the different domains of attraction. The case
of &, is studied in Section 3 and a comparison between the GPD and Hill’s
estimators is made in Section 4. Then we turn to ¥ ,, which is further subdivided
into cases a > 2, a =2, and a < 2. The case a > 2 (Section 5) is similar in
character to the previous results, but the cases a = 2 and a < 2 (Sections 6 and
7) are quite different in character and we treat these in a different way from the
rest of the paper. Returning to our main theme, we consider the consequences of
the preceding results for the estimation of tail probabilities (Section 8) and
finally turn to the domain of attraction of A (Section 9). Some conclusions and
possibilities for further work are given in Section 10.

In presenting limit theorems, the role of N (the number of exceedances) is
primary but that of n (the size of the original sample) is secondary. For these
reasons, most of our results are conditional on both N and u and are presented
as limit theorems as N — o0 and u = uy — x,, simultaneously. Such results
may also be readily interpreted as unconditional results in which either N or « is
treated as fixed and the other random, depending on n.

As a final preliminary remark, although all our results are for the case of i.i.d.
observations, the threshold approach is not restricted to this case and, indeed,
has many possibilities for dealing with dependent and /or nonidentically distrib-
uted observations. Some of the possibilities have been discussed by Davison
(1984) and Smith (1984).

2. Estimation using the GPD. Let g(y; o, k) = (3/9y)G(y; o, k) denote
the GPD density. For reference, the first- and second-order derivatives of
log g(-;0, k) and their expectations are derived in the Appendix.

First, consider the case where Y}, ..., Yy areii.d. with exact GPD density. Let
L,(0, k) = XN log g(Y; o, k) denote the log likelihood and define Uy(o, k) as
the 2-vector with components —odL/do, —3dL,/dk and I (o, k) as the 2 X 2
matrix with diagonal elements —0232L,/d02, —32Ly/dk? and off-diagonal
elements —o d2Ly/do dk. Except for the factor, o, these are the negative score
statistic and the observed information matrix for (o, k). Provided %k < 3, we
have EU, = 0,

N-EUUJ = N~'EI, = M,
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where

1
_ 1-k - ] -1 [2 1 ]
M= =(1- .

Ao Bl -1 2l M=0=R[] 1,
Standard arguments [e.g., Cox and Hinkley (1974), Chapter 9] suggest that there
exists, with probability tending to 1 as N — oo, a local maximum (6, ky) of
L, satisfying

6y/0—1
(2.1) [ g h ]= —I3'UL(1 + 0(1))
N
and from this it follows that
1/2 -1
N e P

provided & < 1. Here and everywhere, subsequently, .#" denotes the (univariate
or bivariate) normal distribution and —, denotes convergence in distribution.
We shall also use —, to denote convergence in probability. For the case £ > 0
Cramér’s regularity conditions are violated, but a rigorous proof of these state-

ments, and extensions to k£ > 3, are given by Smith (1985).
Now suppose that Y;,..., Y, are drawn not from the GPD, but from one of

the F,’s. If (1.1) holds, we will typically be able to determine a remainder
function ¢ such that
(2.3) sup |F(y) — G(y; 0(u), k)| = O(¢(u)),
0<y<xo—u

where ¢(u) — 0 as u — x,. In this case, we might expect (2.1) to remain valid,
the effect of ¢ being to introduce a bias of O(¢()) in Uy. This will lead to a bias
in (2.2).

To make this more precise, suppose that N — o0, u = uy = %, and 6 = oy =
o(uy) and suppose ¢p(uy) = O(N~'/?). We will typically be able to show that

(2.4) N~2E{Uy(oy, k)} = b, for some finite vector b,
(2.5) NIy (o', k’) =, M~', uniformly over (¢’, k'),

in a neighbourhood of the form |o’/oy — 1| < ey, |ky — k| < ey, where
N2, — + 0. It will then follow that

é N - k
In many cases we will have b = 0, but much of the interest in the theory lies in
‘the possibility of developing limit theorems when b # 0, since this corresponds
to a nonnegligible bias due to the approximation of F, by the GPD.

Our main results are based on this argument, but the details are different for
each of the three limit laws so we consider them separately.

(2.6) N1/2[ ] >, N[-M", M ].
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3. Limit law ®,. Let F be in the domain of attraction of ®, for some
a > 0. Then L(x)=x%1 — F(x)) is slowly varying at «. We shall assume L
satisfies one of the following conditions:
SR1. L(tx)/L(x) =1+ O(¢(x)y, asx — oo foreach ¢ >0,
SR2. L(tx)/L(x) =1+ k(t)¢(x) + o(¢(x)), asx — oo foreach t> 0,
where ¢(x) > 0 and ¢(x) = 0 as x — oco. In the case SR2, if we exclude trivial
cases, ¢ must be regularly varying with some index p < 0 (notation: ¢ €R)
and k() is then of the form k(t) = ch(t), h(t) = [{uP~'du. We shall not
attempt a detailed justification of these condltlons [see Goldie and Smith (1987)]
but shall remark that these are very general conditions. It is easily seen that
L(x) = C(1 + Dx~# + o(x~*)) [assumed by Hall (1982a)] satisfies SR2 with
B = —p and many other forms of remainder terms are also encompassed by the
SR2 condition. For an application to rates of convergence in extreme value
theory, see Smith (1982).

The following result of Goldie and Smith (1987) will be used repeatedly:

ProposITION 3.1. Let L satisfy SR1 or SR2 with remainder function ¢, and
let v be a real-valued function on (1, ©). Suppose, for some p < 0, either SR2
with ¢ € R, or SR1 with ¢ nonincreasing and

(3.1) o(tx)/o(x) <CtP, x2x,>0,t>1,C< o0.

If either (a) p = 0 and [{°|v(t)|t*dt < oo for some € > 0, or (b) p <0 and v is
integrable, then

[T o0 L(m)/L(x)) de = [“o(2) de + O(9()).
In case of SR2, we also have
flwv(t){L(tx)/L(x)} dt = j1°°u(t) dt + ¢(x)f1°°v(t)k(t) dt + o(¢(x)).
Our main result in this section is the following
THEOREM 3.2. Suppose L satisfies SR2. Let Y,,...,Yy be i.i.d. from F, ,
where N — o0, uy — oo such that

(3.2) NV%¢(uy)/(a =p) =4, —00 <p<oo.

Define k = —1/a, oy = uy/a. Then there exists, with probability tending to
1, a local maximum (6, k ~) of the GPD likelihood function, such that

p(1 = k)1 + 2kp)

6n/ony — 1 1-k+kp
N2 N , M™!
[ Fy—k ]*d w(1— k)E(1 + p)
1—k+kp

If L satisfies only SR1 with ¢ nonincreasing, and if N'/?¢(uy) — 0, then the
same result holds with p. = 0.
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REMARK. The precise form of (3.2) is chosen for consistency with equation
(4.3.3) of Goldie and Smith (1987).

ProOOF. We give the proof only for SR2. The method follows Section 2, and
the principal part of the proof is the calculation of b.

Suppose Y ~ F, and r > 0. Integrating by parts, we have by Proposition 3.1
that

L(ut)
L(u)

a cro(u)
T rta (r+a)(r+a-p) *o(o(w)

and a similar expression for E{log(1 + Y/u)}. Using the expressions in the

E{(1+ Y)u)_'} =1- rfwt"'l“" dt
1

Appendix with o6 = u/a and k2 = —1/a, the first two moments of
—a(d/do)log g(Y; o, k) are
co(u) «
Tariost o(¢(u)),  —— +0(¢(n))
and those of —(d/dk)log g(Y; o, k) are
acop(u) 2a?
(a—p)at1-p) + o(¢(u)), [CERICED) + 0(¢(u)).

The third absolute moments of both these quantities are also bounded as
u — oo.
Under assumption (3.2), we than have (2.4) with

bo_* [—a+p]= P [—l—kp]
a+1l-p a 1—-k+kp 1 )

The remainder of the proof requires (a) the Lyapunov CLT for Upy—this follows
easily from the preceding remarks—and (b) (2.5), which is most easily verified by
bounding the expected value of the third derivatives of the log likelihood. We
omit the details of these operations.

