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A COMPLETE CLASS THEOREM FOR ESTIMATING A
NONCENTRALITY PARAMETER

By Mo Suk CHow

Northeastern University

In statistical decision theory, an important question is to characterize
the admissible rules. In this paper, we establish complete class theorems for
estimating the noncentrality parameter of noncentral chi-square and non-
central F distributions under squared error loss. Under a minor assumption,
‘any admissible estimator must be a generalized Bayes rule. Using this result,
we prove that the positive part of the UMVUE is inadmissible.

1. Introduction. In statistical decision theory, an important question is to
characterize the admissible rules. One very useful result would be that any
admissible estimator must be a generalized Bayes rule. This result is true for
estimating the natural parameter of a p-dimensional exponential family under
squared error loss. See Sacks (1963), Brown (1971) and Berger and Srinivasan
(1978). All three papers used the fact that any generalized Bayes rule for an
exponential family can be written as a Laplace transform of some measure.
Hence, it is very difficult to extend their proof to distributions not in the
exponential family.

In this paper, we establish complete class theorems for estimating the non-
centrality parameter of noncentral chi-square and noncentral F distributions
under squared error loss. Our approach is quite different from previous papers
since neither distribution belongs to the exponential family.

Noncentral chi-square and F' distributions occur frequently in statistical
testing procedures such as the analysis of variance for tests of homogeneity and
most large sample tests. Estimation of the corresponding noncentrality parame-
ter provides useful information for the power of different tests and has received
considerable attention. Perlman and Rasmussen (1975), Neff and Strawderman
(1976), Alam and Saxena (1982) and Chow and Hwang (1982) have dealt with
problems related to the performance of the UMVUE and how to improve upon
it. It is obvious that the UMVUE is inadmissible because it is not always
positive. The positive part of the UMVUE dominates the UMVUE and hence
the question of its admissibility is of interest. By the complete class theorem we
establish later on, we prove that the positive part of the UMVUE is inadmissi-
ble. Below we establish the uniqueness property of generalized Bayes rules for a
general class of distributions including noncentral chi-square and noncentral F
distributions. This result is also needed to prove our complete class theorems in
Section 3.
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2. Uniqueness theorem. Let X be an observation with sample space
Z c (0, o) and parameter space ® = [0, o). The distributions on £ are assumed
to have density with respect to a Lebesgue measure of the form

(2.1) fo(x) = h(x) g.oa,ﬂ(ﬂ)ﬂ’x’,

where h(x) > 0on £, a; > 0 for all j and B(8) is a continuous positive function

on ©. Let S € & and G be a o-finite measure on ©. An estimator 8 is called a
generalized Bayes rule on S relative to G if it minimizes the posterior expected
loss. Throeughout this paper we assume that squared error loss is considered.

THEOREM 2.1. Let fo(x) be of the form (2.1). Let 8 (8, respectively) be the
generalized Bayes rule relative to G (H, respectively). Assume that G, H are
renormalized so that [B(6)G(d0) = [B(6)H(dO). Suppose that for some nonde-
generate interval (§,, &) in &,

(2.2) 8(x) = 8y(x), forx e (&%) a.e.
If ¥%.,a}/*/ diverges, then G = H.

Proor. Since (2.2) holds on (£, ;) a.e., we get that, for x € (§,, ;) ae,
fgﬁ):f,oajﬂ(ﬂ)é?fbch(dﬁ) B f90‘239=0ajﬂ(0)0fbcfH(d0)
JoX30a,8(0)87x'G(d8) — [oX%oa;B(0)8/x’H(dB)

Fubini’s theorem and rearrangement of terms yield

© k
> ( Y 0,07 8(0)G(d0)a; ., | 0’“")8(0)H(d0))x’“

k=0\i=0

) k
=¥ ( Y a,[ 6" B(0)H(d0)a;_; [ 0'*-"/3(0)G(d0))xk,
k=0\i=0 "© <]

forx € (&,,¢,) ae.
The coefficients corresponding to x* must be identical. For £ = 0, this yields

fap(a)G(da) = fH,B(B)H(dH).
® )
It then follows by induction on & that
B, = fonﬂ(o)G(do) = fonﬁ'(o)H(do), forn=0,1,2,....
2} )
Since Y7 ,a;p jxj is finite, the power series converges on a nondegenerate

interval and there exists a constant R > 0 such that

(ap;) <R, forj=1,2,....

This implies that

1/j

a;

— ; J
B Vis 2L,
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Since £%.,a}/%/ diverges, £%.,p; '/%/ also diverges. By Shohat and Tamarkin
(1943), B(9)G(dB) = B(6)H(dB). Since B(8) > 0, G = H.O

REMARK 1. For the case £ C (—00,00) and ® = (— o0, ), the uniqueness
theorem holds if £%.,4;}/%/ = oo. For details see Chow (1983).

3. Complete class theorems for the noncentrality parameter. Let
R(48, §,) denote the risk of §, under squared error loss.

