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ESTIMATING TRAJECTORIES!

By YuNsHYONG CHOW
Academia Sinica

Let f be a continuously differentiable function from [0,1] to the
complex plane. Suppose that “at time n” we are given the random set
{f(k/n) + e, : 1 <k < n}, where the random errors e, , are ii.d. and
(Ree, ;,Ime, ) is N|(0,0), 02((1) (1) with 6% known. We do not know
which datum belongs to which position § = k/n, k= 1,2,..., n. In general,
f cannot be determined. In this paper it is shown that a random set 7}, can be
constructed such that with probability one, 7, converges in the Hausdorff
sense to the trajectory f([0,1]).

0. Introduction. Let f be a continuously differentiable function from [0, 1]
to the complex plane C. Since regression problems have been extensively studied
in the literature of statistics, it is fairly easy to construct a consistent estimator
of f from the data

(0.1) Z,,=f(k/n)+e,,, k=12,..,n,

where the complex-valued random errors e, , are i.id. and (Ree, ;,Ime, ;) is
Gaussian N((0,0), 02((1) ‘1’)) with 62 a known constant. In this paper we shall

consider the same estimation problem but with the data (0.1) unlabelled: We are
only given the random set

(0.2) {(Z,,: k=1,2,...,n})

and do not know which datum belongs to which position § = k/n, k = 1,2,..., n.
To our knowledge this problem has not been previously studied.

Even asymptotically, f will not, in general, be uniquely determined by the
random set (0.2). Consider, for example, the special case f(8) = exp(i276) (a
circle!). It will be impossible to distinguish f from one of its rotations f, defined
by f(0) = exp[i27(0 + «)], 0 < § < 1. Instead, we shall estimate the trajectory
of f

L =f([0,1])

from the observed random set (0.2).

The main purpose of this paper is ta construct a consistent estimator for L.
By using Bessel functions and the Hankel transform, we shall construct from the
data set (0.2) a random set 7,, that converges, as n = oo, with probability one to
the trajectory L in the Hausdorff sense. Here, as usual, the Hausdorff distance
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ESTIMATING TRAJECTORIES 553

between two sets S and T is defined by

dy(S,T) = max( sup dist(x, T'), sup dist(S, y)),
x€S yeT

and S, converges to T in the Hausdorff sense (lim S, = T) if lim ,d,(S,, T') = 0.

1. Preliminary results on the Bessel functions. As mentioned in the
introduction, we shall need some results from the theory of Bessel functions. For
convenience, these results are collected in this section.

(a) The Bessel function J, of order n, n=0,1,2,..., can be represented
[Watson (1944), page 15] as

0
(11)  J(z)= X (-D™(z/2)""*"/(m!(n+m)!), zeC.
m=0
Hence, J,(z) has a zero of order n at z = 0 and is real when z is real.
(b) Term-by-term differentiation of (1.1) shows [Watson (1944), page 18]

(1.2) d(2dy(2))/de = 2Jo(2),  d(J(2))/dz = —J(2).
Integrating the first equation from 0 to &r, we obtain, after a simple calculation,
(1.3) Jy(6r) = 87'r [udy(ru) du, 8,7 > 0.

0

(c) [Watson (1944), pages 20 and 25]

Jy(2) = (2w)_1[)2wexp(—iz sinf) dé

(1.4) 20
- (2w)_1[) exp(izcos §) dé.

Hence |Jy(2)| < 1 when z is real.
(15) Jy(2) = w_lzfl V1 — t%exp(izt) dt = w_lzfl V1 — t2cos(zt) dt.
-1 -1

(d) Since 27! < cosu < 1 on [—1,1], it follows from (1.5) that
4 'lu<d(u)<27'u, for0<uc<l.
(e) The second equation in (1.2) and (d) imply that d(J(z))/dz < 0 on (0,1].
Hence Jy(u) is strictly decreasing on [0,1]. Then
27 < (1) < Jdy(u) < Jy(0) =1, O<u<l,

can be proved by using (1.4).
(f) [Watson (1944), page 195]. When u is positive and large,

2 nTt
J(u) = ﬁcos(u—?—z), n=0,12,....