In application, it is usual to think of either N or u, being fixed with respect
to total sample size n and the other being random. Then the left-hand side of
(3.2) is random, but it may still be the case that (3.2) holds in probability and
then Theorem 3.2 remains valid. This is obvious from a Skorohod-type construc-
tion of probability spaces on which (3.2) holds almost surely. For example:

1. Fix threshold v, such that v, —> c0 as n— oo, let N =N, denote
the number of exceedances of v, in a total sample of size n and let u, =
v,. If n{l — F(v,)} » o, n'*1 — F(v,)}?%¢(v,) = p(a — p), then
‘Nn™Y1 - F(v,)}7' >, 1 and (3.2) holds in probability. Theorem 3.2 holds
conditionally on {N,}, hence also unconditionally.

2. Fix N = N, so that N - o and N/n — 0. Let u, denote the (N + 1)st

order statistic and define v, = F*(n/N), where F*(¢) = inf{x: 1 — F(x) < ¢t 1.
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Suppose SR2 with N/%c¢(v,) = p(a — p). We claim that (3.2) holds in prob-
ability, or equivalently ¢(v,)/¢(uy) —, 1. To see this, write u, = F*(W, "),
where W, is a beta r.v. satisfying nW, /N —, 1 (Chebyshev); note that F*, ¢
and hence ¢ o F* are each regularly varying; use the fact that if {X,} and {Y,}
are sequences of random variables, each tending to co with X, /Y, —, 1 and if R
is regularly varying, then R(X,)/R(Y,) —, 1. [This argument depends on ¢
being regularly varying and hence is only valid for SR2. Different kinds of
conditions on F are assumed by Haeusler and Teugels (1985) and by Csorg6 and
Mason (1985).]

Under Hall’s (1982a) assumption L(x) = C{1 + Dx~# + o(x~#)}, we have
¢(x) =x"P, p= —B and c = —BD. If we consider v, = An” and let

(3.3) vy=(a+28)7", p=—AT2FCDB(a+B),
then (3.2) holds in probability and Theorem 3.2 follows. O

4. Comparison with Hill’s estimator. In the notation of Section 3, a, =
—1/k,, is an estimator of a. The conclusion of Theorem 3.2 gives

pa(a +1)(1 + p)
- a+1-p

(4.1) NY2(gy—a) 5 N ,a(a + 1)%|.

This may be compared with the corresponding result for Hill’s estimator (1.4),
(4.2) N ay — a) -4 ./V'[—p.a, 0‘2]

[Goldie and Smith (1987)]. Comparing (4.1) and (4.2), we see that the asymptotic
variance of @, is higher than that of ay, but the bias may well be smaller.

To make a more in depth comparison suppose SR2 holds, that o, is the
threshold associated with sample size n and let N denote the number of
exceedances over u, = v,. Assuming (3.2) in probability, (4.2) gives the asymp-
totic mean-squared error of @, as \

@1+ p2)/N = a(L + )/ {n(1 - F(s,))).

The denominator is asymptotically u2*/(*=2¢) times a fixed function of n, so as a
function of p this is proportional to

a2(1 + u2)u—2a/(a—2p).
Similarly, the asymptotic mean-squared error of a, is proportional to
a?(a + 1)2;t_2“/(“_2"){1 +p2(1 4 p)(a+1- p)_2}.

Choosing p (separately) to minimise each of the last two expressions, the ratio of
the two becomes

minimum m.s.e. for & 1+p \2¢(=20)

lim —— _N=(a+1)2———-———
minimum m.s.e. for ay a+1l-p

This expression is 1 for p = 0, decreases with |p| to be 0 at p = —1, thereafter

increases to (a + 1)% as |p| = 0. The broad conclusion is that Hill’s estimator is
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superior for |p| large (when the Pareto tail is a very good fit) but the GPD
estimator is superior when |p| is small. The conservative choice might be to use
the GPD estimator on the grounds that this gives greater protection against a
poor Pareto fit. .

This comparison is artificial in that it assumes the threshold to be chosen
optimally, which would be hard to achieve in practice, but there are other
considerations which might influence the practical statistician. For example,
Hill’s estimator is not location invariant and its use therefore seems unnatural
when the origin of the scale of measurement is arbitrary. The case p = —1 is
peculiar: An appropriate change of origin removes the leading error term and so
makes possible an improved overall rate of convergence. A similar phenomenon
has been observed in connection with the rate of convergence of F*(a,x + b,) to
@ (x) [Smith (1982)]. Note that this requires SR2 not SR1 and therefore does
not contradict the main result of Hall and Welsh (1984).

5. Limit law ¥,, a > 2. The distribution function F is in the domain of
attraction of ¥,, a > 0, if and only if

(5.1) xo=sup{x: F(x) <1} <o and L(x)=x{1— F(x, - x~1)}

is slowly varying at oco. Our results for the three cases a > 2, a = 2 and a < 2
are quite different in character, so they are dealt with in three separate sections.
Here we consider a > 2.

The basic procedure is again to fit GPD to the N excesses over a threshold u,
obtaining maximum-likelihood estimates 6y, &y. If £ ~ > 0, then u + éy/ky is
an estimator of x,. This estimator, formulated slightly differently, was shown to
be consistent by Smith and Weissman (1985) provided a > 1, and asymptotically
normal by Hall (1982b) provided a > 2. Some of Hall’s results also cover the case
1 < a < 2. In this section we generalise Hall’s result for « > 2 in two principal
ways, first by allowing SR1 or SR2 (see Section 3) in place of the narrower
conditions assumed by Hall, and second by weakening the conditions on N and u
to include the case b # 0, in the notation of Section 2.

THEOREM 5.1. Assume (5.1) with L obeying SR2 for ¢ € R p» P <0, and
k(t) = ch,(t). Let N > oo, uy — x, such that

(5.2) NV2%ep((x4 = uy)"Y) /(@ — p) > p.

For each N, letY,,...,Yy bei.i.d. with d.f. F, .. Then, with probability tending
to 1, there exists a local maximum (8y, k) of the GPD likelihood, such that

p(1 — &)(1 - 2kp)

6n/on — 1 (1-%k-kp)
5.3 N1/2 - S M.
3 [kN—k} | k- B - )
1—k—Fkp

Here, k= 1/a and oy = (xy — uy)/a. If L satisfies only SR1 with ¢ nonin-
creasing, and N'/?¢((x, — uy)™') — 0, then the same result holds with p. = 0.
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SKETCH OF PROOF. Assume SR2. If Y ~ F,, then by similar arguments to
those in Section 3 the means of —o(d/de)log g(Y; o, k), —(3/dk)log g(Y; o, k)
evaluated at ¢ = (x, — u)/a, k = 1/a, are, respectively,

_ ﬁq)((xo - u)_l)(l + o(1)),

T CET T AR O

u — x,. Calculations as in Section 2 then lead to (5.3), with a similar conclusion
for SR1.

ESTIMATION OF ENDPOINT. If we define 6y = oy/k and 0y = 6x/ky, then

rearrangement of (5.3) leads to
A wla—1)(a=2)p (a—2)(a—-1)

4) NY7%(6y/0,— 1 N ,
(5) (N/N )_)d a(a—p—l) a
We compare this with Hall (1982b), Theorem 6. Let L(x)=C(1 + Dx # +
o(x7#)) and consider total sample size n, threshold v, =x,— A~ 'n77,
where 0 <y <a™! and the number of exceedances N and u, = v,. Then
NA®C~'n**"! >, 1 and (5.2) is equivalent to (3.3). We estimate Xo by £, = uy +
0y and a SImple calculation shows (N/n)"* ~ CV/%(x, — uy) in probability.
Consequently, (5.4) implies

NY}(N/N)*(£y — xo) ~, NYV2C7°05Y(0y — 0y)

(5.5) pla —1)(a —2)8 (a—2)(a—1)°
2a N T Ca(a v f-1) O

In this case the mean-squared error of £, is O(N~102) = O(n~@*2R)/(@+2B))
Hall’s estimator differed only in that N = N, was treated as a deterministic
sequence and u, defined to be the Nth largest order statistic from the full
sample. Hall obtained the p = 0 case of (5.5) under the condition L(x) = C +
O(x~#) and the additional condition N, = o(n?/3).

6. Limit law ¥, « = 2. In this section we consider the case a = 2 and make
the simplification of assuming that « is known to the statistician. We could also
consider the case in which « is treated as an unknown, but results of Smith
(1985) suggest that we would get the same result for the asymptotic estimation
of x,, so we do not consider this case in detail.

