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ADAPTIVE TREATMENT ALLOCATION AND THE
MULTI-ARMED BANDIT PROBLEM!

By TzE.LEUNG LAl
Columbia University

A class of simple adaptive allocation rules is proposed for the problem
(often called the “multi-armed bandit problem”) of sampling x,,...,xy
sequentially from % populations with densities belonging to an exponential
family, in order to maximize the expected value of the sum Sy =
x, + -+ +xy. These allocation rules are based on certain upper confidence
bounds, which are developed from boundary crossing theory, for the k
population parameters. The rules are shown to be asymptotically optimal as
N — o from both Bayesian and frequentist points of view. Monte Carlo
studies show that they also perform very well for moderate values of the
horizon N.

1. Introduction and summary. Let II;, j=1,..., k&, denote statistical
populations (treatments, manufacturing processes, etc.) specified, respectively,

by univariate density functions f(x; 6;) with respect to some nondegenerate -

measure », where f(- ; -) is known and the §; are unknown parameters belonging
to some set ©. Assume that EyX| = [®_|x|f(x; ) dv(x) < o for all 6 € O.
How should we sample x,,..., x5 sequentially from the %2 populations in order
to maximize, in some sense, the expected value of the sum Sy = x; + -+ +x,7?
This is the classical “multi-armed bandit problem,” with specified horizon N, in
the statistics and engineering literature. The name derives from an imagined slot
machine with & > 2 arms. When an arm is pulled, the player wins a random
reward. For each arm j, there is an unknown probability distribution II; of the
reward, and the player’s problem is to choose N successive pulls on the & arms so
as to maximize the total expected reward. The problem is prototypical of a
general class of adaptive control and design problems in which there is a
fundamental dilemma between “information” (such as the need to learn from all
populations about their parameter values in the present case) and “control”
(such as the objective of sampling only from the best population), cf. Kumar
(1985). Another noteworthy example of such problems is in the context of
sequential clinical trials, where there are 2 treatments of unknown efficacy to be
chosen sequentially to treat a large class of N patients, cf. Chernoff (1967).

An adaptive allocation rule ¢ is a sequence of random variables ¢,,..., @y
with values in the set {1,..., £} and such that the event {¢, =j}, j=1,..., k,
belongs to the o-field %, ; generated by the previous observations
Q1 Xpseees @;_q, X;_1. Letting p(0) = [ xf(x; 0)dv(x) and 0 = (0,,...,0,) €
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©*, it follows that for every n < N

n k k

(1.1) EoS, = Z ZIEO{EOQin{ip,:j}I'%—I)} = Z I"‘(aj)EOTN(j)’
i=1j= j=1

where

(1-2) Tn(j) = ;ll{qpﬁj)

denotes the number of observations that ¢ samples from II ; up to stage n.
Hence, the objective of maximizing E,S, is equivalent to that of minimizing the
regret

(13) Ru(®) = Nut(0) = BgSu = X (w(0) = u(8))EIN()),

where p*(0) = max, _ j<&(6). In particular, the usual Bayesian formulation of
the multi-armed bandit problem, stated in the form of maximizing [E,S, dH(0),
can be restated in the more convenient form of minimizing the Bayes risk
JR(0) dH(8), where H is a prior distribution on ©*.

In principle, one can use dynamic programming to study the problem of
minimizing [R y(0) dH(0). For the case where k2 = 2 and ® has two elements,
which we shall denote by a, b with p(a) > pu(b), Feldman (1962) found by this
approach that for the prior distribution which assigns probability p to the
parameter vector 8 = (a, b) and probability 1 — p to the vector (b, a), the
allocation rule that chooses IT, or II, at stage i + 1 according as p, > jorp, <%
is Bayes, where p; denotes the posterior probability in favor of the vector (a, b)
at the end of stage i (p, = p). For the case of £ = 2 Bernoulli populations,
Fabius and van Zwet (1970) and Berry (1972) studied the dynamic programming
equations analytically and obtained several interesting results about the Bayes
rules with respect to general priors. Beyond the two-point priors considered by
Feldman, Bayes rules are usually described only implicitly by the dynamic
programming equations, whose numerical solution is too complicated for practi-
cal implementation when N is large. It is therefore of great interest to develop
asymptotic approximations to the Bayes rules for large N and to find simple and
easily interpretable adaptive allocation rules that are nearly optimal from both
the Bayesian and the frequentist viewpoints.

In this paper we consider the case where the densities (% 0), j=1,...,k,
belong to the exponential family

(1.4) f(y;0) =elr—v®,

and propose a class of simple adaptive allocation rules which are asymptotically
Bayes (as N — oo) with respect to a wide variety of priors on the natural
parameter space ® and which also have asymptotically optimal frequentist
properties. For the exponential family (1.4), u(8) = y'(8) is increasing in 6 since
Y"(0) = Var,Y, and the Kullback-Leibler information number I, N =
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Eqlog] f(Y; 0)/f(Y; A)] is given by
(15) 1(8,1) = (0= M)¥(6) = (+(0) = ¥(V) = [((A = )y(¢) a.

Based on successive observations Y; ,...,Y; . from II;, we construct an estima-

tor 0 » of 0; by the msthod of max1mum likelihood, whi<.. leads to the equation
(1.6) - w(8,) = (G Y )

Define an “upper confidence bound” for §; of the form

(1.7) U, =inf{6:0> 0, and I(§; ,,0) = r'g(r/N)},

where the function g (> 0) satisfies certain assumptions that imply a number of
desirable properties for U, ,, as will be discussed in detail in Section 2.

If the values 4,,..., 8, were known, the optimal rule would obviously be to
sample from the population with the largest 6. In ignorance of 01, ., 0, one
may try estimating them at stage n with the estimators 01 T,y ¢ 0k (k) and
sampling at stage n + 1 from the population II; with the largest 01 T,0) "This is
the so-called “play-the-leader” rule. The dlﬁiculty with this rule is that we may
have sampled too little from an apparently inferior population to get a reliable
estimate of its parameter anid may thereby miss the actually superior population.

Instead of sampling at stage n + 1 from the population with the largest
91.’ T,(j)» We propose herein the following simple modification:

Sample at stage n + 1 from the population IT; with the
(1.8) 1 J
argest upper confidence bound U; 1 (),

where U, , is defined in (1.7) and n > k. (During the first k stages, we sample
once from each population.) To explain the heuristic idea behind this approach,
we first note that the upper confidence bound U; , inflates the estimator 9} , by
an amount which decreases with the number r of observations already taken
from the population. Thus, U, , depends not only on the estimator 9j, , but also
on the sample size r, and comparing the & populations on the basis of U; 1
involves not only the parameter estimates but also the sample sizes of all
populations. Making use of certain properties of U; , discussed in Section 2, we
show in Sections 3 and 4 that allocation rules of the form (1.8) are asymptoti-
cally optimal from both the Bayesian and the frequentist viewpoints as N — co.
Some simulations results, presented in Section 5, show that these allocation rules
also perform well for moderate values of N.

