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Let > denote a preference relation on a set F of lottery acts. Each f in

F maps a state space S into a set P of lotteries on decision outcomes. The

_paper discusses axioms for > on F which imply the existence of an SSB

(skew-symmetric bilinear) functional ¢ on P X P and a finitely additive
probability measure « on 25 such that, for all f and g in F,

f>ge fs¢(/(s),g(s)) dn(s) > 0.

This S3B (states SSB) model generalizes the traditional Ramsey-Savage
model in which ¢ decomposes as ¢(p, g) = u(p) — u(q), where u is a linear
functional on P. The S3B model preserves the probability structure of the
Ramsey—Savage model while weakening their assumptions of transitivity and
independence.

1. Introduction. Let P be a convex set of probability distributions (one-
stage lotteries) on a set of decision outcomes, and let F denote the set of all
functions (acts) from a set of S of states of the world into P. This paper presents
axioms for a preference relation > on F that imply the existence of an SSB
(skew-symmetric bilinear) functional ¢ on P X P and a finitely additive prob-
ability measure 7 on the algebra 25 of all subsets of S such that, for all f and g
in F,

f-ge fst.b( f(s), g(s))dn(s) > 0.

We refer to the integral as an S3B utility functional since it extends by
expectation over states the SSB utility functional ¢ from P X P to F X F. The
representation itself for the is preferred to relation > on F will be referred to
as the S3B model.

The S®B model was introduced by Loomes and ‘ugden (1982) and Bell (1982)
for finite S. Fishburn (1984) axiomatized the model for finite S, and we are
currently exploring its implications for Bayesian decision theory. Our purpose
here is to extend the finite-S axiomatization to infinite state spaces by adding
axioms that are inapplicable or superfluous when S is finite. At the same time,
Fishburn’s finite-S axioms are modified to accommodate the present context. We
interpret our model normatively, as done by Savage (1954) and the authors cited
above for their models.
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Section 2 presents Fishburn’s axioms and their principal implications for
arbitrary nonempty S. Our new axioms and their consequences appear in Section
3, where S is presumed to be infinite. To facilitate mathematical simplicity
without giving up much in the way of applicability, it is assumed that for each
positive integer n, there is an n-part partition of S each event in which is
nonnull. This is much weaker than Savage’s (1954) partition axiom P6 and
axioms used by others that for any n imply that S can be partitioned into n
equally-likely events. However, it should be noted that all probabilities between
0 and 1 are used in the formation of the lottery set P, which is not used by
Savage as a primitive.

The other new axioms in Section 3 are a weak and a strong version of
states-dominance axioms. The weak version says that if f(s) = g(s) for all s in
S, then f > g, where > denotes the union of > and its symmetric complement
~ . The strong version entails the weak version and apparently more: See
Section 3, where a difficulty in the formulation of the strong version is discussed.
It is noted among other things that the weak states-dominance axiom implies
that ¢ is bounded and that the S®B model holds when at least one of f and g is
simple, i.e., assigns at most a finite number of lotteries in P to the states in S.
The strong states-dominance axiom yields the S®B model for all f and g in F.

Section 4 concludes the paper with proofs of assertions not proved previously.

Other generalizations of the familiar Ramsey (1931)-Savage (1954) model

f>ge= [u(f(s)dn(s)> [u(g(s))dn(s)

are discussed by Schmeidler (1984), Gilboa (1985), Luce and Narens (1985) and
Fishburn (1984, 1985). The first three of these assume that > is a weak order,
retain the utility separation between f and g of the Ramsey-Savage model and
replace 7 by a nonadditive measure or measures. Fishburn’s models do not
assume that either > or ~ is transitive and interconnect the utility evalua-
tions for f and g through ¢. In addition, Fishburn (1985) generalizes the
additivity property for subjective probability. The S3B model is the only
generalization among these that preserves the additivity feature of the
Ramsey—-Savage model.

2. Formulation and basic axioms. It is assumed henceforth that S is a
nonempty set, P is a nonempty convex set of probability distributions on an
outcome set and F is the set of all functions from S into P. We refer to elements
in S as states, subsets of S as events and functions in F as acts. Convexity for P
means that Ap + (1 — A\)g € P whenever p,g € Pand 0 <A < 1.Given f,g €
Fand0 < A <1, Af + (1 — A)g denotes the act that assigns A f(s) + (1 — A)g(s)
from P to state s. F is convex since P is convex. We refer to act f as simple if
{f(s): s € S} is finite.