We assume that the endpoint x, is finite and that 1 — F(x, — x) = x2L(x ),
where L is slowly varying at oo. If u=x,— 6, § > 0, and Y},..., Yy are iid.
excesses over u, then the common distribution function of Y¥,, 1 <i < N, is

F(u+y) - F(u) ( y

2
= - = 0410 0.
F(Y) =~ Fw 1-3], 610, 0<y<
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An approximate log likelihood for 6 is then

N
(6.1) Iy(8) = Y log(6 — Y,) — 2N log 6 + const.,

i=1 ¢
with derivatives

0 2

(62) —0l4(0)=2N-Y —0%14(0) = —2N + 2(0—_—Y) .
We may therefore define an approximate maximume-likelihood estimator of 6
(based on the excesses over u) as that value 8, which maximises /5 (8). In turn,
Xy, = u + 0y is an estimator of x,,.

Previous results on this problem are due to Waoodroofe (1972), Weiss and
Wolfowitz (1973) and Hall (1982b). The first two papers assumed L known, so
that x, is the only unknown parameter and is a location parameter, and proved
asymptotic normality and asymptotic efficiency of the usual maximum-likeli-
hood estimator. Hall considered essentially the same estimator as ours, but only
for a much narrower class of slowly varying functions L, which does not bring
out the full range of possibilities. Our result is

0-Y,’

1

THEOREM 6.1. Suppose L satisfies SR1 with a nonincreasing remainder
function ¢. Suppose N - oo and uy — x, such that N'/%p((xq — uy)™') is
bounded. Let 0, = x, — uy. Define

Ly(x) = [L(2)y*dy,
L0-%)  L(6~%)—L(6Y)
A I T

Let Yy ,, ..., Yy, n be ii.d. from F,  and define Iy(0) to be Ylog(6 — Yy ;) —
2Nlog 6. ,
Then, there exists a nonrandom sequence {sy} such that

(6.3) Nsy*u(sy, Oy) = 1,
(6.4) s%/N - o

and, with probability tending to 1, there exists a local maximum 8y of 15(6) such
that
Sy, -
(6.5) b—(ozv —Oy) =4 #(0,1).
N
Before proving this, we make some remarks about its relation to earlier work.
The generality of Theorem 6.1 stems from the fact that L is not assumed to
converge at co. If we do assume this, however, the result may be simplified.
Suppose L(x) - a/2 as x — co; in turn, a sufficient condition for that is
F"(x) > a as x = x,, cf. Woodroofe (1972). Then L,(x) ~ alogx/2,as x > o
and (6.3) may be satisfied by choosing s, so that

sy ~NlogN, N - .
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Let us now interpret the result as an unconditional result about the estimation
of the endpomt xo. We have x, = uy + Oy, X, = uy + Oy, say. Denote the total
sample size by n, the threshold u, instead of uy and let N ~ n{1 — F(u,)} ~
an(x, — un)2 /2 denote the random number of exceedances over the threshold. If
we write «,, in place of sy,/8y, then (6.5) becomes

a, (%, — xy) 24 #(0,1), n-— .

But a2 ~ N log N/6% ~ anlog N/2 exactly, as in Woodroofe (1972). This leads
to the following conclusions.

1. Our estimator X, has exactly the same asymptotic distribution as the
maximum-likelihood estimator derived under the assumption that L is known
everywhere, since this is essentially the case dealt with by Woodroofe (1972).
Thus, there is no loss of information as a result of not knowing L.

2. The only restriction on the sequence of thresholds is that N/Zp((x, —
u )~ ') must be bounded —this is a condition which says that N must not grow
too quickly. Thus, there is no optimum rate of convergence in this case and N
may be chosen so as to grow only very slowly. Hall (1982b) also remarked on this
point.

ProOF oF THEOREM 6.1. The proof is split into a series of lemmas. First,
define Xy ; = 0y/(0y — Yy ;) and note that

(6.6) P{Xy ;>x} =x2L(65%)/L(63Y),
(6’7) ”‘(x’ oN) = E{XN,u 1< Xn = }

LEMMA 6.2. The sequence {sy} exists, satisfying (6.3), (6.4) and
(6.8) Nlim NP{Xy ,>esy} =0, foralle>0.
— 00

Proor. By de Haan (1970), Section 1.2, L, is slowly varying and L,(x)/
L(x) = oo as x = co. By this and (6.7), p is a nondecreasing and slowly varying
function of x for each 6. For fixed x, Fatou’s lemma gives

(6.9) llmmfy.(x 0) = 2hmmffoL((00 1)) dy

- Thus, x~2u(x, 0) is bounded away from 0 as § — 0 for any fixed x > 1, but tends
to 0 as x — oo for fixed 4. For sufficiently large N, we can find s, such that
p(sy — & 0y) <s?3/N < u(sy + ¢ 0y) for any &> 0. Suppose sy + oco. Then
Sy < 7 < oo infinitely often, and u(7 — ¢ 65) — 0 along a subsequence. This
is impossible by (6.9). Therefore, sy — oo. For fixed y > 0, we have
p(snYs On)/1(sy, 8y) = 1 by slow variation of L and L,; hence, (6.3) follows.
Suppose s2/N + oo. Then there exists M < co such that p(sy,0y) <M in-
finitely often. But for any fixed 7, sy > 7 eventually, so by (6.9), M > 2log 7.
This contradiction proves (6.4). Finally, suppose (6.8) fails. Using (6.6) and (6.3),
it follows that there is a subsequence along which p(sy, 05)L(05%)/L(05%y) is

> 2log x.
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bounded. In particular, {L,(05'sy) — L1(05')}/L(65%y) is bounded. But the
last expression is eventually at least as large as {L,(0ylsy) —

L6y sNx‘l)}/L(ﬂN sy) for any fixed x > 1 and by Fatou’s lemma the liminf
of this is at least log x. Hence, (§.8) is proved by contradiction and the proof of
the lemma is complete. O

LEMMA 6.3. sy'OyIf(0y) =4 A(0,1), sy?0315(0y) -, 1.

Proor. We have E{Xy ;} =2 + O(¢(05")) = 2 + o(sy") using Proposition
3.1, the assumptions of Theorem 6.1 and (6.4). This condition, together with
(6.3), (6.7) and (6.8), suffices for Theorem 16, Chapter 4 of Petrov (1975) and
hence via (6.2) for the first statement of the lemma. The second statement
follows similarly from the weak law of large numbers for triangular arrays
[Petrov (1975), Chapter 9, Theorem 3] or from Raikov’s theorem [see Hall and
Heyde (1980), Section 3.4]. O

LEMMA 6.4. There exists a sequence {tn} such that syty' — 0, sty - ©

and ty'L, X%, —,0. With X3 o+ = X y the order statistics of Xy ,,
1<i<N, wethenhave

N _ -3
(6.10) X A{(XE) T - (X5) ) =50

PrOOF. Choose ¢ = 8ys3 so that 8y — 0 and
(6.11) Nty*2L(65'?) /L(65) - snty' = 0.

To see that this is possible, observe that if 8N = 8 > 0, then (6.11) is true by
Lemma 6.2. But then it follows, by a diagonalisation argument, that it must be
possible to choose 8, — 0 so that (6.11) remains true.

To show that ty'LX3 ; —, 0, it suffices by Theorem 3, Chapter 9 of Petrov
(1975) to prove that

(6.12a) NP{X3 ,>ety} -0, foralle> 0,
(6.12b) Nty'E{X3 ; X3, <ty} — 0,
(6.12¢) Nty*E{Xf ; X5, < ty} = 0.

Now (6.12a) is just (6.8). For (6.12b, c) observe that, for r > 2,

L(65% % 05ty
Bl v <2} =1 "Li(olfv_)) “rh 32((5; ‘)) ay
R(6y'x) - R(05")
r—2
<1 +‘ réy; L(ﬂ;,l) ’

where R(x) = [fy"3L(y)dy ~ x""2L(x)/(r — 2) by de Haan (1970), Section
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1.2. Hence,

tN"E{ X% 15 Xja < ty} = O{t&m

L]

L(0x't*)
L(0y")
and (6.12b, c) follow from (6.12a).
To show (6.10), write

(X0 - (X507} = (X207 X072 (xg ) :
N —lANj = 4N, Ty < (XF.) (1 - *
X X3,

N,1

But it is easy to show that X3 ,/X¥, is bounded away from 1 (in probability)
as N — oo and the result then follows from the first part of the lemma.