2. A class of upper confidence bounds for the exponential family. Let
Y,,Y,,... beii.d. random variables having the common density f(x; ) = ef*~¥(®
with respect to some nondegenerate measure ». Note that the natural parameter
space

0= {0: fe”‘ dv(x) < oo}

is an interval Since p(6) — :’(8) is increasing in 4, u(®) is also an interval. Let
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A C 0 be an open interval with endpoints (— o0 <)a, < a,(< ) such that
inf  y”(6) >0, sup  ¢"(8) < oo
(2.1) ay—r<@<a+r . a—r<f<az+r
and ¢” is uniformly continuous on (a, — r, a, + r) for some r > 0.
In particular, if Y}, Y,,... are normally distributed, then © is the entire real line
and we can take A = 0,

Let S,=7Y, + --- +Y,. Based on the observations Y,,...,Y,, the method of
maximum likelihood leads to the equation u(8) = S,/n, which may not have a
solution in @. In the sequel, we shall assume that # is known to lie in the
subinterval A of ©. In this case, the maximum likelihood estimate of # is given
by .
b,=pY(S/n), ifp(ay)<S,/n<p(ay)

(2.2) =a,, ifS,/n>p(ay) '
=a,, ifS,/n<p(a,).
Let N > 1 and let g be a nonnegative function on (0, ) satisfying the following
assumptions: ,
(2.3) supg(t)/t < oo, forall a >0,

t>a
(2.4) g(t) ~logt™!, ast— 0,
(2.5) g(t) >logt '+ ¢loglogt™, ast— 0,

for some £. Based on the n observations Y, ..., Y,, define the “upper confidence
bound”

(2.6) U8, N)=inf{§ € A: § > §, and I(4,,0) > n"g(n/N)}

(inf @ = 00), where I(0, A) is the Kullback-Leibler information number given by
(1.5). Note in this connection that for fixed a € ® the function I(a,#) is
increasing in 6 > a but decreasing in 6 < a, with I(a, a) = 0. Some basic
asymptotic properties of the sequence {U,(g, N)} that will be needed in the
sequel are given in

THEOREM 1. Define 6, by (2.2) and UJg, N) by (2.6), where g is a nonnega-
tive function on (0, o) satisfying (2.3)-(2.5). Let ay < By be positive numbers
such that as N = oo,

(27) ay—0 and N2y - oo, By - oo and By = o((log N)'?).
For d > 0 and 6 € O define
T(0,d) = inf{n: U,(g,N) <0 + d},
(2.8) L(6,d) =sup{n: U,(g,N) >0 + d},
#(0,d) = #{n:U,(g,N) 20 +d},
where inf @ = co, sup @ =0 and the notation #S denotes the number of
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elements of a set S.
(i) T, d)— 1< #(0,d) < L(0,d) and as N - o,
(2.9) P{T(8,d) < (1 — v)(log Nd*)/I(6,8 + d)} - 0,
(2.10) P{L(6,d) = (1+ y)(log Nd?)/I(6,0 + d)} -0,
* for every 0 < y < 1; moreover,
(2.11) E,T(6,d) ~ E,;#(8,d) ~ E,L(8,d) ~ (log Nd?)/1(6,6 + d),

the convergence in (2.9), (2.10) and (2.11) being uniform in ay < d < By, 0 € A
and 0 + d < a, + r, where r is given in (2.1).
(i) As N - oo,

(212) P{U,(g N) <6 — dfor somen) = O((Nd?) *(log Nd2) *""/%),
uniformly ind > ay and a, < 0 — d < 0 < a,, where § is given in (2.5).

Proor. Noting that for x € 0,
(2.13) U(g,N)<zxofd <x and I(4,,x)>n""g(n/N),

(i) can be proved by a straightforward modification of the proof of Theorem 3 of
Lai (1985). To prove (ii), first note that by (2.13),

P,{U,(g, N) < 6 — d for some n}
(2.14) =P{0,<6—-dand 1(8,,0 — d) > n"'g(n/N) for some n}.
Let Y, = S,/n. By Theorem 1(iii) of Lai (1985), as N — oo,
Pfa, - r< pNY,)<0-4d
(2.15) and I(p~X(Y,),0 — d) > n"'g(n/N) for some n}
= O((Nd?)*(log Nd?)~* ™),

uniformly in § € A and 6 — d € A with d > ay. Since 0,= (YY) A ay) \/ a,,
(2.12) follows from (2.14), (2.15) and Lemma 1.0

Lemma 1. () If ¥, € w(®), then I(u~(¥Y,),A) = I(4,, \) for all X € A.

(ii) There exists n > 0 such that as N > oo,
P{Y, <u(a,-r) and1(8,,0 — d) > n"'g(n/N) for some n}

= O((Nd“’)_lexp{ —1(log Ndz)l/z}),

uniformlyind > ay and a, < 0 —d <8 < a,.

(2.16)

PrOOF. (i) Consider the case f, < A (< a,). For fixed A, the function I(x, A)
is decreasing in x < A. Since p (Y, < 9,, in this case, the desired conclusion
follows. The case 6, > A (> a,) can be treated similarly.
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(ii) Noting that p = ¢’ and that 8, = a, if Y, < u(a,), define
T = inf{n: S, < ny'(a, — r) and I(a;,8 — d) > n"'g(n/N)}
(inf @ = o0). Choose ¢, > ¢; > 0 and 1 > 0 such that

(2.17) n<2rec;?, ¢, <y¥"(x)/2<c, foralla,—r<x<a,+r.
In view of ("%.5), we can choose 0 < p < 1 such that for all 0 < ¢ < p,
(2.18) g(t) = logt ! + £loglog t1

and

(2.19) (log t‘l)_sexp{ —2re,c;V%gV3(t)} < exp{ —n(log t‘l)l/z} .
For a, <0 — d < 0 < a,, we have

RAT< )= [ exp{(6=a)Sr—T((0) ~ ¥(a)} P,
(2.20) = f( T<°°}exp{(0 ~ a,)(Sp — T¥'(ay)) — TI(a,,8)} dP,

< _[{T<w}exp{‘T[I(a1,0) +(0-a)(¥(ay) —¥'(a, - r))]} dP,,,

since S; < TY'(a, — r) on {T < o0}. By (1.5), (2.17) and the mean value theo-
rem,

(2.21)  y'(a) —y¥(a,—1)22¢r, I(a;,0) <cy*(0-a,),
(2.22) I(a,,0) = (6 - O)y(£)dt = I(a;, 0 — d) + c,d>.