In particular, sup, . oVu |J(u)| < . A
(8) Hankel inversion theorem [Watson (1944), page 456]. Let A be any

function satisfying /&°|h(u)|Vu du < oo. Then for any » > — 3

j:orJ,,(tr) drj(;wzkf,,(ru)h(u) du = 27 Y(h(t*) + h(t)),



554 Y. CHOW
provided that the positive number ¢ lies inside an interval in which A has a

bounded total variation.
(h) For any ¢ > 0, (1.5) implies

/CJ1(u)/udu =277 ! fIVI —t2 dt fccos(ut) du
0 0 0
=271 f11/1 — £%t 'sin(ct) dt.
0

From this we see two things: (i) [¢J,(u)/udu > 0, because V1 — ¢t2¢7! is de-
creasing on (0, 1) and sin(ct) is alternating periodically; and (ii) for ¢ > 2,

(1.6) [H(u)/udu =772,
0

which can be shown as follows:

2—1wfoch(u)/udu = /01‘/1 — 2t sin(ct) dt

2 g 27 /c
F= L)
=c! fO"[ -2t = e = (w4 ) (7 + t)“]sin tdt
¢! fowm(t—l — (m + ¢) )sin tdt
= 7! foﬂx/?_—?(t(w +¢t)) 'sin tdt
Zfrrc‘lfowx/@——vrz(w%r)_lsin tdt

> (27) 7.

In fact, it can be shown that lim

\%

1\

e ST (0) fude = 1.

2. Statements of the main results. Since the data in (0.2) are unordered,
we will naturally use them in a symmetric way. As a first step, we will construct
from (0.2) a function X,(z) such that X,(z) depends on the data symmetrically
and lim ,E(X,(2)) = 0iff z ¢ L. We will then use X,(-) to construct a random
set T, that converges strongly in the Hausdorff sense to L.

Introduce the following function on the complex plane C:

(2.1) Gy s(2) = /K |Sx[exp(i<z, £y + o2g1%/2)] Ji(8181) /1£] dE,

where (z,£) = (Rez) - (Re$) + (Im 2) - (Im §) and oJ, is the Bessel function of
order one. Note that the integrand is meaningful at § = 0, since (Section 1a) <J;
has a zero of order one at the origin.

We claim that G, ; is in fact a real-valued function. Let z = |z|exp(ia). By
changing the variable £ in (2.1) to {exp(ia), it is easy to check that G, (2)
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depends only on |z|. So the number z in the integrand may be replaced by |z|.
Then changing the integral to the polar coordinate and using (1.4),

G, s(2) = f)\fzﬂ[exp(i|z|rc030 + 0%r?/2)]| Jy(8r) db dr
0 Yo

(2.2)
= 27](;A[exp(o2r2/2)] Jo(z|r)Jy(8r) dr,

which verifies the claim, because (Section 1a) Jy(z) and J;(z) are real when z is
real.

Since E(exp(i{e, ;, £))) = exp(—a?|£|?/2), by first taking the expectation and
then using the same argument, we can show that

E(Gys(z = Z,.)} = 27 [ i(|z = {(k/n) Ir) (o) dr

(2.3)
= 278! j(-:\rJO(|z — f(k/n)|r) dr f()swo(ru) du.

Note that in the second equality we have used (1.3).

The following heuristic argument will show how the function G, ; can be used
to estimate the trajectory L. For brevity, we assume that f is one-to-one and
min, _4_,|f '(8)| > 0. Consider the occupation measure p,, which is defined for
any Borel set S on the real line as p(S) = m{8 € [0,1]: |z — f(8)| € S}, where
m is Lebesgue measure. Then p, has a compact support [m(z), M(z)] with
M(z) = maxy g .,|z — f(§)] and m(z) = min,_,_,|z — f(8)]. Furthermore,
m(z) =0 iff z € L. Geometrically speaking, p,([0,t]) is a measure of that
portion of L, which lies inside the circle with radius ¢ and center at z. In most
cases, p, has a piecewise smooth derivative g, unless L is a circle with center at
z. But in all cases g,(0") exists: When z = f(§) € L