We can now complete the proof of Theorem 6.1. By familiar arguments, 0,
exists and satisfies Oy — 0y = —I3(0y)/I3(05%), where 0% lies between 6, and
On. In view of Lemma 6.3, it suffices to show that there exists a sequence {ey}
with ey > 0, eysy/0y — oo such that
(6.13) sy°0% sup |15(0) — I%(6y)| =, 0.

10—0Oy<en

Choose ey = Oy(sy/ty)"? Taking a Taylor expansion in 6, we have to show
(6.14) Nsy20%en07% >0,  sy0%eny. (60— Yy,) °>,0,

uniformly over |6 — @y <ey. The first part is automatic from (6.4) and
syty' — 0. For the second part, it suffices to restrict ourselves to 6 < Yy, and
hence to show

N
sy02en X (Yot — Y ) 2>, 0,
(6.15) i=2

sn0%en(Oy — en — Yar) ' >, 0.

The second limit in (6.15) holds because Yy, = 0,(fy). The first limit follows
from Lemma 6.4 after substituting Yy ; = 0y — 0y/X3 ;. With this, the proof of
Theorem 6.1 is complete. O

7. Limit law ¥, 0 < a <2. In this section we assume that 1 — F(x) ~
c(xy — x)* as x 1 x,, where ¢ > 0, 0 < a < 2. The simplest case is when x, is a
pure location parameter, so that F(x — x,) is fully specified. In this case, the
density f = F’ is typically JJ-shaped when a < 1, so that a local maximum-likeli-
hood estimator exists only when a > 1. Woodroofe (1974) showed that when
a > 1, the maximum-likelihood estimator of x, is n!/*-consistent, and he ob-
tained the (nonnormal) limiting distribution. Akahira (1975) showed, for the full
range 0 < a < 2, that n'/* is the optimum rate of consistency and Ibragimov
and Has’minskii (1981) obtained the asymptotic distributions of both maximum-
likelihood and Bayes estimators in a variety of cases, although they did not
obtain explicit formulas for these asymptotic distributions.
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Smith (1985) studied estimation of # in the case

f(x;0,6) = (x—0)" 'g(x—6;9), =x<8,

where ¢ is a vector of nuisance parameters, a« = a(¢) may be known or unknown
and g is a known function tending to a constant as x — § — 0. In this case, for
1 < a < 2, the maximum-likelihood estimator was shown to have the same
asymptotic distribution as when ¢ is known. Similar results were also presented
in the case 0 < a < 1. The problem considered in this section is a kind of
infinite-dimensional extension: The function g is assumed completely unknown,
subject only to smoothness and integrability constraints. As in Section 6, our
eventual conclusion is that ignorance about g has no effect on the asymptotic
estimation of x,. We show this by adapting some results of Ibragimov and
Has’minskii. :

It is convenient to recast the problem in terms of estimating a lower endpoint.
We shall assume that F(x) ~ C(x — 6)* as x | 8, where 8, ¢ and a are unknown.
Since 8 is a location parameter and the proposed estimator is location invariant,
there is no loss of generality in assuming the true value of 8 to be 0.

We assume that

(7.) F(x).= Cx*{1 + DxP + o(x*)}, asxl0,
C>0,>0,0<a<2,
and that the same relation remains valid under two differentiations, viz.,
(7.2) f(x) = F'(x) = aCx* Y1 + Da~}(a + B)x? + o(x*)},
f'(x)=ala—1)Cx*2
X {1 +DaYa—1)""a+ B)a+B—1)xP+ o(x’g)}.
We also assume thaf f ” exists and that

. o f"(x + eu)
0 ey

(7.3)

f(x)dxe = O(u*7%),  ulo,

} H(x)de = O(u?), w10,

[l @)l <0 (a=1),

(7.6) "
f x%(x)dx < 00, forsomed>0 (a#1).
0

These assumptions are considerably stronger than those in the preceding
-sections. They are needed for application of the Ibragimov-Has'minskii results.
N. H. Bingham has pointed out to me that, by the results in Section 7 of
Balkema, Geluk and de Haan (1979), it is possible to sandwich any regularly
varying function F between two “smoothly” varying functions, say F; < F < F,,
whose derivatives exist and have the anticipated limits. Since Z, ; (defined
below) is a monotone function of the order statistics, it could also be sandwiched
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between the corresponding functions defined for random variables from F and

F,. Moreover, &, (also defined below) can be shown to be a consistent estimator

of « under much weaker conditions than (7.1)—(7.6), so that this result could be

extended to Z, ,. Thus, we might extend the following results so that they hold

under weaker conditions. We shall not attempt to fill in the details of this.
Consequences of (7.1)—(7.3) are the relations

f(x) = eXP{—fan(y)y‘ldy},

(7.7) 3
F(x) = exp{-fx ﬂo(y)y—1dy},

where

(7.8) 0(y) = 9 (9)/f(3) = a = 1+ 0(5#),

10( ) = ¥(9)/F(y) = a + O(5*).

Suppose the total sample size is n and that there are N (= N,,) observations
below a threshold u (= u,). We assume
(7.9) u,>0, nui->o, u,~yn Ve 0<y<oo
and, consequently,
( N, ~ Cy°n?/(«*2B) in probability,
7.10
) Nl/Zug -, Cl/2YB+a/2.

Let the observations be Xj,..., X,, ordered as X, < --- < X*,. Define
N -1
&(=&n) =N|:Zlog{(u_Xn":1)/(Xn,‘:t_anl)}] .
i=2

Consider the four likelihood ratio processes,

n . —1/a
ot = [T R,

i=1

_ f(X,+m V) Fu)

Znid) = 1;[{ Xy Fa+m ) }

Zn,3(t) = ! {(1 + tn_l/“Xi_l)a_l(l + tn_l/“u_l)_"‘}’

Z"y4(t) = ]._I {(1 + tn_l/aXi_l)&_l(l + tn—l/au—l)—&>’
it X;<u

each defined for ¢ > n~'/2X¥,. The motivation for these definitions is as follows.
Z, \(t) is the likelihood ratio statistic for testing § = 0 versus 6 = —tn~/*
based on the full sample, assuming that f is fully specified but for the unknown
0. This is viewed as a stochastic process in t. Z, ,(¢) is the likelihood ratio
statistic based on observations censored at u; Z, ; and Z, , are approximations
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to Z, , in which a is assumed known but nothing else (Z, ;) and in which « is
also unknown and estimated by &Z, o). In Z, ,, we do not change the n~1/«
because this is a normalising constant wh1ch as it turns out, is not affected by «
bemg unknown. Thus, Z, ,, Z, ; and Z, , are successive approximations to Z,,
in which more and more mformatlon is d1scarded

In the terminology of Ibragimov and Has’'minskii (1981), Chapters 5-6, the
density f possesses a singularity of order a — 1 at 0. Their condition (1.3), page
282, is satisfied provided @ < A < a + B, by our (7.2) and (7.3). The process Z,,
defined above, then coincides with the process Z,, defined by Ibragimov and
Has’minskii. They show (Chapter 5, Theorem 2.1 and Chapter 6, Theorems 2.1
and 2.3) that the finite-dimensional distributions of Z, converge to those of a
stochastic process Z which they define. They also show (Chapter 5, Theorem 4.2
and Chapter 6, Theorem 6. 2) that n'/%(d, — ) converges to a random variable
defined from Z. Here §, is a Bayes estimator with respect to a continuous
positive prior and a sultable loss function. In the case a > 1 they prove a
corresponding result for the maximum-likelihood estimator (Chapter 6, Theorem
6.4). These results assume (7.6). Note that the asymptotic distribution of the
maximum-likelihood estimator was found in a completely different form by
Woodroofe (1974).

Our principal result is

THEOREM 7.1.

sup|Z,,((£)/Z,,5(t) = 1| 2,0,  sup|Z, (t)/Z, (t) — 1| =, 0,

where the suprema are taken over —n~/ *X <t <M for some arbitrary
M < oo. Furthermore,

sup|Z, 5(t)/Z,, () — 1| -, 0,

where the supremum is taken over —n~/ Xk + mN~Y <t< M, for arbitrary
Yy<oo,m>0and M < .

Theorem 7.1 may be interpreted as saying that, so long as attention is
restricted to a compact set of values of ¢, all four processes Z, 1-Z,, 4 converge to
the same limit Z. Consequently, estimators constructed from these four processes
have the same asymptotic distributions. This includes maximum-likelihood
estimators (when a > 1), Bayes estimators and also Pitman estimators which, as
a referee has pointed out, are asymptotically efficient under squared error loss.