From (2.20)-(2.22), it follows that

B(T<w)< [  exp{~T[I(a,,8 - d)+ c,d?
(2.23) {T<oo}
+2reie; V1Y*(a,,0 — d)] } dP,.
On {T < pN}, TI(a,,0 —d) > g(T/N) > log(N/T) + £loglog(N/T) by (2.18),
and therefore it follows from (2.23) that

Py(T < ) < ./{T>pN}exp(—cld2T) dP,

+N-1 / Te~*{ (log(N/T))"*
{T<pN}

(2.24) X exp| —2re,c; V2T%V/%(T/N)] } dP,,

< exp(—pc,Nd?)

+(Na2) [

S

(d°T)exp{ ~,d”T ~ n(log(N/T))"*} dP,,,
T<pN}

by (2.19). The function A(x) = — ic,x — n{log(Nd?/x)}/? is decreasing in
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1 < x < pNd?, provided that Nd? is sufficiently large. Hence, on {1 < d?T <
pNd?},

e e - o1 = xp{-nlog Na)7)

Moreover, we have —n(log(N/T))"/? < —n(log Nd?)/?2 on {T < d~%}, and
sup, . ox exp(— 1c,x) < oo. Therefore, the desired conclusion (2.16) follows from
(2.24). O

For applications of Theorem 1 to the multi-armed bandit problem described in
Section 1, N represents the specified horizon and we therefore have to restrict to
n < N in the confidence sequence {U (g, N)} and in the definitions (2.8) of
T(6,d), L(0,d) and #(6,d). In this connection, we will use in (2.8) the
convention inf @ = N + 1 (instead of inf @ = o0). Theorem 1 still holds under
this convention when n is restricted to {1,..., N}. By (1.5) and (2.17),

(2.25) ¢;(6—A)><I(0,)) < ¢cy)(8 —A)?, forall@,\ € (a,—r,a,+7).
Hence, Theorem 1 implies that N times the boundary crossing probability (2.12)
is of a smaller order of magnitude than E,T(6, d) [or E,#(6, d), E,L(8, d) by
(2.11)] if ¢ > —3/2, but has a larger order of magnitude than E,T(6, d) if
£< —3/2.

Restricting n to {1,..., N}, we can also restrict the domain of definition of g
to (0, 1] and replace the assumption (2.3) by

(2.26) g isbounded on [a,1] forall0 < a < 1.
Throughout the sequel we let € denote the class of all nonnegative functions g

on (0,1] satisfying (2.26) and (2.4), (2.5) for some ¢ > —3/2. Since £ > —3/2, it
follows from Theorem 1(ii) that for g € €, as N — oo,

(2.27) NP,{U,(g, N) <6 — d for some n < N} = o((log Nd?)/d?),

uniformly in d > ay and @, < 0 — d < 0 < a,.
We now discuss some background and motivation behind the confidence
bounds U, (g, N) in the following.

ExaMPLE 1. Suppose that Y}, Y,,... are ii.d. normal random variables with
mean 6 and variance 1. Here p(8) =6, I(6,\) = (6 — N\)%/2 and 6, = S,/n.
Thus, the confidence bound (2.6) reduces to

(2.28) U(g N) =48, + (2n~%g(n/N))"”.

For an example of g € ¢, consider a nonnegative continuous function on (0,1]
having the asymptotic expansion

(2.29) g(t) =logt ! — tloglogt™! — Llogl6m + o(1), ast— 0.

- The asymptotic expansion (2.29) first arose in the following special bandit
problem considered by Chernoff and Ray (1965) and by Chernoff (1967). Suppose
that an experimenter can choose at each state n (< N) between sampling from a
normal population II; with unknown mean § and sampling from another normal
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population IT, with known mean 0. Assuming a normal prior on 4, the Bayes
procedure (to maximize the expected sum of N observations) samples from II,
until stage

(2.30) T* =int{n < N: 4, + a, y <0},

and then takes the remaining N — T* observations from II,, where a, , are
positive constants. Writing

(231) ¢t=n/N, w(t)=(Y,+--- +Y,)/NV2,  §=gNV2

and treating 0 < ¢ < 1 as a continuous variable for large N, we can approximate
the Bayes stopping time (2.30) by Nt(k), where (k) = inf{t € (0,1]: w(t) +
h(t) < 0} is the optimal stopping rule in the following continuous-time stopping
problem: Assuming a flat prior for the drift coefficient 8§ of a Wiener process
w(t), find the stopping rule = < 1 to maximize [®_ Ey87) d8. Using an asymp-
totic analysis of the free boundary problem associated with this continuous-time
optimal stopping problem, Chernoff and Ray (1965) found that as ¢ |0

(2.32)  h(t) = {2t(log ™" — Lloglog #™* — Llog16m + 0(1))}"".
Therefore, letting

(2.33) n(t) /672 = (2g(¢))"”,

8(t) satisfies the asymptotic expansion (2.29). From (2.31) and (2.33), it follows
that the a, y in (2.30) can be approximated by the term (2n~'g(n/N))'/2 in
(2.28). W1th this approximation, the Bayes procedure for the one-armed bandit
problem can be described in the form:

At stage n+ 1 sample from II, or II, according as

2.34
234 7, (@ N) > 0 or Uy, o, N) < 0.

Thus, the upper confidence bound (2.6) is an extension of (2.28) in the normal
case to the general exponential family, and the allocation rule (1.8) proposed
herein is an extension of (2.34) in the one-armed problem to the general case of %
populations whose parameters are all unknown.

3. A class of asymptotically optimal adaptive allocation rules. Suppose
that the populations II;, j=1,..., k, have densities f(x; ;) belonging to the
exponential family (1.4) with respect to some nondegenerate measure ». Let
A C 0O be an open interval satisfying (2.1), and assume that 6,,..., , are known
to belong to A. Let g € €. Based on successive observations Y, ;,...,Y; , from
I1;, define the upper confidence bound U; ,, (= U; (&, N)) for 6; by (2.6).

During the first k stages, take one observation from each population. For
- n =k, sample at state n + 1 from a population II; with the largest upper
confidence bound U; 1. (;,, where T,(j) is the number of observations sampled
from II; up to stage n. This allocation rule, introduced earlier in Section 1, will
be denoted by ¢x(g).
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Let 6 = (0,,...,0,) and 6* = max, _;_,0;. Making use of Theorem 1, we now
prove the following theorem which can be applied to evaluate the regret
(3.1) Ry(8) = 020 (v'(6*) — v'(6;)) EsTn(4),
J: <0+’

introduced in Section 1, of the allocation rule ¢y(g).