Let > be a binary relation on F. Qur axioms imply that > is asymmetric, so
f > & = not (g > f), but they do not imply that > is transitive. We define ~
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(indifference) and x (preferred or indifferent to) on F by

f~g, ifnot(f>g)andnot(g>7f),
fzg, iff>gorf~g.

Given p € P, let p* denote the constant act in F that assigns p to every state.
We define p > (~, x)q to mean that p* > (~, >)q*. Similarly, f > p means
f > p*, and so forth.

For any event A in 25 fAg denotes the act that assigns f(s) to each s € A
and g(s) to each s € A, the complement of A. Similarly, fAp is the act that
assigns f(s)tos€Aand p€ P toall s € A, and pAq assigns p toalls € A
and q to all s € A°. For example, if you “do” pAq, then you get p if A obtains
and you get ¢ otherwise.

Event A is null if, for all p, q, r € P, pAr ~ qAr. We let 4" denote the set of
null events in 25,

The following six axioms apply toall p,q,r € P,all A, B 25 all f,g, h € F,
al0 <A<landalO0O<p<1.

(Al) f>g>h=>g~af+ (1 — a)h forsome 0 < a < 1.

A2)[f>g fzhl=f>Ag+Q-Mh [g>f, hxzf]l=2Ag+
A-Mh>f;[f~8 f~h]l=f~Ag+ (1 - Nk

(A3)[f>g &>h, f>h, g~3f +3hR]l=[Af+ A -Mh~3f+ 38
AR+ (1 —-MNf~th+ 58]

(B1) S& /.

B2) [Ae¢ AN, B&g N] = [pAr > qAr < pBr > qBr).

(B3) [ANB= 0, {fif.fs} = {(fAp,&Bp,p*}]1=[fi~prlhh+ 1 -pf;=
%fl"'%f3~%(ﬂf2+(1_#)f3)+%f3]-

Axioms (A.1)—(A.3), which make no explicit use of S, are the basic SSB axioms
from Fishburn (1982). They entail neither transitivity nor the usual indepen-
dence or substitution axioms of expected utility. (A.1) is a continuity or inter-
mediate-value assumption: If f is preferred to g, and g is preferred to &, then g
is indifferent to a nontrivial convex combination of f and A. (A.2) is a convexity-
dominance axiom. Its final part (~) says that the subset of F whose acts are
indifferent to f is convex. Its first two parts imply that the subsets of acts less
preferred than f and more preferred than f are both convex. (A.3) is a special
case of the symmetry condition, which says that if g lies midway in preference
between f and A in the sense that f> g > h and g ~ if + 3Ah, then an ~
statement involving only f, g and h remains at ~ when f and A are
interchanged throughout.

Axioms (B.1)-(B.3) are modifications of axioms in Fishburn (1984) for finite S.
(B.1) asserts that the universal event is not null. (B.2) is an independence
assumption which says that nonnull events have similar preference implications
for special comparisons of two-lottery simple acts. It is similar to the P3 part of
Savage’s (1954) sure-thing principle. Finally, (B.3) is another type of indepen-
dence axiom that brings 50-50 mixtures into play for acts based on two disjoint
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events. It is a restriction of the much more powerful independence axiom of
Herstein and Milnor (1953) which says that, for all f,g,h€F, f~ge
if + 3h ~ 38 + 3h. As noted in Fishburn (1984, page 267), if (B.3) were replaced
by the Herstein—-Milnor axiom, then our S3B model would simplify to the
Ramsey—-Savage model.

The following two theorems summarize most implications of (A.1)-(A.3) and
then (A.1)-(B.3). We recall that a functional ¢ on F X F is SSB if it is
skew-symmetric [¢(g, f) = —o(f, g)] and linear separately in each argument.
Thus, for the first argument,

¢(Af+ (1 —N)g, k) =As(f, h) + (1 - A)o(g, R),

when 0 < A < 1, and similarly for the second argument. Our first result is the
main theorem in Fishburn (1982).

THEOREM 1. (A.l), (A.2) and (A.3) hold if and only if there is an SSB
functional ¢ on F X F such that, for all f, g € F,

(1) f>geo(f g >0.