The estimation of « is a separate problem, of independent interest. The
estimator &, was proposed, in slightly different form, by Smith and Weissman
(1985). Concerning its rate of consistency, we have

“ THEOREM 7.2. (a) If 0 < a <2 and the assumptions of this section hold,
then

N'2(&, — @) =4 S (vF**/2C2Daf(a + B) ", a?).
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(b) If the same assumptions hold with 2 < a < co, then we still have
NV%(&, — a) = O,(1).

As a consequence of Theorem 7.2, the estimator &, may be used to distinguish
between the cases a < 2, a > 2. Thus if &, < 2, we take @, as our estimate of a
and proceed to construct an estimator of 6 based on Z, ,. If &, > 2, we then
switch to the methods of Sections 2-5 and estimate both a and 0 using the
GPD.

Proor oF THEOREM 7.2. If it were known that § = 0, then we could define

a(-a,) - [ > log(uN/X,,*,)]_ ,

i=1

which is just Hill’s estimator for 1 — F(1/x) (see Section 3). By (4.2) or Hall
(1982a), we have

NYY(a — a) -, #(y#+2/2C2Dap(a + B) ", a?).

The proof now rests on comparing a and &. By adapting the proofs of Lemmas
1-3 in Smith (1985), it is possible to show

lOg(]‘ - Xn*:l/un)=op(N_l/a)’

(7.11) N O, (N*~V9), a>1,
log1 — X* /X*)={ "
Z Og( n,l/ n,z) O (logN) a< 1.

It then follows that &' — @~ ' is O,(N"'log N) when a < 1, O,(N~ /2y when
a > 1. This suffices for the result. O

PrOOF oF THEOREM 7.1. First, we compare Z,, with Z, ,. From the
definitions, it follows that

o 20) 5 f(Xi+tn'1/"‘)}

(7.12) Zn,2(t) it X;>u f(X;)
F(u + tn™1/%)
+Nlog{————F(u) }
Now,
FlutmVo))  fw) N i) [ fw*))\?
N°{ F(u) }‘N”‘/F(uﬁ N VTP {F()}]

where u* is between u and u + tn~V2 By (7.8) f(u)/F(u) = u™Y{a + O(uf)},
while the expression in square brackets is O(z~2). But Nn~/*u~1*# - 0,
Nn~=?/*u=2 - 0, so

Flu+ tn=V*
N1 {_S_____)

(7.13) )

} = n'"Vu* " 14Ca + 0,(1).
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We apply the same techniques to the first term in (7.12), using (7.4) and (7.5) to
deduce that

f(z)

f(X; + tn=2/%) .
i XZ,->ulog{ f(Xi)‘ }_tn ’ i:XZ,->u (X) (1)

But the mean of {f"(X,/f(X))}(X; > u)is —f(u) = —aCu*"'(1 + O(u*)) and
the second moment is O(u*~2) by (7.4). Hence,

f(X;+ tn=1/?)
(7.14) i Xz>ulog< f(X) }

Comparing (7.13) with (7.14), we deduce that Z, ,(¢)/Z, ,2(2) = 1, uniformly over
finite ranges of ¢, in probability.
Now we compare Z, , with Z, ;. We first show that

(7.15) N{log F(x) - log Fu + tn"/) + alog(1 + tn"Veu"1)} - 0,
N

Y {log /(X + tn /%) — log(X,2,)

i=2

—(a = 1log(1 + tn~¥2/X*.)} > 0,

each uniformly in probability over —n!/ *Xk, <t< M. By (7.7) and (7.8), the
left-hand side of (7. 15) is

Nj;”mW {no(uy) —a}y 'dy = O,(nun""*u"'uf) > 0.

= —n' Y u " tCa + 0,(1).

(7.16)

A sinﬁlgr argument gives (7.16) via (7.7), (7.8) and (7.11). Thus,

Z, ot Xx 4+t ) f(xx

,3( ) = ( ,1 _1) f( ,121 {1+O(1)},
Z,5(t)  f(Xx V) (Xx)® ?

umformly But X —-,0, XX + tn 1/ -, 0, umformly in ¢, hence,

Z,(1)/Z, t) — 1, umformly over the required range of ¢, in probability.
The argument for Z, +/Z, 3 is almost identical, since by Theorem 7.2 we have

d — a = 0,(N~'/%) = O,(uP). We deduce that
Zn,4(t)
Zn,3(t)

from which the result follows. O

— (X, + 1) (L + o)1),

8. Estimating tail probabilities. So far, our results have been concerned
with estimating parameters, rather than with the tail distribution function itself.
In this section we consider the latter problem. There is also the closely related
inverse problem of estimating quantiles, but we shall not consider that explicitly.

Suppose we have a total of n observations from the unknown F. Fix a
threshold, and let N denote the random number of observations above the
threshold. The threshold is denoted u, the suffix N being for consistency with
earlier notation. Suppose we wish to estimate 1 — F(u, + yy), for some yy > 0.
The estimator we propose to use is N/n as an estimator of 1 — F(uy), and the
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GPD for {1 — F(uy + yy5)}/{1 — F(uy)}. Thus,
1/ky

1 - Fluy + yy) =n_lN(1 _iéNyN/&N) ’
where 6y, ié,, are estimators of the GPD parameters. Where there is no ambigu-

ity about N, we shall drop the suffix and write 6, 4.
Suppose oy, k are defined and that

31) R A B )
for some vector b and matrix S. It is not necessary that 6, £ be the maximum-
likelihood estimator. Suppose z > 0 is fixed and yy = op(1 — 2)/k.

Write {1 — Fluy + yy)}/{1 — F(uy)} as exp{—h(é, k, yy))}, where
h(o, k, y) = —k~'log(1 — ky/c). Define ¢’ to be (¢9h/do, dh/dk) evaluated
at (oy, R, yy)- Thus,

(8.2) "= (k27" -1),k %ogz + k227" - 1)).
Then

(8.3) NV2{h(8,k, yy) — Aoy, k, 3x)} =4 #(cTb,cTSe).
Suppose

(84) 27VH1 - F(uy +yy)}/{1 - F(uy)} =1+ N~V + o(N~1/2),
for some b’ depending on z. We also have
(8.5) NY2[n7IN(1 - F(uy)} " = 1] =, #7(0,1),

which follows directly from the binomial distribution of N. Writing
{1 - Fluy +y3)}/{1 — Fluy + yy)} as

N 1 — Fi
1k (1) exp{ —k(6, k, yy) + h(on, &, yx))

z
n{l - Fuy)} 1—Fluy + yy)
and applying (8.3)—(8.5), we obtain
1— Fluy + yy) _
1— F(uy+yy)
This is the key result. Note that it is formulated in terms of relative error rather
than absolute error, which we believe to be appropriate for applications. Davis
and Resnick (1984) proved the consistency of their tail estimators uniformly in
¥n = 0, but from the point of view of absolute error.
To illustrate (8.6), consider the limit law ®,. We assume SR2 and all the other
conditions required for Theorem 3.2. Then the bias term — b’ — ¢Tb turns out to
be

(8.6) NVZ{ 1} =4 A (-b" - cTb,1 + c"Se).

~p(a = p)h(2) + pla+1)(a+1-p)"
X{(z7'=1)(2 + a)p + (1 + p)alog 2},
which vanishes if p is 0 or —1. The variance ¢” Se may be similarly calculated,
but we shall not write it out.

The idea of using Hill’s estimator to estimate the tail of the distribution, as
advocated by Davis and Resnick (1984), may be brought within this framework
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by defining 6 = u/a, k = —1/a, where a is Hill’s estimator of a. As a conse-
quence of (4.2), (8.1) holds with

b= [-:/a}’ 5= [—ll/a 1/1::]

The fact that S is now singular makes no difference to (8.6). In this case
—b — ¢"b = —p(a — p)h,(z) + aplog z, which again vanishes if p = 0.