(0%) = 2|77(6)]”", if Lisa closed curveor 8 # 0,1,
’ |£7(8)|"",  otherwise

and g,(00") =0 if z¢& L. From (2.3) and Lebesgue’s dominated convergence
theorem,

limE{n_l Z G)\,s(z - Zn,k)} .
n k=1

= lim278~! f\rn‘1 i Jo(|lz = f(k/n)|r) dr fquo(ru) du
n 0 k=1 0

= 278! fo}‘rdr(j(;lJo(lz —f(8)|r) da)/:wo(m) du

=278 ! fM(z)duz([O, t])fArJO(tr) dr fquo(ru) du.
m(z) 0 0
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Now apply the Hankel inversion theorem (Section 1g) to the indicator function
I
[0,8]

k=1

§-0" Ao n

. M|
= lim 278! (M
80" m(z)

M(Z)I[o, s1(2) dp,([0, t])

du,([0,t]) j(;oorJO(tr) dr j:uJO(ru) du

lim 278!
80" m(2)
_ /o, ifze L,
"\ 27g,(0%), ifzelL.

Therefore, we might seek A, = oo and §, — 0 such that the triple limit in the
previous equation can be replaced by a single one,

. e 0, ifz¢ L,
(2.4) lim E{n ! ,E'IG}‘"’S"(z - Zn,k)} - {27rgz(0+), oL

Because [ is continuously differentiable,
-1
i 0*) > "(a > 0.
ming,(0) (0‘2,?;‘1” (0))
Furthermore, the real random variable
n
(2'5) Xn(z) En_l Z G)\,,,S,,(Z_Zn,k)’ Z$C’
k=1

as sort of an average of those n data in (0.1), is independent of the labelling of
them and thus, depends only on the random set (0.2). Since (2.4) implies that in
some sense X, (z) “detects” the trajectory L at least when f is one-to-one and
min, _4,|f ’(8)| > 0, it is reasonable to expect that X, (z) is what we want. In
fact, a careful calculation shows:

THEOREM 1. Let f be a continuously differentiable function from [0,1] to the
complex plane C with

2. i (0 0
(26) min |£/(0)] >0,
and let the real random variable X,(z) be constructed from the unlabelled data
(0.2) via (2.5). If A, 8,, € and n are positive constants and satisfy

1 1

<

— <—<=, A8 =1,
3" () 2 o

(2.7)
lim§, = lim§:~'/n =0,

then for n large enough

(2.8) LCcE,c {z: dist(z; L) < (4WM2)2/38r(Ll"27IE)/3}’
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where M = sup, . o[max(Vu |Jy(u)|, Vu |Jy(u)|)] is positive and finite and E,, =
{z: E(X,(2)) = 87}. In particular, E, converges to the trajectory L in the
Hausdorff sense.

Let us remark that the assumption (2.6) implies that for each z € L, the
equation z = f(#) has at most a finite number of solutions in [0,1]. Then (2.4)
still holds except that now g,(0") is probably replaced by a finite sum. This
means that under (2.6), f can be treated as if it is one-to-one, as we did in the
heuristic argument.

Theorem 1 can be strengthened to strong consistency by a technique similar
to that used in Geman and Hwang (1982).

Denote the random set {z: X, (z) = 267} by T,

THEOREM 2. Assume that in addition to (2.6) and (2.7), there exist positive
constants a,, d,, with
(2.9) lima,S," =0, limd,= o,
Y d? [aﬁo“exp( —0283(“1))] -1
(2.10) n

X [1 - (1152772)_1af,o4exp(—0283(5‘1))] " < o0,

Then the random set T, satisfies
(2.11) P(L cT,c {z: dist(z; L) < (477M2)2/38,(,1‘2"5)/3}, forn large) =1,
where M is defined in Theorem 1. In particular, with probability one the random
set T, converges to the trajectory L in the Hausdorff sense.

(2.6) in the previous two theorems can be dropped. By Sard’s theorem [Spivak
(1965) and Sternberg (1983)] f({6 € [0,1]: f’(6#) = 0}) is a set of measure 0 on
the trajectory L. This is the same as to say that for almost all z € L,

(2.12) |£(8)] >0,

for each 6 € [0,1] satisfying f(6) = z. In view of Theorems 1 and 2 we would
expect to recover in the proper sense almost all z € L, and then, the whole L.
Thus we have:

THEOREM 3. Assume that f is a continuously differentiable function from
[0,1] to the complex plane C, and assume (2.7), (2.9) and (2.10) hold. Then

(2.13) limE, = L in the Hausdorff sense.