THEOREM 2. Let ay, By be positive numbers satisfying condition (2.7). Let
g € ¥. For the allocation rule ¢y(g), we have for everyj=1,..., k,

(3:2) EyTy(;) ~ (log] N(6* - 6,)°])/1(6,, 6%),
as N = oo, uniformly in 0 € A* such that

ProoF. From the integral representation of I(4, A) in (1.5) and the assump-
tion (2.1), it follows that as p — 0,

I(8, 08 + (1 — p)A)/I(8,1) — 1,
uniformlyinf € A and A € A with 8 # A.

(3.4)

For brevity we shall use the abbreviation “unif.” after a limiting relation to
indicate that the convergence is uniform in 8 € A* such that (3.3) holds. Take
8 € A* satisfying (3.3), and let d = 6* — 6;. Take 0 < p < 1. Letting 6* = 6,,, we
note that

EyTyn(j) < NR{U,, , < 8, — pod for some n < N}

(3.5) .
+E0(TN(J)I{U,,,,,>0,,—pdfora]l ns< N))'

Since 6, and §; (= 8), — d) belong to the interval A, 6, — pd € A and therefore
we can apply (2.27) to obtain

(36) NP, {U, , <0, — pd forsome n < N} = o(d *log(Nd?)) unif.
Moreover,
Ey(Tn(Nw, ,» 0 patorail <))
(3.7) son(#{nzlsnsNande’nzﬁ*—pd})
~ (log Nd?)/I(6;, 6% — pd) unif., by (2.11).
From (3.4)-(3.7), we obtain by letting p — 0
(3.8) E,Ty(j) < (1 + o(1))(log Nd?)/1(6;, 6*) unif.

Again fix 0 < p < 1 and define 0 = 6* + pmin(d, r), where r > 0 is given by
(2.1). Note that a, < 6 < a, + r. We now show that as N — oo,

(3.9) P{Tn(j) = (1 - p)(log Nd?)/1(6,,8)} -1 unif.
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From (2.10), (2.7) and (2.25), it follows that

P(By) = 1 unif., where
(3.10)
B =

n

(U, w<bforal N>m> N/(2k)}.

‘S

i=1

Obviously, there exists m < N such that ¢,(g) samples at stage m + 1 from a
population II; with T,(i,,) > N/(2k), and therefore by the definition of the

rule (pN(g),

(3.11) UGy <U 1.u,<0, onBy.
Define 7y = inf{n < N: U, ,, < 6). By (3.11),

(3.12) 5 < Ta(J) < Ty(J), on By.

From (2.9), it follows that

(3.13) Py{mw = (1 - p)(log Nd?)/I(6;,8)} -1 unif.

From (3.10), (3.12) and (3.13), (3.9) follows. In view of (3.4), we obtain by letting
p — 0in (3.9)

(3.14) EoTy(J) = (1 + o(1))(log Nd?)/1(6;, 6*) unif.
From (3.8) and (3.14), (3.2) follows. O

A slight modification of (3.7) in the preceding proof also gives

LEMMA 2. Fix y>0andj€ {1,...,k)}). Let g € €. For the allocation rule

on(8),
(8.15) EyTy(j) = O(log N),

uniformly in 8 € A* such that 0* — ;> y.

The uniformity in 0 in the asymptotic relations (3.2) and (3.15) is of particular
interest to the asymptotic evaluation of the Bayes risk [4+ Ry(0) dH(8) of
¢x(&). Under certain assumptions on the prior distribution H, we can integrate
(3.2) and (3.15) in evaluating the Bayes risk. We first introduce the following
notation. For j = 1,..., k,let 6;=(0,,...,0;_,,0,.,,...,0;) (ie, 0, consists of all
the components of  except 6;), and let 6* = max,, ;0;. For a prior distribution
H of 6, let H; denote the marginal distribution of the (% — 1)-dimensional
random vector 8, and let

denote the conditional distribution function of §; given 8, We use the notation

P, (and Ey) to denote probability (and expectation) under the distribution H.
The asymptotic behavior of the Bayes risk of ¢,(g) is given in

THEOREM 3. Let A C © be an open interval satisfying (2.1), and let H be a
probability distribution on A* such that for some p > 0 and every j =1,..., k,
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the following three conditions are satisfied:
(3.16) EH|0j| < 00;
for every fixed 6, € A*~', H ()(818;) has a positive continuous

(317 Gerivative h(8; 8,) for 8 & (8 — p, 8 + p) N A;
3.18 ) sup  h;(6;8;) dH;(6;) < .
(3.18) fo . ;(6;8,) dH,(0))

(i) Let g € €. Then for the allocation rule ¢n(8),

f B (0) dH(®)
(3.19) .
~ {% §1 Lk_lhj(ﬂj*; 0,) de(Oj)}(log N)?, asN - .

(ii) Assume, furthermore, that for every compact subset B of A and for every
Js

(3.20) h;(6; 0,)/h;(6% )1, asb— 67, uniformly in §; € B*'.
Then, as N - 0,
k
. 2
(3:21) inf fAkRN(O)dH(ﬂ) ~ {%El fAk_lh,-(ﬁ,-*; %) dfi‘(ej)}(log N)’,
where inf, is taken over all adaptive allocation rules @.

EXAMPLE 2. We give here a simple example of a prior distribution on @ that
satisfies the assumptions of Theorem 3. Suppose that 0,,...,0, are iid. with a
common continuous positive density function g on the open interval A. Let
Q(t) = [* ,q(8)d6 denote the distribution function. Then H(t,,..., %) =

Q(t,) ... Q(t,). Moreover, for every j, §* has distribution function @*~!, and
h;(6; 8;) = q(8). Assume that [|6]q(8)df < co and that

(3.22) f{ sup q(0)} dQ*(\) < oo, forsomep > 0.
Alge(r—p,A1nA

Then conditions (3.16)-(3.18) and (3.20) are all satisfied. Moreover,

k
(3:23) E:l Lk-lhj(oj*? 8) dH;(8) = kaQ(?\) dQ*~'(\)

—k(k—1) fA q2(A\)Q*2(\) dA,

providing a simplification of the formulas (3.19) and (3.21).
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Part (ii) of Theorem 3 will be proved in Section 4, where we develop certain
lower bounds on the expected sample sizes from inferior populations for general
adaptive allocation rules. As an application of Theorem 2, we now give

ProoOF OF THEOREM 3(i). Fix j € (1,..., %)} and let by = (log N)/2 From
(1.5) and (2.1), it follows that as § — A,

(¢(N) — ¢(0))/1(8,\) ~2(A — 6)™", uniformlyin A € A.
Hence, by (3.17), for every fixed §; € A*~,

L7 () - 9(0)) o8 (8 — Y] /1(6,67) ar (10

* _ p—1
¥ — by

— aj._bNN-l/z(oj* a 0)—1{10g[N(0j* _ 0‘)2]}hj(0; 01) dé

0j*_bﬁl
~ 1h;(8#*;0,)(log N)*, as N > o,

and therefore by Theorem 2 and (3.18),

(v(6%) — ¥/ (6)))EyTy(5) dH(8)

'/;NN“/zsa*—ejsb;,‘

- j’ 9 — by N~1/2 (‘l",(oj*) - 1P’(0)){10g[N(0j* - 0)2]}
k-1 | Jgx b3t I(o’ 0j*)

(3.24)
de<f>(o|e,-)} aH,(6)

~ 1(log N)? fA . h(8756) dH(8,).
Since Ty(j) < N, a similar argument gives

(w(8*) — ¥(8,)) EsTn (/) dH(0)

/<;<o‘*—o,.sb,v1v-1/2

(3.25) <N Ak_l{ fa ”_b N_1/2(¢f(@*) —y(0))h,(6; 6;) dﬂ} dH,(9))

- 303 W (67)h, (673 0) dE(8) = Olog N).