It is of some interest to extend these results to allow z = z, — oo, thus
providing a statistical counterpart to Anderson’s (1978, 1984) theory of large
deviations in extreme value theory. If 6, £ are the maximum-likelihood estima-
tors using the GPD, then —b’ — ¢Tb ~ pa(a + 1)1 + p)(a + 1 — p)~log z if
p < 0, and ¢’Se ~ a®(a + 1)%log 2. Our result is

THEOREM 8.1. Suppose L satisfies SR2 and that the other conditions of
Theorem 3.2 hold. Suppose

(8.7) zy— +0, N Y%ogzy -0,
(8.8) zy*o(uyzy)/o(uy) > 1, for0<s<1.
Then

N2 [1 - Fuyzy)
logzy (1 — Fluyzy)

where v is 0 for p=0, pa(a + 1)L + p)Ya+1—p)~! for p<0 and 7%=
a®(a + 1)2

1] -y N (v,72),

REMARK. Condition (8.7) is necessary as well as sufficient for the result, and
this effectively answers the question, “How far can we extrapolate into the
tails?” from the point of view of controlling relative error. Condition (8.8) is a
form of a “super slow variation” (SSV) condition on x ?¢(x). See Anderson
(1978, 1984) and Goldie and Smith (1987) for more information about SSV. Our
condition differs from Anderson’s in that the SSV is imposed on the remainder
function rather than on L itself. Note that, in simple cases, we often have
¢(x) = x*, in which case (8.8) is automatic. Some other aspects of large devia-
tions have been studied by Smith and Weissman (1987).

Proor oF THEOREM 8.1. Let yy = on(1 — zy)/k. By analogy with
(8.3)—(8.6), the result follows if we can establish

N1/2(10g zN)_l[exp{—h(é‘, k, yN) + h(oN’ ks yN)} - 1]

8.9
&9 -, JV'[;La(a +1)A+p)a+1-p)"" a(a+ 1)2],
zﬁl/k{l - F(uNzN)}/{l - F(uy))
(8.10) = L(uyzy)/L(uy)
) 1+ o( N~V2log zy), p <0,
T+ paN~2log zy + o N~V2log zy), p =0,

(8.11) N'%(log zy) " [n"'N{1 - F(uy)} ™" - 1] -, 0.
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Equation (8.9) follows from the same argument that led to (8.3), given (8.7).
(8.11) is trivial. To show (8.10), use the representations

C{1+ cp7'9(x) +o((x))}, p<0,

L = x
) emle+ o) + [(e+ oaera],  p=o0
1
[Goldie and Smith (1987)]. In the case p < 0, (8.10) follows at once via (8.8). In
the case p = 0, (8.8) and monotonicity of ¢ give

UnNZ,
f "o ()t 1 dt ~ ¢(uy)log zy,
un
from which (8.10) follows eas11y
If Hill’s estimator is used in place of the GPD then Theorem 8.1 remains
valid with » = 0 (p = 0), » = pa (p # 0) and 72 = a2. Note the similarity with
the result in Sections 3 and 4 for the estimation of a.
We briefly treat the limit law ¥,. First, assume (5.3) for a > 2. This defines b
and S in (8.1). In this case the bias —b’ — ¢”b is

—u(a—p)h(z7) —p(a —1)(a—1-p)"
x[(2 - a)p(z7 = 1) + a(1 — p)log 2].
Again, this vanishes when p = 0. The same result is valid for a = 2, the only
qualitative difference being that S is singular. Now suppose a < 2. Defining & as
in Section 7, we have N'*(& — @) =, #(—pa, ¢®). (This is true without
making the detailed assumptions in Section 7.) Let 6 be any estimator of 8 such

that n'/%(4/8, — 1) converges. For example, we could take 6 to be the sample
maximum. Defining % = 1/& and é = §/a we have (8.1) with

b [ ] S 1 1/a
IRVYZ3K 1/e 1/a%]
Then — b’ — ¢’b = —p(a — p)h,(z2~") — aplog 2, and (8.6) again holds. O

9. Limit law A. We now treat the case where F is in the domain of
attraction of A. As in Sections 1-5, we consider procedures based on N excesses

Y}, ..., Yy over a threshold u (or u,) and use the GPD as an approximation for
F,, the common distribution function of Y;,...,Y,. We consider three proce-
dures.

(i) Estimate the GPD parameters o and 2 by maximum-likelihood estima-
tors 6y, k.
(ii) Assume k = 0, i.e.,, approximate F,(y) by the exponential distribution
1 — exp(—y/0) and estimate ¢ by Yy, the sample mean of Y,,..., Yy.
(iii) Estimate o and %2 by 6y =u/a,, ky= —1/day, where a, is Hill’s
estimator (1.4).
Procedure (i) is the basic procedure studied in Sections 1-5. Procedure (ii) is

included because the exponential distribution is already widely used by hydrol-
ogists [see Smith (1984) for further discussions] and because the exponential
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distribution is the appropriate form of the GPD when F is in the domain of
attraction of A. Procedure (iii) is the Davis—-Resnick (1984) method: Although
they did not formulate it in this way, it is easy to see that the tail estimates, so
constructed, are the same as those of Davis and Resnick. They proved, under
conditions broad enough to include most practical examples, that the tail
estimates constructed in this way are consistent. It is therefore of interest to
determine the asymptotic properties in greater detail.

The plan of this section is as follows. Section 9.1 gives technical preliminaries
about the domain of attraction of A. In Section 9.2, asymptotic results about the
three estimators of o and & are given. In Section 9.3, these results are extended,
in the manner of Section 8, to the estimators of the tail distribution function.
Section 9.4 gives examples and discussion. All proofs in this section are deferred
to Section 9.5.

9.1. Technical preliminaries. If F is in the domain of attraction of A, then
there exists a representation

(9.) 1= ) = olx)esp| - [* 5]
. — F(x) = c(x)exp{ — —}, x < x,,
p _w¢(t) 0
where c(x) > 1 as x > x, < o0, ¢ is a positive differentiable function and

¢’(x) = 0. This was proved by Balkema and de Haan (1972) extending de Haan
(1970).

PRrROPOSITION 9.1. Suppose (9.1) holds and

o'(u+ yp(u))/¢'(u) > 1, asu — x,, uniformly over
0<y< —K log|¢'(u)|, forsomeK > 1,

(9.2b) c(u) —1~s¢'(u), asu— x, for finite s.

Then, for each § > 0, there exist ug < x, and a function ¢, tending to 0 as
u - x,, such that foru > uy, 0 <y <x,—u,

(93) |1 = F(y9(u)) — e{1 + ¢'(u)y?/2}| < e,¢'(w)min(1, y~?).
PROPOSITION 9.2. Suppose (9.1) holds and
(9.4a) o"(u+ yp(u))/9"(u) > 1, asu — x,, uniformly over
0<y< —Klog|¢'(u)|, forsomeK <2,
(9.4b) c(u) -1~ s{(<]>’(u))2 + |¢(u)¢”(u)|}, as u — x, for finite s,
(9.4¢) ¢(u)¢”(u)log|e'(w)|/¢'(u) =0, asu - x,.

Then, for each 8 > 0, there exist u; < 0 and a function ¢, tending to 0 as
u - x,, such that foru > us, 0 <y <xy,— u,

1 - F(y(u)) - e7[1 + y%'(u) /2 — y*{2(¢'(u))’
(9.5) —o(u)e"()} /6 + y*(¢/(u))* /8]
<&, [(¢'(w))” +|(x)¢"()||min(1, y~2).

(9.2a)
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REMARK. Equation (9.2) essentially defines Cohen’s (1982b) class N, as
simplified by Anderson (1984). A sufficient condition for (9.2a), due to Cohen, is
that ¢’ be eventually one-signed with either |¢’(x)| (in the case x, = o0) or
|¢'(xo — x~1)| (in the case x, < o), regularly varying at x = co. The additional
conditions in (9.4) are similar to those of Cohen’s Theorem 9. Proposition 9.1 is
due, with minor variations, to C. W. Anderson. A proof of Proposition 9.2 is
given in Section 9.5..

9.2. Estimation of o and k. We follow the scheme outlined in Section 2,
letting g(-; o, k) denote the GPD density. For fixed u set o = ¢(u), £ =0 so
that —o(d/do)log g(Y; 0, k) =1 — Y/o(u), —(3/3k)log g(Y; o, k) =
Y?/2¢*(u) — Y/¢(u). Suppose Y ~ F,. If (9.4) holds, then by (9.5) we have as
u - x,, :

E{Y/$(u)} =1+ ¢'(u) + (¢/(u))” + ¢(u)¢" ()
+o{(¢'(u))”* +19(u)¢"(u)|},
E{Y?/¢*(u)} = 2 + 6¢'(u) + 14(¢'(u))’

+8¢(u)¢" (1) + o (¢'(w))” +|¢(u)¢"(u)|}.

Thus, defining Uy, as in Section 2,

—¢'(u) = (¢'())* — ¢(u)¢”" ()
2¢'(u) + 6(¢'(u))” + 3¢(u)¢"(u)
+o{(¢'(u))”* +|o(u)¢" ()|}

If only (9.2) holds instead of (9.4), the same expression is valid up to the term in
¢'(u).