Furthermore, the random set T, converges with probability one to the trajectory
L in the Hausdorff sense. '

Note that the first set-inclusion formula in both (2.8) and (2.11) may no longer
be true without assuming (2.6).
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Now it is easy to construct examples fulfilling the requirements of Theorem 2.
For instance, let a, B, 1, ¢ and & be positive constants independent of f
satisfying 1 <& <1/(2n) < 3,0 < 2a(l — &) <1, and ane < B. Define

5, =(clogn)™®, A,=8"! d,=n and a,= (logn) *.
Since log(l — x) < —x for x > 0, and 2a(1 —¢) < 1,
[1 - (1152772)_1a,2,o4exp(—0283(“1))]n

< exp[ —n(115272) "o *(log n)_2Bexp( —a%(clog n)2°‘(l_E))]

< exp[ —(1152172)_104exp[logn — 2B1log(log n) — o*(clog n)2"(l_5)”

< exp[ —(115272) " 'o%exp|(log n)/2]]

= exp[—(1152vr2)_104n1/2]
holds for n large. Then (2.7), (2.9) and (2.10) can be checked easily. In particular,
wemay let e=A+ 3, =1+ A, B=1and a =1/(4n¢) with A a very small
positive number. The power a(1 — 21¢)/3 of (log n)~! in (2.11) is then roughly

—A + 5. By choosing ¢ < A we have the following consequence of Theorems 1
and 2:

COROLLARY 4. Assume that f satisfies the assumptions in Theorem 1. Let c;,
¢, and ¢’ be positive constants with ¢’ < ;5. Then

lim {z: E(X,(2)) = c5(log n)_1/4} = L in the Hausdorff sense
and the random set {z: X,(z) > 2c4(log n)~'/*}, denote it by T,, satisfies
P(L cT c {z: dist(z; L) < c¢,(log n)el_l/lz}, fornlarge) =1.

n
In particular, T, converges with probability one to the trajectory L in the
Hausdorff sense.

Theorems 1, 2 and 3 will be proved in Sections 3, 4 and 5, respectively. In
Section 6 we shall discuss briefly some questions and possible extensions. There

we also give some remarks on the differences between these three theorems.

3. Proof of Theorem 1. It is obvious that we only have to prove (2.8). To
this end the following two lemmas will be needed.

LEmMMA 3.1. If 0 <28 <s, then forall A >0
‘2#8‘1 fArJO(sr)drfBuJO(ru) du‘ < 4TM %'/ %32
0 0

where M = sup, . ;max(Vu |J,(u)], Vu |J(u)|) is positive and finite.
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LEMMA 3.2. Under (2.6) and (2.7), there exists a constant T =T(f)> 0
such that when n is large enough

E(X,(2)) = T8;
holds uniformly for z € L.

From the derivation of (2.4) it is clear that the right-hand side of (2.3) should
be estimated first. Lemma 3.1, which serves this purpose, implies

(3.1) |E(X,(2))| < 4nM25)/2%5~3/2,

provided that s = dist(2; L) > 28,. Now we may verify the second half of (2.8)
as follows: For each z € E, either dist(z; L) < 28,, which is smaller than
(4mM*?)?/38{ ~219/3 ag n — oo, or else dist(z; L) > 2§,. In the latter case (3.1) is
applicable, and solving for s we see that s = dist(z; L) < (47M?)2/36(1~21)/3,
Hence E, C {z: dist(z; L) < (47M?)2/3§{1~2ne)/3},

Because 7 > 1, the other half of (2.8) is true in view of Lemma 3.2. This
completes the proof of (2.8).

What remains are the proofs of the previous two lemmas.