In view of (1.5) and (2.1), there exists ¢ > 0 such that
W'(A) = $(0)1/2(6, ) < c(A — 0) "
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for all # € A and A € A. Therefore, using Theorem 2, (3.17) and (3.18), we obtain

Loy 908 W (8)BN()) d(0)

oy ((87) = w(0)) (108 N (8 — 0)])

L

(3.26)
de<f>(0|ej)} dH,(8))

< cby(log No?) fA H{ foo’ h;(6; 8;) d”} dH,(¥)

= o((log N)2).
Moreover, by (3.16) and Lemma 2,

[, (90" = w(8)) BTy () dr(®)
(3.27) ’ .
= (;’23 ‘P”(o))( z_: EHlﬂil)sup{EoTN(j); 0*—6,> P} = O(log N).

From (3.1) and (3.24)-(3.27), (3.19) follows. O

The following variant of the rule ¢,(g) can be used in situations where the
upper confidence bounds U; ,, are computed only with a certain specified degree
of numerical accuracy, as will be illustrated in Section 5. The same argument as
in Theorems 2 and 3 can be used to prove its asymptotic optimality. This is the
content of

THEOREM 4. With the same notation as in Theorem 2, let e, be a positive
constant such that

(3.28) ey = O(N"2), asN > w.

Let o%(g) be an allocation rule which samples at stage n + 1 (n > k) from a
population I1,. such that

(3.29) U, rgn 2 8% Uyr gy~ &ns

and which takes one observation from each population during the first k stages.
Then the conclusion (3.2) of Theorem 2 still holds for the allocation rule ¢%(g).
Moreover, if H is a probability distribution on A* satisfying the assumptions
(3.16)—(3.18) of Theorem 3, then the conclusion (3.19) of Theorem 3 still holds
for the rule ¢%(g).
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4. Asymptotic lower bounds on the sample sizes from inferior popula-
tions and the proof of Theorem 3(ii). In this section we give the proof of
Theorem 3(ii) by developing certain asymptotic lower bounds on the expected
sample sizes from the inferior populations of an adaptive allocation rule ¢. To
develop these asymptotic lower bounds, we introduce modifications of the ideas
in Section 2 of Lai and Robbins (1985) who proved

LEMMA 3. Suppose that the populations 11 s J=1,..., k, have densities
f(x; 0;) belonging to the exponential family (1.4). Let ¢ be an allocation rule
whose regret satisfies, as N — oo, the condition

(4.1) RN(8) = o(N®), foreverya > 0 and 6 € A*.

Fix je{1,...,k}. Let 0* = max,_;_,0, Then for every 8 € A* such that
0, <6* as N - oo,

(4.2) h;\rln inf EgTy(j)/log N > 1/1(6;,6*).

REMARK. By Theorem 2, the allocation rule ¢,(g) satisfies (4.1) and attains
the asymptotic lower bound in (4.2). Hence, ¢,(g) is asymptotically optimal
among all rules satisfying (4.1).

In Lemma 3, the parameter vector 0 is assumed to be fixed while we let
N — oo. To prove Theorem 3(ii) on the asymptotic Bayes character of p,(g), we
need to develop lower bounds that are uniform over certain regions of  so that
they can be integrated with respect to 0. This is the content of

LEMMA 4. Fix je (1,...,k},0<{<land 0<y<l1. Let 8; denote the

(k — 1)-dimensional vector (0,,...,0;,_,,0;,,,...,0,) and let 0 =
max{f,,...,6;_1,0,,,...,0,}. For N>1,d>0 and 6; € A*" let

(4.3) ey 4(8) = inf{Ey[N — Ty(/)]: 6, € A and 6 + itd < 6, < 6 + ¢d ),
P,a(8) = R{Ty(J) < (1 - v)(log Na?)/1(6,, 6 + ¢d) },
with = (0,,...,0,,...,6,) and 8, = 67 — d.

Let B be a Borel subset of A such that sup B < a,, and let G be a finite measure
on B*~', For b> 1, let ®)(N, d) denote the class of all allocation rules such
that

(4.4)

(4.5) ]B __en,q(8) dG(8) < d~*(log Na?)".

Then as N — oo and d - 0 such that Nd? — oo,

(4.6) sup P, (8;) dG(8,) - 0.
PEDY(N, d) ‘/B"“ Mt !

ProoF. To fix the ideas, assume that j = 1 and consider the case 8, € B*~!
with 6* = 6,. Since E[ N — Ty(1)] is a continuous function of 0, the inf in (4.3)
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is attained, so there exists ¢ (with {/2 < ¢ < ¢) for which
en,q(8;) = E\(N — Ty(1)), where
N=(An,..0,A), with A, =6, + ed, \; = 0, for i # 1.

Note that since sup B < a,, \ € A* if d is sufficiently small.
Let 0, = 0, — d, ty = (1 — y)(log Nd?)/1(8,, 6, + {d). By (2.25),

(4.8) ty < (1~ y)(log Nd?)/(c,d?) < IN, as Nd? > co.
By (4.7) and (4.8), for any allocation rule ¢,
P(Ty(1) < t,} = P\{N - Ty(1) = N -t}
< (N~ ty) " Ey(N - Ty(1)) < 2N ey 4(8,).

Let Y,,Y,,... denote successive observations from IT,, and let A,=
Z, + -+ +Z,, where

(4.10) z;= log{ f(Y;; 6,)/f(Y;; A} =(6,-A)Y; - (v(6,) - ¥(Ay)).
Since §; = A; for 2 < i < £, it then follows that

PTy(1) < ty, Agyqy < (1~ dv)log Nd*}

(4.7)

(4.9)

= expl — A dP,
(4'11) {(Tn) <ty, Apyay<(1-37)log Nd?} ( TN(I)) ?

> (Ndz)'(l"'/z)Pe{TN(l) <ty Mg, < (1 = 3v)log Na?).
By (4.9) and (4.11),
(4.12) PO{TN(]‘) S tN’ ATN(I) S (1 - %Y)log Nd2} S 2d2(Nd2)_7/2eN'd(01).