Given (1) for all f, g € F, (1) holds for an SSB functional ¢’ on F X F in place
of ¢ if and only if ¢’ = c¢¢ for some real number ¢ > 0.

The latter part of Theorem 1 is abbreviated by saying that ¢ is unique up to
similarity transformations. Given ¢ on F X F, we always define ¢ on P X P by

o(p,q) =o(p*, q*).

THEOREM 2. Suppose (A.1)-(A.3) and (B.1)-(B.3) hold. Then there is an
SSB functional ¢ on F X F and a unique finitely additive probability measure «
on 25 such that, forallf,g € F, all A € 25 and all p;,q, € P

(a) (1) holds;

(b) A eAN e a(A)=0;

(c) if {A,,..., A} and {B,..., B,} are partitions of S with f(s) = p; for all
s€A,1<i<n,andg(s)=gq; foralls € B;,1 <j < m, then

o(f,8)= ¥ % =(A;0B)s(piray).

i=1j=1

This extends Theorem 5 in Fishburn (1984) when 8§ is infinite. That theorem
implies that if T= {A,,..., A,} is any finite partition of S, then there is a
unique probability measure 7, on the algebra with atoms A,-A, such that (with
¢ as in Theorems 1 and 2)

n

o(f,8) = X 7r(A)e(pisq,)s

i=1

when f =p, and g = ¢, on A, for i = 1,..., n. For Theorem 2, it remains only
to show that =, (A) = m,(A) whenever finite partitions T and V both have A as
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an “event.”” When they do, f = pAr and g = qAr imply ¢(f, g) =
7r(A)e(p, q) = my(A)P(p, q). If A € A, then 7 (A) = 7 (A) =0;if A &€ A,
then, since (B.1) assures ¢(p,q) # 0 for some p,q € P, we get mp(A) =
7y (A) > 0. We can therefore drop the subscripts on 7 to complete the proof of
Theorem 2.

Theorem 2 is not stated in the “if and only if” form because one of its axioms,
(B.3), is not wholly necessary for its conclusions although (B.3) is necessary for
the general S®B model. [If (B.3) is weakened by replacing f and g in its
statement by lotteries in P, then (A.1)—(B.3) are necessary and sufficient for the
conclusions of Theorem 2.] The following lemma, which is needed later, shows a
further implication of (B.3).

LEMMA 1. Suppose (A.1)-(A.3) and (B.3) hold with ¢ as in Theorem 1.
Then, for all f, g € F, all p € P and every partition {A,,..., A,} of S,

i=1

Proor. First, let A be an event with A & {@, S}. For (B.3), let B = A°
with {f,, f,, f3} = {fAp, gA°p, p*}. We show that

(2) o( f1, ) + ¢(fo, f3) + &(f5, f,) = 0.

Clearly, there is some p €[0,1] and some permutation f,, f, and f; of fAp,
gA°p and p* such that f, ~puf, + (1 — p)f;. By Theorem 1, ¢(f,, pnfy +
(1 — p)f3) = 0, so linearity in the second argument yields

I-"[(p( fli f2) - ¢’( flr f3)] = _4)( flr f3)
Also, by (B.3), 3f, + ifs ~ 3(pfa+ U — wfs) + 3fs, or ¢(Gf, + 3fs 3(pfy +
(1 = p)fs) + 3f3) = 0. Bilinearity and skew-symmetry then give
po( fa, f3) = o( f1, f5)-

When this is added to the preceding equation, we get u[o(f,, fo) + ¢(fs, f3) +
o(fs, 1)1 =0, so (2) holds if p> 0. If p =0, simply interchange f, and f,
throughout the preceding derivation to obtain (2).

Continuing with A & {3, S}, observe that

sf + 3(gAp) + 3(gAp) = 38 + 5(fAp) + 5(fAP),

3f + 3p* = 3(fAp) + 3(fAp),

18 + 1p* = }(g4p) + }(gAP).
When ¢(left-hand side, right-hand side) = 0 is expanded bilinearly for each of
these and substitutions are made in the first ¢ = 0 from the other two, we get