ProoF oF LEMMA 3.1. The finiteness of M is already proved in Section 1f.
By using (1.2)

278 'u(s? — u?) "'[d [srdy(sr)do(ur) — Jy(sr)urd,(ur)] /dr]
= 278 turdy(sr)dJy(ur).
Integrating the last equality over the region 0 < r < A, 0 < u < 8, we obtain
2w8‘1£ArJ0(sr) dr LquO(ru) du
(3.2) = [2178‘1s)\J1(s?\)'[)8(s2 - u?) 'udy(Au) du]
- [2778_1}\J0(s)\)‘/(;8(s2 — u?) " 'wr,(Au) du]
=1 - I,
By the definition of M
L] < 2778‘131/2M/:(32 - u?) WM du

= 2178‘1M2f8/s(1 — u?) w2 du
0
< 2778‘1M2§f8/su1/2 du
0

< 2aM?§'/253/2,
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Similarly,
|L,| < 2178"13‘1/2Mf8(s2 —u?) " 'u¥2Mdu
0

= 2178‘1M2f8/s(1 - u?) W du
0

D
< 2178‘1M2§/ 4/ dy
0

< 278" 'M%(8/s)>?
< 278 'M*(8/s)*?

— 2aM?81/ %55/,
Thus |I, — I,| < 47M?§'/2s~%% and the proof is complete. O

Proor or LEMMA 3.2. According to the remark after the statement of
Theorem 1, we may assume for brevity that f is one-to-one. Furthermore, we
assume that f(0) = f(1), i.e., L is a closed curve, to avoid discussing separately
the two endpoints and the other points of L.

Under the assumptions of Theorem 1, there are constants A, = Ay (f) and
A, =A/(f) such that 0 <2A, < |f"(0)| < A, for all § €[0,1]. Then for all
6,,0, in [0,1]

(3.3) | £(6,) — £(6)] < Ayl6, — 6y,
and there is a positive constant 7 = 7( f ) such that
(3.4) | £(6,) — £(6,)| = Ao|6, — 6,(mod 1)|

holds for all 8,, 6, € [0,1] with |f(6,) — f(8,)| < 7.
Fix 6§ €[0,1] and z = f(0). We estimate E(X,(z)) by first dividing the
summation in (2.5) into two parts,

E(X,(2) = 3 nE(Gys(2 ~ Z, 1))

k=1
(3.5) = X + X
k k
sp<c8L”¢ sp>c 8¢
=a,+B,,

where s, = |2 — f(k/n)| and ¢, < 1is a constant to be determined later.
We claim that if n is large, then

(3.6) a,>¢8:/(2A,) uniformly in 6.

By using the results in Sections 1d and le, it is clear from (2.7) and the first
equation of (2.3) that each term in a,, is no less than 27n~YMdJ(1)J,(8,r) dr >
782¢71/(8n). If |0 — k/n| < ¢,817¢/A,, then (3.3) implies |z — f(k/n)| < ¢,8!
The number of terms in a,, is roughly 2nc,8!7¢/A,, which, under the condition
lim 8¢~ !/n = 0, is a big number when n is large. Now (3.6) can be easily checked.
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As to B,, we represent each term by the second equation of (2.3) and
decompose it in the same way as we did in (3.2). Since s*(s? — u?)"1=1+
u*(s? — u?)~1, we can write I, in (3.2) as

I = 27r8‘ls‘1)\Jl(s)\)[/8m]0(7\u) du + fs(s2 — u?) Wi (Au) du]
0 0
=1+ 1,.

Then, with A, §, s and I; replaced by A, 8,, s, and I, ,, respectively,

Bn=n_1{ > I, + % I, + %‘. (14,k_I2,k)}

k

(37) 8l t<s,<cyBl e cdh <, by <s
= :Bn,l + :Bn,2 + :Bn,3’
where the constant ¢, will be determined later. We claim that when n is large
(3.8) Bnal < wler® + Me; /2] 81,
(3.9) 1By, ol < mM7=3/28(1+9)/2 4 8aMA 5%/ %A} %, /8¢,
and with z = f(0) € L,
— C.

(3.10) lim B8, 8, = 2| f"(8)|”" / " (t)/tdt

G

holds uniformly with respect to 8 € [0, 1].
Assume temporarily that (3.8)—(3.10) hold. By (1.6) and (3.10)

:Bn,l 2 (WAI)_ISS’
if n is large, c, is small and c, > 27. Now fix ¢, sufficiently small. If c, is chosen
such that ¢, > max(2x,[327M(A,/A,)*?/c,]1?), then by (3.6), (3.8) and (3.9)

|an,2 + Bn,3| < 2_1an’ asn — oo,

because 37! < ¢ < 1 under (2.7). In view of (3.5)-(3.7) we obtain Lemma 3.2 with
I =c,(44)) ' + (7A))7}, i.e,, depending on f.