THEOREM 3.1. Let X ~ x2(0), the noncentral chi-square distribution with n
degrees of freedom and noncentrality parameter 6 with parameter space © =
[0, ). Let 6,(X) be an admissible estimator of 0. If 8,(X) also satisfies the
condition
(%) for some k, R(6,8,) = O(6%) as 6§ > o,

then 8,(X) must be a generalized Bayes rule (a.e. with respect to Lebesgue
measure). Furthermore, the set of generalized Bayes procedures satisfying (*)
forms a complete class relative to all procedures satisfying (*).

Proor. The estimator §,, being admissible, is nonnegative and nondecreas-
ing by virtue of the MLR property of the noncentral chi-square distribution [see
Brown, Cohen and Strawderman (1976)]. The rest of the proof involves verifying
the conditions of the theorem of Brown (1980). There are two cases:

CasE (i): 8, is unbounded. Given x, > 0 and % > 0, there exists x, > x,
such that §,(x,) < §(x,) — k. Define §(x) = max(8y(x), 6,(x,)) and set B() =
R(6,8,) — R(9,8").

It follows from the asymptotic behavior of fy(x) for large § and the monoton-
icity of §, that

(3.1) B(8) > kﬂfklfo(x) dx
0
and
(32) B(6) < 28,(%,)0 [ “fo(x) dx,
for all large 6 (> §y(x,)). Let h(6) = max(1,1/B(0)). Plainly,
(3.3) liominfh(ﬂ)[R(H,SO) - R(6,8")] =1.

Next, we want to show that for all x < x,,
alim h(0)(L(6,a) + 1)fs(x) =0, foralla € [0,00),

34) suph(0)R(6,8,) () < .

In view of (*) and the continuity of R(4,§,), (3.4) would follow if, for all
t<x,and m > 1,

(3.5) Jim 67h(6)y(¢) = 0

and this is immediate from (3 2) and the fact that for y <z, fo(y)/fs(2) =
O(e\/o(y 2),
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Thus, the theorem of Brown (1980) is applicable and it implies that §y(x) is
generalized Bayes for almost all x € (0, x,). Since x, is arbitrary, §y(x) is
generalized Bayes on every interval of the form (0,¢). Now appeal to the
uniqueness theorem to conclude that 8, is a generalized Bayes rule a.e.

CasE (ii): 8, is bounded. Let K be such that 8,(x) < K, Vx. Define §'(x) =
K, > K. Arguments similar to those in case (i) imply §, is a generalized Bayes
rule a.e.

For both cases we have proved that every admissible rule satisfying (*) must
be a generalized Bayes rule. Since the admissible rules form a complete class
[Brown (1987), Corollary 4A.6], the set of generalized Bayes rules forms a
complete class relative to all rules satisfying (*). O

The same complete class theorem holds for the noncentral F distribution with
similar proof. For details see Chow (1983).

4. Applications of the complete class theorems. For estimating the non-
centrality parameter § of the noncentral chi-square distribution, de Waal (1974)
has shown that x + n is the generalized Bayes estimator for § with respect to a
noninformative prior distribution. We know that x + n is inadmissible since it is
dominated by x — n, the UMVUE. Note that E4(x — n) = 0. Furthermore, since
6 = [0, ), (x — n)* = max(0, x — n) dominates x — n. It is interesting to con-
sider the admissibility of §,(x) = (x — n)*. Note that 8, was conjectured to be
inadmissible by many statisticians including Alam and Saxena (1982). This is
first established below.

THEOREM 4.1. For estimation of the noncentrality parameter 6 of the
noncentral chi-square distribution under squared error loss, 8(x) = (x — n)* is
inadmissible.

ProoF. Calculation yields R(x — n,0) = 2n + 46. Since we know that
(x — n)* dominates x — n, we get
(4.1) R(8,,0) <2n+ 46 < 0(9).

By (4.1) the (*) condition in Theorem 3.1 is satisfied. If §, is admissible, then
by Theorem 3.1 it must be a generalized Bayes rule a.e. However, Theorem 2.1
implies that the only generalized Bayes rule which is equal to §, a.e. must be the
zero estimator since 8, is zero on the nondegenerate interval (0, n). This implies
that 8, is zero a.e., which is not true. §, is then inadmissible. O

Let Z be a noncentral F distributed random variable with n, m degrees of
freedom and noncentrality parameter §. Assume that m > 5. Perlman and
Rasmussen (1975) have shown that the UMVUE of 8 is (m — 2)z — n. They also
showed that the linear estimator a{(m — 2)z — n} dominates the UMVUE for
all @ > 0 provided that
m-—6

<a<l.
9

max(O,
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Note that the estimator a{(m — 2)z — n} is negative for z < n/(m — 2).
Since © = [0, o), this estimator is dominated by its positive part, 8,(2) =
a{(m — 2)z — n} ™. Therefore, it is interesting to consider the admissibility of
84(2).

THEOREM 4.2. For estimation of the noncentrality parameter 8 of the
noncentral F distribution under squared error loss, 8,(z) = a{(m — 2)z — n}* is
inadmissible for any a # 0.

ProoF. Clearly if a < 0, §,(2) is inadmissible since it is uniformly dominated
by the zero estimator. For a > 0 the risk of 8, can be shown to be O(6?%), and
arguments similar to those in Theorem 4.1 complete the proof. O
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