¢(f,8) + o(fAp, p*) + ¢(fAp, p*) + ¢(p*, gAp) + ¢(p*, 8AD)
+9(gAp, fAp) + ¢(gA°p, fAD) + ¢(&Ap, fA°p) + ¢(gA°D, fAp) = 0.
But, by (2),
¢(fAp, p*) + ¢(p*, 8AP) + ¢(8A°p, fAp) = 0
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and

o(fAp, p*) + ¢(p*, gAp) + ¢(gAp, fA°p) = 0.
Therefore,

¢(f,8) = ¢(fAp, gAp) + ¢(fAp, gA°p).
The conclusion of Lemma 1 follows directly from this as follows:

o(f,g) =o(fA,p,gA,p) + ¢( fA{p, gA{p)
= ¢( fAp, gAlp) + ¢’( fA,p, gAgp)
+o(f(A,UA,)Dp,8(A, U A,) D)

= Z‘P( fA;p, gA;p). d

Theorem 2 yields the S3B model for all simple f and g in F. The next section
adds axioms sufficient for the model for all pairs of acts in F.

3. Extension. It is assumed henceforth that (A.1)-(B.3) hold along with ¢
and 7 as in Theorems 1 and 2. Since there is nothing more to say beyond
Theorem 2 if S is finite, we consider infinite S in what follows.

(B.1)* For every positive integer n there is an n-part partition of S each part
of which is not null.

Although unnecessary for the S®B model, (B.1)* is generous in the types of =
measures it allows. For example, some {s} could have positive probabilities, or
we could have 7#(A) = 0 for all finite A in 25. Our main use of (B.1)* is its
implication, in view of Theorem 2(b), that there is a denumerable partition
{A, A,,...} of S with m(A;) > 0 for all i. We refer to such a partition as a
positive denumerable partition. A positive denumerable partition can be con-
structed from the partitions of (B.1)* by a sequential procedure that at each
step chooses a positive probability event disjoint from its chosen predecessors in
such a way that the complement of the union of events chosen thus far admits a
sequence of positive-probability partitions whose number of parts increases
without bound. A new sequence of partitions of the unchosen complement is
constructed at each step.

Our two states-dominance axioms are, for all f, g, f’ and g’ in F:

(B4) If f(s) z &(s) foralls €S, thenf z g.
B)* If f ~ gand ¢(f'(s), 8'(s)) = ¢(f(s), &(s)) forall s € S, thenf’ = g'.

Axiom (B.4), which is implied by (B.4)* when we take f = g in (B.4)*, has a
strong intuitive appeal. It says that if f is preferred or indifferent to g regardless
of which state obtains, then f as a whole is preferred or indifferent to g.

The stronger (B.4)* is less compelling but is still appealing. In the SSB
context it is not unreasonable to interpret ¢(p,q) as a utility differential
between p and q in the lottery context. [If the von Neumann-Morgenstern
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expected utility axioms hold for > on P, then ¢ decomposes as ¢(p, q) =
u( p) — u(q).] Under this interpretation, (B.4)* says that if f is indifferent to g
and if, for every s, the utility differential of f’(s) over g’(s) is at least as great
as that of f(s) over g(s), then f’ as a whole is preferred or indifferent to g’. It is
easily seen that (B.4)* is necessary for the SB model.

The obvious problem with (B.4)* is its direct reference to the functional ¢.
Although ¢(p’, q’) > ¢(p, q) in its statement could be replaced by conditions
that refer solely to > on P, it is messy to do so [see the construction of ¢ in
Fishburn (1982)] and would add nothing to its intuitive interpretation.

We had hoped to obtain the complete S?B model from (B.1)* and (B.4) but
have been unable to do so. We have also not found a counterexample to the
assertion that the model follows from (B.1)* and (B.4), so the question remains
open. The main facts we have been able to establish from these two axioms are
summarized in the following theorem, which is proved in the next section.

THEOREM 3. Suppose (B.1)* and (B.4) hold. Then, for all p € P and all
f.8€F

(a) ¢ is bounded on P X P;

(b) infgo(f(s), p) < ¢(f, p) < supsod( f(s), P);
(c) if at least one of f and g is simple,

(3) o(f,8) = fs ¢(f(s), &(s)) dn(s);

(d) ¢ is bounded on F X F.
On replacing (B.4) with (B.4)*, we obtain the complete S3B model.

THEOREM 4. Suppose (B.1)* and (B.4)* hold. Then (3) holds for all f and g
inF.

