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Whenever the distribution of the observable vector y is needed in this paper,
it is assumed to be normal. However, an analysis of variance makes sense within
the context of elliptically contoured distributions. In this case if y has a density,
it can be written

(12) T~ "% (yT "),

where g(x’x) is a density in R”. If

(13) fwv”/zg(v) dv < o,
0

the first two moments of y exist and Ey = 0, Eyy’ = I'. The likelihood function
has a maximum at £ = (n/y )é, where v, is the value of v maximizing "/ %g(v)
and £ is the maximum hkehhood estlmator under normality [Anderson, Fang
and Hsu (1986, Theorem 1)]. The uncorrelatedness of S,y, and S;y,, a # B,
holds, but in general, independence of quadratic forms does not hold. For
example, if y'S,y and y'(I — S,)y are independent, the distribution of y must
be normal [Anderson and Fang (1987, Theorem 1)]. Nevertheless, F-tests are
valid [Anderson, Fang and Hsu (1986, Theorem 2)].
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It is a pleasure to read this unified account of the analysis of variance, and the
relationship between its many facets, for variance models based on association
schemes. The theory of association schemes is an elegant piece of mathematics,
as the recent book by Bannai and It6 (1984) shows, with many areas of
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914 DISCUSSION

application. Because this mathematics is so tractable, it is tempting to say, as
Speed does in Section 4, that association schemes are the only natural frame-
work for analysis of variance. I believe that this temptation should be resisted.
The following two examples show that there are both practical and theoretical
structures which have an analysis of variance (in the sense of Section 2) and yet
which are not based on association schemes. In both cases every matrix A, for a
in X, is symmetric with constant diagonal entries, and the set {A,: a € X}
commutes and spans the algebra it generates, which contains the matrix I. Both
examples satisfy the criteria (i)-(iv) given near the end of Section 4.

ExaMPLE 1. Let X be a set of uniform factors on T, and suppose that

(i) for all @, b in X, the supremum a V b of a and b is also in X;
(ii) for all a, b in X, the factors a and b are orthogonal modulo a V b;
(iii) X contains the trivial factor e, which has a different level for every
element of T.

For each a in X, define the relationship matrix R, as in Section 6. As Tjur
(1984) and Duquenne (1986) have shown, variance models based on {R,: a € X}
have a straightforward analysis of variance, which parallels much of the present
paper. Moreover, the sets X and Z in Section 4 can be taken to be identical, and
the coefficients in (4.2) can be easily calculated recursively, using the semilattice
X, whereas there is no such simple method for calculating those coefficients for a
general association scheme. Although this example includes the association
schemes of Speed and Bailey (1982), it also includes many structures which
neither are association schemes nor can be extended to association schemes by
the addition of extra factors. One such structure which does occur in practice is
the row-column array in which rows are othogonal to columns but row-column
intersections do not all have the same size: here X consists of the row-factor, the
column-factor and the two trivial factors. Another such structure, albeit of more
theoretical interest, is the Latin cube which is not based on an Abelian group:
here X consists of the two trivial factors, the three factors for plane
sections—rows, columns and layers—and the letter-factor.

ExaMPLE 2. Let T have the strucutre of the set of treatments in a rectangu-
lar lattice design. In the terminology of Bailey and Speed (1986), let S and F' be
the matrices such that, for ¢, u in T, the (¢, u)-entry of S is equal to the number
of spokes which contain both ¢ and u, while the (¢, u)-entry of F is equal to the
number of fans which contain both ¢ and u. The set {I, S, F, J} is not, in
general, the basis for an algebra generated by an association scheme, yet it leads
to a perfectly tractable analysis of variance theory, just as in the present paper.
To be sure, the matrices S and F are not (0, 1)-matrices: nevertheless, if the.
covariance matrix I' is a linear combination of I, S, F and ¢J, then individual
covariances depend only on the spoke- and fan-relationships between the rele-
vant elements of T, moreover, a suitable linear combination of equations like
(4.3b) does “analyse the variance” of individual elements, just like (2.3).
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Of course, if the covariance model is to be based on randomization (Bailey,
1981) or symmetry arguments (Speed, 1985), then a group G of permutations of
T is involved, as in Section 7. Then the covariance matrix is given by (4.1), where
the matrices {A,: a € X} are the adjacency matrices for the orbits of G on
T X T. If G is transitive, then conditions (ii)—(iv) at the beginning of Section 4
are satisfied. If, in addition, the symmetrized adjacency matrices commute (cf.
Section 8), then they form an association scheme. Hence randomization-based
covariance models which have an analysis of variance (in the sense of Section 2)
are included in the association scheme theory, although to ignore the group is
often to lose useful information. However, Speed himself says (Section 9) that a
useful theory of analysis of variance should not be restricted to group-based
models; it is not clear to me that the restirction to association-scheme models is
any more natural or sensible.