Since EyY; = y/(6,) and supy ¢ 4+ Eg[Y; — ¢/(8,)]* < oo by (2.1) [cf. Lai (1985)],
there exists C > 0 such that

n 4
(4.13) E, [Z (.- 4/’(01))] <Cn? forall0 € A*and n > 1.
1

Noting that A, = (8, — \DXX(Y, — ¢(6,)) + nI(6;, \,) by (4.10) and that
tnI(0,, X)) < (1 — y)log Nd?, we obtain from (4.13)

R{maxA, > (1 - }y)log Na?)

nstN
(4.14) < Po{ max (8, ~ A) (% - ¢(6,)) > 3y log Ndz}
nstN 1

< Ct}{3v(log Nd?) /(6, + ed — 6,)} ~* > 0,

as N — oo and d — 0 such that Nd? — co, uniformly in € A* with 6* = 0, =



1106 T. L. LAI

0, + d, in view of (2.25). Noting that
PN,d(61) = PO{TN(I) < tN}
< B{Ty(1) < ty, Ay < (1 = 3v)log Nd2}

+R,{ maxA, > (1 — 1y)log Nd2},
n<ty
the desired conclusion (4.6) follows from (4.5), (4.12) and (4.14). O

ProoF oF THEOREM 3(ii). Take any bounded closed interval B = [b,, b,] C
A and let 0 < y < 1. In view of Theorem 3(i), we need only show that for all
large N, .

k
(410) in [ Ru(8) d(0) 2 30 ="\ £ [ A(0730) () g )"
To prove (4.15), we can obviously restrict to allocation rules ¢ for which
(4.16) f Ry(8)dH(8) < C(log N)’,
A

where C > 3X0_, [y-1h (6% 8) dH,(S)).
Fix j€ {1,..., k). Let @ be an allocation rule satisfying (4.16). Let 0 < ¢
(sufficiently small, as specified later). Note that if 6, > 6, then

Ry(8) = (v/(6) — ¥(67))(N = EiTn (/).

Hence, defining ey ,(8,) as in (4.3), we have by (4.16) that for 0 <d <
min{a, — by, p},

C(log N)*
> [ (L5 00) - v (7)) - ETu() O (610) | i (8)

9* +38d

0% +¢d , o % .
= [ ena® [T 00 —w(0r)n(0:0) do) (o)

~ 807 [ ena(§)97(87)h,(67; 8) dH(8),
as d — 0, by (2.1) and (3.20). Therefore, if d is sufficiently small,
C(logN)2 > 1 2d2( 0i2fB‘P”(0))ka_1eN’d(6j) dG(OJ), where

dG(8;) = h,;(67;8;) dH,(8;).

Defining ®}(N, d) as in Lemma 4, it then follows from (4.17) that there exist
positive numbers d, and N, such that

(4.18) @€ ®i(N,d), forall N> Nyand dy>d> N1/,

(4.17)
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Hence, by Lemma 4, as N - o and d — 0 such that d > N~1~1/2,
(4.19) Lk_le,d(oj) dG(8;) - 0,

the convergence being uniform in all allocation rules that satisfy (4.18), where
P, 4(8)) is defined in (4.4).
Since dG(8;) = h;(0;*; 8;) dH (8)), it follows from (4.19) that as N — oo,

Qog N)~! 1 2 .
R S ——
= o((log N)2).

In view of (2.1) and (3.20), we can choose 0 < £, < p and { sufficiently small so
that

hi(8 — £ 0){w (%) — w6 — £)} /I(6% — ¢, 67 + §t)

> (1 -v){2¢t7';(6%;68,)}, foralld;e B*"'and0 < ¢ < ¢,.
For 8 € B* with §; < 6*, writing 6; = 6 — ¢, we have from (4.4) that

ETy(j) = {1 - Py, () }{(1 = v)(log Ne2) /16 — t; 6 + ¢2)},
and therefore by (4.21) for 0 < ¢ < ¢,
hi(87 = & 8){v(6*) - ¥(87 - )} BTy (/)
> 2(1 - v)"t',(8%; 6;)(log Ne2){1 — py ,(8,) }.

In view of (3.1), the desired conclusion (4.15) follows from

[, (9(0%) = w(8))ETy(j) dH(9)

(4.21)

(4.22)

= .[B,,_l{ CEN (9(87) = W (87 = £))ETn()hy(87 - £:6) dt} dH(6;)

N--n/2

> 21 - ), k(67 ){ j<‘°g”> t~'(log Nt?)

a-v/2

x[1— pw, {8)] dt} dH(8) by (4.22)]

~ 30 -7’ - 7)o N)* [ A6 6) dH(8) [by (420)],
forevery j=1,...,k.0O

5. Some numerical results and discussion. In this section we report
some simulation results on the asymptotically optimal adaptive allocation rules
introduced in Section 3. We shall use the following choice of the function g € %.
Let h be the optimal stopping boundary for the continuous-time Bayes stopping
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0.45

0.35

0151

Bayes boundary

—~—-- Approximation

0.05

0.2 0.4 0.6 0.8 1

Fic. 1.

problem associated with the Chernoff-Ray one-armed bandit problem described
in Example 1. Chernoff and Petkau (1986) have recently tabulated this boundary,
which is shown in Figure 1. As shown by Chernoff and Ray (1965), & has the
asymptotic expansion (2.32) as ¢ |0 and

(5.1) h(t) = (¢7'-1)"?{0.63883 — 0.40258(¢ 1 — 1) + --- }, astfl.

The asymptotic expansions (2.32) and (5.1) together with some simple curve
fitting suggest the following approximation to A:

ho(t) = (71 — 1)/*{0.63883 — 0.40258(¢* — 1)}, if0.86<t<1
= —0.5759t% + 0.2987¢ + 0.4034, if 0.28 <¢ < 0.86
—1.58137¢ + 1.53343¢'/2 + 0.073271, if0.01 < ¢ < 0.28
(t[210g ¢~ — loglog ¢ — log 167 + 0.99232 exp( —0.03812¢'/%)] }
if0 <t <0.01.

Figure 1 shows that the Bayes boundary 4 is closely approximated by A,. Define
(5.3) | 8(t) = hi(t)/2t.
Then g, € %.

Table 1 considers the case of 2 = 3 normal populations with means 4, = 0,
6, < 0, 8, <0, and common variance 1, for horizons N =100 and N = 2500.
Here IT, and II; are the inferior populations, and Table 1 gives the normalized
expected sample sizes
(5.4) e, = N'ET,, e; = NT'ET,,
from these inferior populations, for the allocation rule ¢y(g,) introduced in

(5.2)

1/2
b
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TABLE 1
Normal three-armed bandits. Normalized expected sample sizes ey, e5 from inferior populations
I1,,11; and normalized regret r of the rule oy (g,). Also given are the Bayes lower bounds ey, e
derived from the one-armed bandit problem. Each result is based on 1000 simulations, largest
mean =0, = 0. .