Bounded utilities on P, or on P X P as in Theorem 3(a), are not unusual in
utility theory. Although not implied by the von Neumann-Morgenstern (1947)
axioms, boundedness is a consequence of the Blackwell-Girschick (1954) axioms
for expected utility and of some subsequent axiomatizations such as Fishburn
(1967). Savage’s (1954) subjective expected utility theory in the states context
also entails bounded utilities [Fishburn (1970), Chapter 14].

In the present theory, bounded SSB utilities are a consequence of our
partition axiom (B.1)* in conjunction with the weak states-dominance axiom
(B.4). As stated in Theorem 3, these axioms also yield the S3B model when at
least one of f and g is simple. Our inability to obtain (3) for all f and g from
(B.1)* and (B.4) stems from our inability to derive the ensuing conclusion of
Lemma 2 from these axioms.
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LEmMma 2. (B.1)* and (B.4)* imply that, for all f, g € F,
info(f(s), &(s)) < ¢(f,8) < Sl;qu( f(s), &(s)).

As shown by Theorem 3(b), this is partly implied by (B.4) in place of (B.4)*,
We conclude this section by proving Lemma 2 and then showing how it yields (3)
for all pairs of acts in F, thus completing the proof of Theorem 4. The
conclusions of Theorem 3 are used freely in these derivations.

ProoF OF LEMMA 2. Let A be an event in 25 for which 7(A) > 0 and
7(A°) > 0, as guaranteed by Theorem 2 and (B.1)*. By Theorem 1, (B.1) and
Theorems 3(a) and 3(d), we can assume with no loss in generality that

supo(p,q) =1, sup¢(f,g)=K=1, K finite.
PxP FXF

Choose y,z € P such that ¢(y,z) > 3, and define x as 3y + ;2 so that

1

o(x, 2) = ¢(y,x) > ;. Also let A be any positive real number that does not
exceed min{w(A), 7(A°)}/(4K).

Given f,g€ F, let gy =Ag+ (1 = MNf, so &(f, &) =Aé(f, g) and
d(f(s), 8o(8)) = Ap(f(s), &(s)) for all s. We show that the conclusion of Lemma
2 holds for ( f, g,), so it must also hold for ( f, g).

By Lemma 1,

¢( fy gO) = ¢( fo, gOAx) + ‘t’( fAcx, gOAcx)r
with ¢(fAx, g8oAx) = Ap(fAx, gAx) and ¢(fA%, goA%x) = Ap( fAx, gA%%),
Consequently,

max{ |¢( fAx, goAx)|,|¢( fAx, 8,A%) |} < min{m(A), 7(A°)}/4.

It follows from the construction of x that there are p and r in P such that
m(A°)P( P, x) = ¢(fAx, goAx) and 7(A)¢(r, x) = ¢(fA%, §oAx), and there-
fore

8(1,80) = 7(A)$(r, x) + 7(A¥)o(p, x).
Moreover, by Lemma 1 and Theorem 2 or (3),
o( fAx, g8,Ap) = ¢( fAx, goAx) + ¢(xAx, pAx)
= #(fAx, g,Ax) + n(A9)$(x, p) = 0,
o( fAx, goA°r) = ¢( fAx, g8yAx) + ¢(xAx, rAx)
= ¢(fA%, goA%) + m(A)¢(x,r) =0,

so that fAx ~ g,Ap and fAx ~ g,A°r.

We now apply (B.4)* to each of these indifference statements to obtain the
desired sup conclusion. (The inf conclusion is obtained similarly.) It follows from
our constructions that there are y’ and 2z’ in P such that

o(y,x) = sgw(f(S),go(S)),
¢(z’,x) = szgqb( f(s), 8(s)).
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The first of these used with fAx ~ g,Ap in (B.4)* yields y’Ax > xAp. Hence,
by Theorems 1 and 2,

¢(y'Ax, xAp) = 71(A)$(y’, x) + 7(A%)¢(x, p) 2 0

7r(x‘l)sgqu(f(s),go(S)) > 7(A)¢(p, x).
Similarly, the defining equation for z’ used with fA% ~ g,A°r in (B.4)* yields
W(AC)SBW( f(s), &o(s)) = m(A)¢(r, x).
Therefore,
Sl;qu( f(s), 8(s)) = 7T(A)Sl;pqﬁ( f(s), go(s)) + 7r(z‘“)sgqu( f(s), 8(s))
> 7r(A)SlI;qu( 1(s), &o(s)) + 7r(Ac)sBcqu( f(s), &(s))