I should like to draw a parallel with two other areas of the design of
experiments where association schemes play an important role but do not tell the
whole story. In ordinary block designs, association schemes were introduced by
Bose and Shimamoto (1952) to clarify partially balanced designs. Many mathe-
maticians have been so beguiled by the theory of association schemes that they
have concentrated exclusively on partially balanced designs (including totally
balanced designs). While many partially balanced designs do have good statisti-
cal properties, several statisticians have recently pointed out that some criteria,
such as high efficiency or near-equality of concurrences, may be better satisfied
by designs which are not partially balanced. In randomization theory, Bailey and
Rowley (1987) have shown that association schemes provide a unifying frame-
work for all the Fisherian designs with valid randomization sets of plans.
However, there are other classes of design, not based on association schemes,
which also have valid randomization theories.

My second main point is my concern at the attempt to limit the term
“analysis of variance” to theory and practice based on (co)variance models.
Whatever the individual words “analysis” and “ variance” may mean, there can
be no doubt that the majority of people who use the term “analysis of variance”,
or indeed the technique, do so in the context of analysing a designed experiment.
Thus the elegant theory presented here is, at best, only half of what is needed.
The complete analysis requires, in addition, a similar breakdown of the expecta-
tion space and then a specification of how the two decompositions fit together.
This last part seems the hardest. Important steps have been taken by Nelder
(1965), Houtman and Speed (1983) and Tobias (1986), but much remains to be
done.

Incidentally, there appear to be two small mistakes in Section 3. Even if, for
all @ in X, the matrix A, has constant row-sums, it does not necessarily follow
that n~'J is one of the stratum projection matrices. For example, take X = {x}
and A, = I. Disconnected distance-transitive graphs provide further counterex-
amples. Moreover, the facts that the matrices {A,: @ € X} commute and span
the algebra they generate are not sufficient to ensure that the stratum projection
matrices sum to I. For example, take X = {x} and let A, be any nonidentity
idempotent. The only simple solution that I can see to these difficulties is to
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insist that the algebra A generated by {A,: a € X} contain the matrices I
and JJ.

REFERENCES

BAILEY, R. A. (1981). A unified approach to design of experiments. J. Roy. Statist. Soc. Ser. A 144
214-223.

BAILEY, R. A. and ROWLEY, C. A. (1987). Valid randomization. Proc. Roy. Soc. London Ser. A 410
105-124.

BAILEY, R. A. and SPEED, T. P. (1986). Rectangular lattice designs: efficiency factors and analysis.
Ann. Statist. 14 874-895.

BanNal, E. and I10, T. (1984). Algebraic Combinatorics. 1. Association Schemes. Benjamin, Menlo
Park, Calif.

Bosek, R. C. and SHIMaMoOTO, T. (1952). Classification and analysis of partially balanced incomplete
block designs with two associate classes. J. Amer. Statist. Assoc. 47 151-184.
DUQUENNE, V. (1986). What can lattices do for experimental designs? Math. Social Sci. 11 243-281.
HoutMmaN, A. M. and SpEED, T. P. (1983). Balance in designed experiments with orthogonal block

structure. Ann. Statist. 11 1069-1085.

NELDER, J. A. (1965). The analysis of randomised experiments with orthogonal block structure. II.
Treatment structure and the general analysis of variance. Proc. Roy. Soc. London Ser. A
283 163-178. '

SpPEED, T. P. (1985). Dispersion models for factorial experiments. Bull. Internat. Statist. Inst. 51
24.1-1-24.1-16.

SPEED, T. P and BAILEY, R. A. (1982). On a class of association schemes derived from lattices of
equivalence relations. In Algebraic Structures and Applications (P. Schultz, C. E. Praeger
and R. P. Sullivan, eds.) 55-74. Dekker, New York.

TJur, T. (1984). Analysis of variance models in orthogonal designs. Internat. Statist. Rev. 52 33-65.

Togias, R. D. (1986). The algebra of a multi-stratum design and the application of its structure to
analysis. Ph.D. thesis, Univ. of North Carolina, Chapel Hill, N.C.

Di1VISION OF BIOMATHEMATICS

AND STATISTICS
ROTHAMSTED EXPERIMENTAL STATION
HARPENDEN, HERTFORDSHIRE ALS5 2JQ
UNITED KINGDOM

DaviD R. BRILLINGER
University of California, Berkeley

By consideration of broadly ranging examples (really by an analysis of
analysis of variance), Dr. Speed seeks a definition of an analysis of variance. In
Section 4 he settles on a formulation that provides lots of insight. My remarks
are to the effect that it would seem that his definition might be usefully
broadened a bit.

There are practically occurring random process situations where it seems to
me an anova exists, yet which escape Dr. Speed’s definition, specifically the
“equality constraints amongst (co)variances” part. Suppose one has a process
Y(-), with stationary increments, for example, a stationary point process. Sup-
pose, and this is usually no real restriction, Y(0) = 0. Then, following the work of
Kolomogorov [see, e.g., Doob (1953), pages 551559, Bochner (1947), 1t (1953)