N =100 N = 2500
One-armed The rule One-armed The rule
lower bounds on (&) lower bounds on(&o)
5,

(=N'7%%) (=N'7%) e} es e e r el e €z €3 r
- 0.5 -1 0.37 030 033 027 043 0.36 027 034 027 044
-1 -2 0.30 0.18 033 020 0.73 0.27 018 031 021 0.73
-1 -5 0.30 007 037 009 081 027. 006 037 0.08 0.76
-1 -10 0.30 0.03 0.38 004 0.77 0.27 0.03 038 0.03 0.67
-2 -5 0.18 0.07 026 010 1.03 0.18 0.06 029 0.08 1.01
-3 —-10 0.12 003 021 0.04 1.04 0.12 003 021 0.03 094
-5 -10 0.07 0.03 0.2 0.04 1.02 0.06 003 012 0.03 094

-10 —-15 0.03 0.02 0.04 0.03 0.83 0.03 0.014 0.04 0.018 0.73
—-20 -30 0.01 0.01 0.02 0.01 0.73 0.009 0.005 0.012 0.007 0.44
—40 —40 0.01 001 0.01 001 084 0.003 0.003 0.004 0.004 0.32

Section 3. Also given in Table 1 is the normalized regret,
(5.5) r=N"12R,(90),

of the rule @y(g,). For fixed 8, = N'/20, and 8, = N'/%6;, note the relative
constancy of r, e,, e; as N varies from 100 to 2500, when 8, and §; are not too
large, in agreement with the Wiener process approximation (2.31).

To develop some benchmark against which we can compare ET;, j = 2,3, of
the rule ¢,(g,), we consider the fictitious case in which the mean 6, of II, is
known to be 0, the mean 6; of II; is unknown but has a normal prior distribution
and the mean of the remaining population is negative and known. Thus, we are
in the setting of the one-armed bandit problem involving the normal population
I1;, and as indicated in Example 1, the optimal allocation rule samples from II;
until stage T;* and then takes the remaining N — T;* observations from II;. In
view of the Wiener process approximation (2.31), we have the following ap-
proximation to T;*:

(5.6) T* = inf{n <N: g,l Y, ;< —N1/2h(n/N)}.

Using (5.6), we computed by simulations the normalized expected sample size,
(5.7) e} = NT'ET*,

for 7 = 2,3 and the results are given in Table 1. Table 1 shows that e, and e, of
the rule @y(g,) for the three-armed bandit problem compares quite well with
the “Bayes lower bounds” e} and e} derived from the Chernoff-Ray one-armed
bandit problem.
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We consider the case of 2 Bernoulli populations with density P(Y; , =1} =
pj=1-PY,; , =0}, j=1,..., k. The natural parameter is

(5.8) 8 =log[p/(1 - p)].
In terms of p, the Kullback—Leibler information number can be written as
(5.9) I(p, p) = plog(B/p) + (1 - p)log[(1 — p)/(1 - p)].

Note that (8) = log(1 — p) = —log(1 + e?), so condition (2.1) does not hold if
A is the entire parameter space ©. We will therefore assume that A corresponds
to the interval {p: p <p < p} with 0 < p < p < 1, so the maximum likelihood
estimate of p; based on n observations from II; is given by

n
(5.10) Bjn= max{p,min(n‘l XYY, f))}
i=1

We now describe a simple recursive algorithm for finding a population at
every stage whose upper confidence bound differs by no more than &, from the
largest of the 2 upper confidence bounds at that stage. This algorithm facilitates
the implementation of the allocation rule ¢%(g), introduced in Theorem 4, for
which we shall assume that N > k& and g(¢) > 0 if ¢ < 1. First, note that the
upper confidence bound U; . ;, for population II; at stage n, if finite, is the
solution of the equation,

h; ,(x) =0, where

R (%) = 1( ;1,05 %) — (T 1)) "'&(T,(4)/N),

(5.11) if pjr;y<x<p,and

hj o (x) = hj,n(ﬁj,Tn(j)) (<0), ifp<x <Pj 1.
Fix si.;ag.e n (.2 k.) and 'Yvrite D =Dbj 1y U =Ujr Note that since
I(p;, x) is increasing in x > p;,
(5.12) x 2 U; accordingas h; ,(x) Z 0.

Let c,_, =P, dy_, =p. Suppose that two numbers (p 2)c,_; > d,_(=p)
have been determined at the end of stage n — 1 satisfying

(5.13) h; n—:(d,_;) <0 for more than one j;

(5.14) eitherc, , =p or h; , (c,_;) <O forat most one j.

In the case h; ,_,(c,_;) <O for exactly one j, this j coincides with j*, where
I1;« is the population from which ¢}(g) samples at stage n. Note that

(5.15) hjn=nh; .y, forall j+j*.

In view of (5.12) and (5.15), we use the following bisection-type iterative scheme
at stage n to decide from which population ¢%(g) samples at stage n + 1.

Let J(x) = {J: hj (%) <0}, ppyy=max,; P, Define ppy=p if p;=p
for all j, otherwise let p,; = max{p;: j# [1] and p; < p}. Since k; ,(p;) <0,
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#J(Py) = 2. Initialize the iterative scheme by setting ao=c, ;, b=
max(d,_;,0p)- At x = agor by, if (i) #J(x) = 1, or (ii) J * £ (;j: h; (x) =0} +
@ and h; (x) > 0 for j & J*, stop the iteration and set ¢, = x. Otherwise, if
(iii) max(ay, by) = p and J(p) # D, stop the iteration and set c, = p. We can
set d, = Py since #J(Py) = 2, but we let d, = d,_, instead if d,_, > Py
and #J(d,_,) = 2.

Now suppose that (i), (ii), (iii) all fail to hold at a, and b,. Then it follows
from (5.13)-(5.15) that #J(b,) = 2 and #J(a,) = 0, implying that b, < a,. Set
xo = (ay + by)/2. In general, for the ith iterate x; = (a; + b;)/2, if #J(x,) <1,
set a;.;=x; b;.,=>b,. On the other hand, if #J(x;)>2, set b,,, =x,
a;., = a;. This bisection-type scheme is stopped after the ith iteration,
whereupon we set ¢, = a,,, and d,, = b, ,, if one of the following holds:

(5.16a) #d(x) =1 (say, I(x;) = {/});
(5.16b) J* & {j: h; (x;) =0} + @ and h; (x;) > 0for j & J*;
(5.16¢) a;.,— b, <ey but(5.16a) and (5.16b) both fail.

At stage n + 1, sample from II; in case (5.16a), and from II; having the largest
b; with j € J;* in case (5.16b), but with j € J(b;,,) in case (5.16c), randomizing
if there are ties.