2 7(A)¢(p,x) + 7(A)o(r, x)
= ¢(f, 80)- O
ProOOF OF THEOREM 4. Given f,g € F, let
a = infe(f(s), 8(s)), b= sgqu( f(s), &(s)).
If a = b, then ¢(f, &) = a by Lemma 2, and

Jo(1(s), &(s)) dn(s) = [adn(s) = an(S) = a,

so (3) holds for this case.
Assume henceforth that a < b. For a given positive integer n let

A= {sia<o(i(s)g6) sat = (- a),

i—1 i
A= sa+ —o(b-a) <a(f(s).g(s) <a+ ~(b-a)),

2<i<n.

According to Lemma 1,
¢(fsg)= Zd)(fAix)gAix)’ xEP.
i=1

Consider one term in this sum where A; # @, andlet a;, = a + (i — 1)(b — a)/n,
b;=a + i(b — a)/n. For every p, r € P for which a; < ¢(p, r) < b;, Lemma 2
implies that

a; < ¢(fA;p,gA;r) < b,.
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By Lemma 1 and Theorem 2,
¢(fA;p, gA;r) = ¢(fAx, gAix) + ¢( PASx, rAix)
= ¢(fAix,gAx) + 7(Af)e(p, r).
Take ¢(p, r) close to a; and then close to b, to get
m(A)a;, —n"? < ¢(fAx,gAx) <w(A,)b,+ n~2.
Since ¢( f, &) = Lo( fA;x, gA;x), it follows that
n i—1 1
gl'rr(Ai)[a + T(b - a)] -

<o(f,g) < Xn(A)

i=1

i 1
a+ —(b-a)|+ —.

n n
Moreover, by the definition of expectation,

:le(Ai)[a - a)]

< [#(7() 8(s)) dn(s) = £ n(a)]a+ Z(b - a)]

i=1
Hence,

o(f,8) - fs 3(f(s), g(s)) dn(s)

We then obtain (3) by letting n — o0. O

<(b-a+1)/n.

4. Proof of Theorem 3. The conclusions of Theorem 3 will be established
by a series of lemmas. We assume that axioms (A.1)-(A.3), (B.1)-(B.3) and (B.4)
hold, with ¢ and # as in Theorems 1 and 2. Axiom (B.1)* is presumed from
Lemma 4 onward. Throughout, f,g € Fand p,r € P.

LEMMA 3a. Let a = inf¢(f(s), p). Then a < ¢(f, p) if either a =0 or
(a >0, p>rforsomer)or(a<0,r>p forsomer).

LEMMA 3b. Let b= supgd(f(s), p). Then ¢(f, p) < b if either b =0 or
(b>0, p>rforsomer)or(b<0,r>p forsomer).

Proor oF LEMMA 3b. (The proof of Lemma 3a is similar.) If b = o, then
there is nothing to prove, so assume henceforth that b is finite. If b = 0, then
p = f(s) for all s,s0 p = f (i.e., p* = f) by (B.4), and therefore ¢( f, p) < 0.

Suppose next that & > 0 and p > r. Define A by Ab + (1 — A)e(r, p) = 0. By
SSB and the definition of b,

¢(Af(s) + (1 = N)r, p) = A(f(s), p) + (1 = N)¢(r, p)

= A(f(s), p) — Ab
<Ab-Ab=0,
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for all s. (B4) implies p = Af+ @ —A)r, hence Ab=0 - A)¢(p,r) >
Ao(f, p), so b = ¢(f, p).

Finally, suppose b < 0 and r > p. Again define A by Ab + (1 — A)¢(r, p) = 0.
Then ¢(Af(s) + X = AN)r, p) = Ao(f(s),p) —Ab<Ab—Ab=0,s0 (B4) p =
Af + (1 — M)r and, as before, ¢(f, p) < b. O

REMARK. We now assume (B.1)* and will let {A,, A,,...} be a positive
denumerable partition of S ordered so that #(A;) > 7(A,) = -+ with#(4,) >0
for all i.

LEMMA 4a. If r > p for some r, then ¢ is bounded below on P X {p}.
LEMMA 4b. If p > r for some r, then ¢ is bounded above on P X {p}.