N-E{Uy(o, k)} =

THEOREM 9.3. Suppose (9.1) and (9.2) hold and N = o, uy = x,,

(9-6) N2 (uy) - p.
Then
Lo | O/ (uy) — 1 0ll2 1
&) N/z[ by ]_’d "VH—#Hl 1”
(9.8) Nl/z{ Yy/o(uy) - 1} -4 #(1,1).
If further
(9.9) NY2(uy)/uy = »,
then

(9.10) Nl/Z[EN/¢(£:) - 1] -, ./V[[#__vv], [(]; 8”
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In the case of (6, k ~), we can achieve a finer result by lowering the sequence
of thresholds:

THEOREM 9.4. Suppose (9.1) and (9.4) hold and N — oo, uy — x,,

(9.11) NY2(¢'(uy))’ > gy NY2%(uy)e"(uy) = v,
Define by, = N'/%¢'(uy). Then

Gn/d(uy) — 1 0 4 -2 1
N1/2[ 5 ]+[bzv} _)dml:l:_5"’1_2vl ,[1 1] .

N

REMARK. Many well-known distributions satisfy (9.4), including the normal
and lognormal and the gamma and Weibull distributions with shape parameter
# 1. A curious exception, however, is the exponential distribution; in this case
¢’ = 0 and neither (9.2) nor (9.4) is satisfied. Because of this, Cohen (1982b)
[following Anderson (1976)] defined a second class of distributions which he
called class E. It is possible to prove similar results to Theorems 9.3 and 9.4 for
class E as well, but we shall not go in the details of this.

9.3. Estimation of tail probabilities. 1t is possible to make some comparisons
among procedures (i)—(iii) using the results of Section 9.2, but this is not very
satisfactory because it is not clear, at this stage, what we are estimating. We
therefore proceed directly to the estimation of tail probabilities. For this we
follow Section 8, pointing out the changes that are needed. We consider estima-
tors of F(uy + y), y > 0, corresponding to our three procedures for estimating o
and k:

_ 2 ~ \1/kn
Ei)(uN +y)=1-n 1N(1 - kNy/oN) / ’
Fy(uy+y) =1—n""Nexp( —J’/?N),.
-1 Z = \EN -1 —ay
Fgy(u,+y)=1-n N(1 - kyy/Gy) =1-n"INQ+ y/uy) ™.
Assume (8.1) holds with k = 0, where (4, k) is any of (6, ky), (7,,0) and

(6nsky). Assume y = yy is given by yy = oz for fixed z > 0. Then (8.2) must
be replaced by

(9.12) e’ = (-2,22/2).

Equations (8.3) and (8.5) hold without change. In place of (8.4) we assume
(9.13) e*{1 - F(uy+yy)}/{1 — F(uy)} =1+ N~'20 + o(N~V2),
for some b’ depending on z. Then (8.6) holds.
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The following theorem is proved by a routine working-out of this procedure.

THEOREM 9.5. Suppose the conditions of Theorem 9.3 are satisfied. Then for
fixed z > 0, .

1- Ei)(uN + 2¢(uy)) _
1 — Fluy + 2¢(uy))

1- F(ﬁ)(uzv + 20(uy)) _
1 — F(uy + 2¢(uy))

1 — Fg(uy + 2¢(uy)) _
1 - F(uy + 2¢(uy))

[ 4
2 3, %
1) », 40,1+ 22° -2 +T’

N1/2{

] .9
Nl/z{ 1} Sy N pz—u—,1+zz],

2

_ 2
1) », N (p,—r)(z—?
L

v |

We would also like to study F; when the conditions of Theorem 9.4 are
satisfied. The changes we need to make are as follows. Defining

-l el )
(8.3) must be replaced by
(9.14) NY*(h(8y, by, yn) — h(oy,0, yy) + by2z/2} =>4 H'(e"b, e Se).
In place of (8.4), we have
e*{(1 - Fluy +yy)}/{1 - Flu,)}
(6.15) =1+ N"2(2%by/2 + V) + o( N~1/2),

where b’ = —2%2p, — v,)/6 + z*u,/8. Putting (9.14), (9.15) and (8.5) together,
the terms involving b, cancel and we again get (8.6). Thus we have

THEOREM 9.6. Under the conditions of Theorem 9.4, for z > 0,

Nl/z{ 1 - Fy(uy + 2¢(uy)) _ }
1~ F(uy + 2¢(uy))
2%(5p, + 2» 2%(2u, — v z*
VS _2(4”1_'_”1)_'_ (I’q 1) + (1‘1 1) _ l’q’
2 6 8
24
. + 2_ 3 — 1.
1+222-2°+ ,

9.4. Discussion and examples. The results of this section may be used to
determine both the asymptotically optimal threshold and the best rate of
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convergence of the estimators, for each of the three procedures considered.
Suppose we have a total sample size n and threshold v,. Then the number of
exceedances N, satisfies N, ~ n{1 — F(v,)} in probability, provided N, — co.
Identifying N with N, and u, with v,, Theorems 9.3-9.6 hold conditionally on
the sequence {N,}, hence, also unconditionally. The conditions (9.6), (9.9) and
(9.11) are valid with u,, replaced by v,, N replaced by n{l1 — F(v,)}. Assuming
(9.4), we can then say

(9.6) = errorin Fy is Op( NV 2),
(9.6) and (9.9) = error in F is O,( N;'/2),
(9.11) = errorin Fy, is O,( N, '/?).

These error rates cannot be improved unless the bias term is 0. The only
nontrivial case is when p = » in (9.9), a possibility we shall discuss in a moment.

For example, if F is standard normal, then (9.1) holds with ¢(x) = 1, ¢(x) =
7' —x73+3x75— ... which satisfies (9.4) with ¢'(x) ~ —x~2. For (9.6) we
require

-1 - F(v,)}?0;2>p, —o0<p<0,

which, except in the case p = 0, implies N, ~ (log n)%. Thus, the optimal rate of
convergence using procedures (i) and (iii) is O{(log n)~'}. For procedure (i),
however, we can do better by using condition (9.11) in place of (9.6); the rate of
convergence is then O{(log n)~2}. There is a parallel here with Cohen’s (1982a)
results on penultimate approximations. If A(x) is used as an approximation to
F™(a,x + b,), for suitable a, and b,, then the best rate of convergence is
O{(log n)~'}, but by using a different (penultimate) extreme value approxima-
tion, this can be improved to O{(log n)~2}. The analogous comparison is between
fixing % at its limiting value O [procedure (ii)] and allowing & to vary with n
[procedure (i)].

For the gamma distribution with density x*~'e~*/T(a), a # 1, we have (9.1)
with c(x) =1, ¢(x)=1+(a—Dx '+ (a— 1)(a—2x"2+ --- . The best
rates of convergence for procedures (i), (i) and (iii) are (log n) "3, (logn)~2 and
(log n)~%, respectively. In this case (iii) does worse because (9.6) # (9.9). Again,
the rates of convergence for (ii) and (iii) are the same as for the ultimate and
penultimate approximations in extreme value theory [Cohen (1982b)].

The connections with Cohen’s results are not accidental. Suppose the condi-
tions of Cohen’s (1982b) Theorem 2 and our (9.2) are satisfied, with (9.2a)
extended to K log|¢’(u)| <y < 0, K > 2, (this is automatic if Cohen’s Lemma 1
is satisfied). Cohen defines b, so that n{l1 — F(b,)} = 1, a, = ¢(b,) and shows
that F"(a,x + b,) — A(x) = O{¢'(b,)}, uniformly in x. Let v, = b, +
2¢(b,)log|¢’(b,)/n| for fixed p. By expanding [dt/{¢(t)} (see the proof of
Proposition 9.2) and using (9.2) we may deduce that

lim n*/*(1 = F(v,)}""*$'(0,) = lim n/*{1 — F(v,)}"*¢/(b,) = p.
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Defining N ~ n{1 — F(v,)} and uy = v,, Theorem 9.5 applies to procedures
(i) and (ii). In particular, the relative error is O{¢'(v,)} = O{¢'(b,)}. Now,
however, suppose Cohen’s Theorem 9 and our (9.4) are satisfied, with (9.4a)
extended to K log|¢'(u)| <y <6, K > 4. By defining w, to be either
bn + 2¢(bn)10g|{¢,(bn)}2/”‘1| or bn + 24’(bn)loglq)(bn)q)”(bn)/yll and using
Theorem 9.6, the relative error in F; with respect to {w,} is found to be
O[{¢'(b,))? + |¢(b,)¢"(b,)|] matching Cohen’s Theorem 9. Thus, it is true quite
generally that the best rates of convergence for procedures (ii) and (i) are the
same as Cohen’s rates of convergence for the ultimate and penultimate ap-
proximations. In particular, columns 2 and 3 of Cohen’s Table 1 may be
interpreted in this way.