The above recursive algorithm can be applied in general and is not restricted
only to the Bernoulli case. Instead of direct numerical solution of (5.11) with a
prescribed accuracy to compare the £ upper confidence bounds, it evaluates the
number of elements of the set J(x;) at each iterate x;; this is particularly simple
since J(x;) C J(b;). Making use of this algorithm, we have obtained the numeri-
cal results in Tables 2 and 3 on the performance of the allocation rule ¢¥(g,) for
Bernoulli k-armed bandits.

TABLE 2
Bernoulli three-armed bandits. Normalized expected sample sizes e,, e [ defined in
(5.4)] from inferior populations I1,, I1, and normalized regret r = 2N~'/2R y(8) of
the rule pn(&,). Largest mean = p, = ;. Each result is based on 1000 simulations.

N=100 N = 2500

5% 8§ p Dy e; € I Py Pps €z €3 r

-05 -1 0475 0450 0.32 028 0.44 0495 0490 035 025 0.43
-1 -2 0450 0401 030 021 0.72 0.490 0480 0.30 0.20 0.70

-1 -5 0450 0269 035 0.09 0.79 0.490 0.450 0.38 0.08 0.79
-1 —-10 0450 0.119 037 0.05 0.73 0.490 0.401 037 0.03 0.65
-2 -5 0401 0269 028 010 1.04 0.480 0450 027 0.08 0.95

-3 -—10 0354 0119 022 005 101 0470 0.401 0.23 0.03 1.02

-5 —-10 0269 0119 012 005 096 0450 0.401 0.13 0.04 1.03

%~ —=10 —15 0119 0.047 005 0.04 0.78 0401 0.354 0.04 0.019 0.67
—-20 —30 0.018 0.002 0.04 003 0.68 0310 0231 0.013 0.007 0.44
—40 —40 0.0003 0.0003 0.03 0.03 0.66 0.168 0.168 0.005 0.005 0.34

See (5.17).
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TABLE 3
Bernoulli two-armed bandits with N = 50.

(a) The Bayes reward (5.18)
L]
Beta (1,1) prior Beta (2, 6) prior Beta (4,4) prior Beta (6,2) prior
Bayes Bayes Bayes Bayes
X (&) rule N (&) rule PN (&) rule o3 (&o) rule
0.634 0.641 0.300 0.301 0.558 0.564 0.805 0.807

(b) Normalized reward N ~'E,Sy, atp = (py, ;)
Beta (1,1) Beta (2,6) Beta (4,4) Beta (6,2)
Py Dy X (&) Bayes rule Bayes rule Bayes rule Bayes rule

0.6 0.5 0.564 0.564 0.560 ) 0.564 0.564
0.9 0.7 0.868 0.864 0.839 0.858 0.871
0.5 0.3 0.453 0.445 0.453 0.455 0.447

Table 2 consuders the case of £ = 3 Bernoulli populations with means p, = 1,
D2 < %, py < 1, for horizons N = 100 and N = 2500. For comparison with the
normal case in Table 1, introduce the natural parameters 6; as in (5.8) and define

(5.17) 8= iNV%(6;,-0,), Jj=2,3,

the factor 3 being the standard deviation of a Bernoulli random variable with
mean } (= p,). We assume that the p; are known to lie between 0.01 (= p) and
0.99 (= p), and use the truncated sample proportions p; , defined in - (5.10).
Table 2 considers the rule ¢X(g,) described above with ey = 0.05N~1/2, It
shows that the performance of the rule in the present case of Bernoulli popula-
tions resembles that in Table 1 for the case of normal populations.

Table 3 considers the horizon N = 50 and compares the above rule ¢%(g,)
(where ey = 0.06N~12, as before) with certain exact Bayes rules for the
case of £ =2 Bernoulli populations. These Bayes rules were computed by
Wahrenberger, Antle and Klimko (1977), assuming independent and identical
Beta (a, B) priors on the two means p,, p,, for the values of (a, B) listed in
Table 3. Wahrenberger, Antle and Klimko also computed by simulation the
normalized reward N ‘IEPSN at certain values of p = (p,, p,) and the Bayes
reward,

2

(518) N7 [ ['(E,8y) [T{pt ™1 = p)""'/B(a, B) )} dp, dps,

of these Bayes rules. Their results on these rules are shown in Table 3 for
comparison with the rule ¢%(g,). Table 3, in which each result is based on 5000
simulation runs, shows that ¢}(g,) closely resembles the Bayes rule for each of
the priors.

The numerical results above and the asymptotic results of Theorems 2-4
show that the allocation rules based on upper confidence bounds of the k%
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population parameters have nearly optimal Bayes and frequentist properties. As
pointed out in Example 1, these upper confidence bounds first arose in the
Cherncif-Ray one-armed bandit problem in which x,,...,x, are sampled
sequentially from either a normal population with unknown mean or another
normal population with known mean, assuming common and known variance for
both populations. Making use of the boundary crossing theory developed in Lai
(1985), we have extended these upper confidence bounds in Section 2 from the
normal case to the general exponential family, while Sections 3 and 4 show that
the allocation rule which chooses the population with the largest upper con-
fidence bound is asymptotically optimal as the horizon N approaches oo, from
both the Bayesian and frequentist viewpoints. An important feature of the
asymptotic results in Theorems 1 and 2 is their uniformity over a wide range of
parameter values, so that they can be integrated with réspect to a broad class of
prior distributions in evaluating the Bayes risks.

In the past decade, considerable progress was made in a different version of
the multi-armed bandit problem. In this version, instead of assuming a finite
horizon N, one assumes a discount factor 0 < 8 < 1, and considers the problem
of maximizing the expected value of the infinite discounted sum %, 8%x;. Under
the assumption of independent prior distributions @; on 8;, j=1...k, it has
been shown by Gittins (1979) that the optimal allocation rule which maximizes

.19) [ [ £ ) dao)...aquo0

is to choose a population at every stage that has the largest “dynamic allocation
index.” This index (also called the Gittins index) of population II; at stage n can
be computed by solving an optimal stopping problem that involves only the
posterior distribution of 6, given the observations Y; ,...,Y; 1 ;, of II,. We
have recently shown that as 8 — 1 such that (1 — B)T,(j) — 0, the Gittins
index can be approximated by ¥'(U; (), where U, , = U; (g, N) is the same as
that introduced in Section 3 but with N = (1 — B)~’. Moreover, the allocation
rules @n(g), & € ¥, described in Section 3 provide asymptotically optimal
solutions not only of the finite-horizon problem discussed herein, but also of the
discounted problem (5.19) as B — 1, upon setting N = (1 — 8) 1. The details for
the discounted problem are too lengthy to be included here and will be presented
elsewhere.
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