Proor oF LEMMA 4b. (The proof of Lemma 4a is similar.) Given p > r,
suppose to the contrary of Lemma 4b that ¢ is not bounded above on P X {p}.
Then [0, ) € ¢(P X {p}). Choose p, € P for each i so that

¢(pi7 p) = 77.(‘4i)41
and define f by f(s)=p, for all s€ A, i=1,2,.... We shall obtain the
contradiction to Theorem 1 that ¢( f, p) is infinite.
Let g, be a simple act in F that is constant on each A; for i < n with

o(g,(s),p)=m(A,) ' —n(A,)”", forallse A,
and that has g,(s) =p forall s € S\ (4, U --+ UA)). Then, by Theorem 2,
(8, p) = L(A)|n(4,) " —7(4)7]

=1
n

=n(4,)"" L n(4) -n.

i=1

Note also that for s € A,, i < n,

o((3f + 18,)(s), p)

éqs(pw p) + %qb(gn(s), p)
= im(A,) 7,
and fors€ A,, i > n,

o((3f + 32,)(s), p) = 4n(4) 7" = in(4,) 7"
Hence,

info((4f + £,)(s), p) = 7(4,) /2> 0

and, since p > r by hypothesis, it follows from Lemma 3a that ¢(3f + 3&,, p) =
m(A,) ' /2. Therefore,

¢(f,p) 27(A,)"" — ¢(&, p)

=m(4,)" —n(A,) L a(4) +n
i=1
>n. l
Consequently, ¢( f, p) = n for all n, for the claimed contradiction. O



MODEL FOR DECISIONS UNDER UNCERTAINTY 841
LEMMA 5 [Theorem 3(a)]. ¢ is bounded on P X P.

PROOF. (See the preceding Remark.) Suppose to the contrary that ¢ on
P X P is unbounded, so ¢(P X P) = (— o0, 0), and for definiteness let p, and g,
for i =1,2,... satisfy

o(p;,q;) = W(Ai)_l'
Also let f=p, on A, and g =¢q; on A; for each i. We shall obtain the

contradiction that ¢( f, g) is infinite.
Fix r with ¢ > r > p for some q and p in P. Define simple f, and g, in F by

f,=p;on A;, i <n; f,=ron S\ (4,U ---UA,),
g,=q,onA;,i<n; g,=ronS\ (A U---UA).
Then, by Theorem 2,

6108 = X a(4)[n(4) 7] = n.

i=1
In addition, note that (3f + 1g,)(s) = (38 + 3f,)(s) for all s€ A, U --- UA,
and that, for all s € S\ (4, U --- UA)),
o((37 + 38.)(s), (38 + 3£u)(s))
= ¢(3pi + ir.3q, + ir)
= [¢(pt’ ql) + ¢(pi’ r) + ¢(r7 qz)]/4:
when s € A;. Since ¢(p;,q;) approaches oo as i gets large, and since ¢ is
bounded on P X {r} by Lemmas 4a and 4b (recall that g > r > p), it follows
that there is an N such that
o(p;,q;) + ¢(pi,r) + ¢(r,q;) >0, foralli>N.
This N does not depend on the particular n under consideration. Hence, for all
n=>N,
(1f + 18,)(s) = (3 + if,)(s), foralls€ S.
Thus, by (B.4), 3f + 18, = ;& + 3f, whenever n > N, so
¢(f,8) 2 ¢(fnr 8x) + 0(fns f) + 0(8, &)
=n+¢(ff)+ (g 8,), forn=N.

We claim that ¢(f,, f) and ¢(g, g,) are bounded. Consider ( f, f,), which
equals (p;, p;) on A, for i < n and (p;, r) on A; for i > n. Since ¢(x,r) is
bounded on P X {r} by Lemma 4, let a = inf{¢(x,r): x € P} and b=
sup{¢(x, r): x € P} with a and b finite. If b < 0, then ¢({, f,) < 0 by (B.4). If
b>0, define A by A\b+ (1 —AN)¢(p,r)=0, let f’=p;, on A;, i <n, and
f’=Ap,+ (@ —A)p on A, i > n, observe that ¢(f’(s), f(s)) <0 for all s,
and thus conclude from (B.4) that ¢(f’, f,) < 0. Since

. ¢(f,7 fn) = (P(}‘f + (1 - A){pi’ i<n;p,i> n}’ fn)

n

=xo(f, f,) + (1 - )\)[1 -2 w(Ai)]¢(p, r),

i=1
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it follows that

o(f, f,) < [1 - Zrllvr(Ai)]qb(r, p)A —=A)/A

= b[l - fw(Ai)].