Suppose Cohen’s (1982b) Lemma 1 is satisfied, i.e., either |¢’(x)| (in the case
xo = o0) or |¢'(xo — x~1)| (in the case x, < o0) isin R, p < 0. If x, = o0 and
either (a) p > —1lor (b) p < —1, ¢(+ ) = 0, then x¢'(x)/d(x) = p + 1 # 0 by
de Haan (1970), Theorem 1.2.1. In this case, (9.6) = (9.9) with » = p/(1 + p).
Thus, whenever Theorem 9.5 applies to procedure (ii) it also applies to (iii). In
this sense, (iii) is as good as (ii) and, in the case p = 0 (so p = »), is better than
(ii). Note that p = 0 corresponds to ¢’ decreasing as slowly as possible, i.e., the
most long-tailed case in the domain of attraction of A. On the other hand, if
p=—1orp< —1and ¢(+o0) > 0, then x¢'(x)/¢(x) = 0 by de Haan (1970),
and (9.9) is a strictly stronger condition than (9.6). In the same sense as before,
(iii) is now a worse procedure than (ii). The gamma distribution is of this form. If
Xy < 00, then ¢/(x)/p(x) = 0 as x = x,, so (9.6) = (9.9) with » = 0. In this
case, (ii) and (iii) are equally good from the point of view of rates of convergence,
but we would still expect (i) to do better in most cases. The one case where
procedure (ii) appears to be the best of the three procedures is when dealing with
class E, which was mentioned briefly in Section 9.2 but not pursued. This is,
however, rather a small class and is of much narrower applicability than class N.

9.5. Proofs.

PRrOOF OF PROPOSITION 9.2. First note that (9.4a) implies
(9.16) ¢'(u + yo(u))/¢'(w) - 1,
(9.17) 0w+ y9(u))/9(u) > 1,
each uniformly over 0 <y < —K log|¢'(¢)|. For (9.16), write ¢'(u +
yo(u))/¢'(u) = 1 + {yp(u)¢"(w)/¢'(w)}{1 + o(1)} and use (9.4c). (9.17) is simi-

lar.
Assume 0 < y < — K log|¢’(v)| = z,, say. Using (9.4b) we have

9.18)  c(u+yp(u))/e(u) =1+ of (¢'(w))” +]6(w)¢"(u)},
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uniformly in y. Writing ¥(x) = 1/¢(x), we have
fu+y¢(u) dt fy\l’(u + S¢(U))

u o(2) Jo  ¥(u)
L7V P ()
AEZ) 6¥3(u)  ’

where 0 < 0 = 0(u, y) < y. Using (9.4a), (9.16) and (9.17), this is

y = (@) + (26" - 6(u)"(w)} + of (1 + y*)R(w)},

uniformly in 0 < y < 2, where R(u) = {¢'(u)}* + ‘|¢(u)¢”(u)|. Thus, we have

u u dt
(9.19) exp{— f e )m

where r —> 0 as u — x,, uniformly in y < z,. Thus, exp{r(u, y)} =1+r+
r?(1 + o(1))/2, uniformly, and so

} =exp{-y+r(u, y)},

exp(r(u, 3)) =1+ T¢/(u) = = (26/(w))" - 6(u)"(x))
(9.20)

+ T (#@) + of (1 +y)R(w)),

uniformly on y < z,. Combining (9.18)—(9.20), since (1 + y*)e™? = o( y7%) as
Yy —> oo, gives the result for 0 < y < z,,.

To extend this to z, < y < o0, we proceed as follows. Given ¢ > 0, for all large
u we have |¢'(x)| <& x> u; hence, ¢(u + x¢(u))/(u) < 1 + ex; hence, for
y>z2>0,

fu+y¢(u) dt y dt 1 [ ey ]
— 2> / > —log .
u+zd(u) ¢(t) 2 1+ ex € 1+ ez
Writing € = 1/8 and using ¢(x) — 1, we have
1 — F(u + yp(u))
1 - F(u+ 2¢(u))

2\
sKy‘8(1+5), y>2z220,u>u,

for appropriate u; and K. So
1 — F(u + yo(u)) Ky“‘(l N ﬁ)sl - F(u + z,9(u))
1 - F(u) ) 1 - F(u)

But {1~ F(u+ 2,6(u))}/{1 - F(w)} = o(zle™*) and z4*%e% = o{(¢'(u))?)
since K > 2, so the last expression is o{y %(¢'(u))?}, uniformly in y > 2,
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u > ug. We also have
3

e?(1+ y?qy(u) - %{2(:#’(u))2 - ¢"(w)} + 2'8—(05’(“))2}

—8( o rf N2
= o{y(¢'(w))*},
uniformly in y > z,, u > u;. This completes the proof. O
ProoF oF THEOREM 9.3. Equation (9.7) is proved essentially by verifying
(2.4)—(2.6). We omit all the technical details, which are similar to those in

Section 3. Equation (9.8) is just the central limit theorem. By the inequality
[log(1 + x) — x + x2/2| < x%/3, x > 0, we have

Yy NY%(uy) 1 Yy, |
— N2 _M__}_____ {_N_}
2{4’(“1\1) ! uy 2N o(uy)

+0P[N1/2Ml2{ i, }3]

uy N o(uy)
=N (p,1) — v+ 0,(1).
This also shows that N'/*k, —, — », hence (9.10). O

ProoF oF THEOREM 94. N7 !'E{UyUT} = M + o(1) as usual, and
Lyapunov’s central limit theorem implies asymptotic normality of N~/2UJ +
(by —2by). The result then follows by another application of the argument in
Section 2. O

10. Concluding remarks. In this paper we have examined in detail the
properties of estimators based on the GPD and, in some cases, have compared
them with competing estimators. In Section 9, in particular, we compared our
procedure [procedure (i)] with two others which have been suggested, and
showed that in a very wide class of cases, it has a faster rate of convergence,
provided the threshold is chosen optimally. A practical advantage of the GPD is
the avoidance of any need to decide a priori among the three limiting types.

Two questions which we have not discussed are whether our procedures have
any optimality properties in the class of all possible statistical procedures and
the practical choice of threshold. These questions have been discussed, respec-
tively, by Hall and Welsh (1984), Hall and Welsh (1985) for the estimation of an
index of regular variation. The latter paper proposes an adaptive rule for
choosing the threshold, which is quite different from the goodness-of-fit proce-
dures of Pickands (1975) and Hill (1975). Pickands’ procedure is essentially to
choose the threshold to minimise a goodness-of-fit statistic based on the observed
and fitted distributions of the exceedances. Heuristic arguments suggest that this



1204 R. L. SMITH

procedure will lead to N, the number of exceedances, the same order of magni-
tude as its optimal value, but multiplied by a nondegenerate random constant.
There is obviously scope for further investigation on this point.

L]

APPENDIX

Elementary properties of the GPD. From the density g(y; o, k)=
0~ (1 — ky/0)/*71, ky < 6, we obtain

al 1 1/1 ky\~1
B L

do ok o\k o
dlogg 1 kyy 1/1 ky\~!
- = -=]-==-1){1-({1-=] },
R (R R ){ -7 }
d%log g 1 1/1 ) ky\~2
T 902 o% 2(k )( o) ’
d%log g 1 +2—k ky\™' 1-&% ) ky\~2
dodk  ok? k2( o) ok2( o) ’
d%lo 2 k 3—-k 202-¢*k ky\~!
L (e P Ll (.
dk k o k k o
1-% ky\ 2
+ X (1—7) .

If Y has the density g(y; o, k), then

E{|1 Y ! ided kr < 1
{(_o) }_l—kr (provi r<1),

E[{—log(l - %’)}"] =k°T(s+ 1) (integers).

Thus, the Fisher information matrix M, is (for £ < 1)
1 1

o2(1 = 2k) "ol R) - 2k)
1 2

Co(1-k)1-2k) (1-k)1-2k)
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