Hence, ¢( f, f,) < max{0, b}. By a similar proof, min{0, a} < ¢({, f,).

Thus ¢( f,, ) and (by analogy) ¢(g, g,) are bounded as n gets large. Since
o(f,8) 2 n+ ¢(f,, )+ ¢(g, g,) for n > N, we obtain the contradiction that
o(f, &) is infinite. O

LemMMA 6 [Theorem 3(b)]. infsé(f(s), p) < ¢(f, p) < supse( f(s), p).

ProOF. We show that ¢(f, p) < supge( f(s), p) = b, where b is finite by
Lemma 5. The only cases not already covered by Lemma 3b are (b > 0, r = p for
alre Pyand (b <0, pxrforall r e P).

Suppose first that b > 0, r = p for all r € P, and let ¢t € P satisfy ¢ > p.
Such a ¢ is guaranteed by b > 0. Let ¢ = supgo( f(s), t). For all 0 <\ <1,
supsd( f(s), At + (1 —A)p) <Ac+ (1 —A)b. Since ¢>At+ (1 — A)p > p, it
follows from Lemma 3b that

¢(f, At + (1 =A)p) =Ao(f,¢) + (1 = N)o(f, p) <Xe+ (1-1A)b.

Let A approach 0 to conclude that ¢( f, p) < bd.

Suppose next that b <0, pxr for all r€ P, and let ¢ satisfy p > ¢
Let ¢ = supgp(f(s), t) so, for 0 < X < 1, supgd(f(s), At + 1 — A\)p) <
Ac + (1 — A)b. Since b > At + (1 — A)p > t, Lemma 3b yields

¢(f,At+ (1= A)p) =re(f,2) + (1 =N)o(f, p) <Ac+ (1 - A)b,
and again we get ¢(f, p) < b. O

LEMMA 7. ¢(f, p) = [s¢(f(s), p) dn(s).

PrOOF. This proof mimics the proof of Theorem 4 with g replaced by p and
with Lemma 2 replaced by Lemma 6. O

LEMMA 8 [Theorem 3(c)]. Equation (3) holds if g is simple.

PROOF. Suppose g is simple with g = p, on A; and {A,,..., A,} a partition
of S. By Lemma 1, for any x € P,

o(f,8) = X o(fAx, pAix).

i=1

Consider ¢(fA,x, p,A,;x). Write fAx = (f, x,...,x) and DPAx =
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(pys %, ..., x), where the jth argument refers to A;. By Lemma 1,
o((f,x,...,x),(pp, x,..., %))
=o((f, Py 2, %),(Py, 1 %, -, X))
+((py, %, p1s--s P1), (D1, %, D1y, DY)
= ¢((f,p1,x,...,x),(p1,pl,x,...,x))
=o((f, Py, P, %, %), (D1, P1 DL X, -, X))

= ¢((f’ Pieeey pl)’(pl’ pl)"'ypl))‘

Hence, by Lemma 7, ¢(fAx, p;Ax) = [4¢(f(s), p,)d7n(s). Since a similar
expression holds for each A,,

o(f,8)

% [ #(/(s), p) d(s)

fs o(f(s), g(s)) dm(s). O

LEMMA 9 [Theorem 3(d)]. ¢ is bounded on F X F.

PROOF. Assume for definiteness that supg¢(p,r) =1, and let p,, p, € P
satisfy ¢(p,, p;) > L. For any f, g € F,

¢(3f(s) + $py, 18(s) + 1py)
= #[‘t’( f(S), g(s)) + 3¢(p21 g(s)) + 3¢( f(S), pl) + 94)(1)2, pl)]

<0,

since the first three terms in the brackets sum to 7 or less and the final term is
less than —7. It follows from (B.4) that ¢(f, g) < 3¢(g, p,) + 3¢(p,, ) +
9¢(p,, py)- By Lemma 7, the right-hand side cannot exceed 3 + 3 + 9, so
¢(f, g) < 15. Since f and g are arbitrary, ¢(g, f) < 15, or —15 < ¢(f, g), s0 ¢
is bounded on F X F. O
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