It remains to check (3.8)—(3.10). Since (Sections 1c and 1d) |Jy(u)| < 1 for u
real and 0 < Ji(¥) < u/2 on [0,1], (3.8) can be easily verified via the two
estimates

B
L, 4 < 2787\, / 255 2u, /2 du
0
—9-1 322 .—2'
= 2 Wﬁn}\nsk
— _.\—2
< 271781 *2¢(c,817¢)
—2Q84¢e—1
<me %6y,
8’! —_
I, fl < 2718,,‘13,:3/2)\1,{2Mf 2s; 2uldu
0
< wMec; /2841,

provided that A8, = 8¢ < 1 and ¢,8} ¢ > 28, which are true as n — o0.
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To verify (3.9) we have, similarly,
5,
I3 4| <278, s, 3/2}\1r{2Mf s du
0
= 7TM8'(ll +E)/2s; 3/2'

Hence, for those terms in g, , with s, > 7

nt ) I,

1-¢
0, " <sy
T<S8

(3.11) < TMr=3/250+0/2,

If s, = |z — f(k/n)| = |f(6) — f(k/n)| < 7, then by (3.3) and (3.4)
Ayl0 — k/n| <s, <A,0— k/n|.

By using the integral test and noting lim8:~'/n = 0,

n~t Y I,

1-e
Codp TE<S,<T

< mMB, " 2{ L n A8~ k) 2}
(3.12) c®l T < A0 k/n|
< TMAG V8 [ 92 dt
" Czs,ll_EAl-l —n-1
< 4mMA[; ¥/ 251 +0/2 [025,1_‘/(2A1)] -1/2
< 8mMA, VA %c; /78,

Note that the factor 2 in the second inequality is due to the fact that we have to
count k on both sides of 6. Then (3.9) follows from (3.11) and (3.12).
As to (3.10) let us define the measure M, as

M,(t) = #{k:1<k<n,s\,<t)/(ns).
Since A0, ¢ =1,

By = 28X, [“udy(\ ) du[ > J1<skx,,>/<skx,,)]
0

1—e 1-¢
6, f<sp<cob,

_ [2778;_2‘/;8"&]0()\"“) du][/:Jl(t)/thn(t)]'

Because s, satisfies s,A,, < ¢ in the definition of M, (¢) and §, = 0, s, < t/A, =
t8,7¢ = 0. By (3.4) |0 — k/n| - 0 and s, = |f(0) — f(k/n)| = |f ()10 — k/n].
By a simple counting M,(t) = 2|f’(6)| 'tnX,'/(né,~¢) = 2|f /(8)| "¢, which
implies that M, converges weakly to 2|f’(8)| 'm, m = Lebesgue measure.
Therefore, :

lim [“J(1)/edM,(1) = 21 £/(0)|" [(e) et

Then (3.10) can be proved easily by noting that A8, = 8¢ - 0 and J(0) = 1.
]
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4. Proof of Theorem 2. It is enough to prove (2.11). To this end, let us
define

Y,(z) = X,(2) — E(X,(2)),
={z:]2| <d,}, A,={z€R,|Y(2)|= a,}.

We shall show that with probability one A, = ¢ eventually. Once this is done,
X, (2) would be close to its expectation E(X,(z)) due to lim a, = 0. Then (2.11)
can be checked in view of (2.8) and (2.9).
First, we need some estimates on G, , and its first-order derivatives. Let
z = x + iy. By using (2.7) and (2.1) it can be shown that when n is so large that
8, <1, then for all z € C,
)<k

(4.1) max(

where k, = (7/0%)exp(a282¢~1 /2). For example,

|0G,,5(2)/0x| = \ [, (Re&)lexp(icz, &) + o%iel/2)] S(,1ED)/ 1 dg\

= '{ﬂsxnlgl[exp(o2|£|2/2)]/(2|§|) dt,

because 8¢ < 8,A, =8 <1 implies 0 < Jy(8,/¢|) < 5,/¢|/2 < ; (see Section
1d). Now changing the integral to polar coordinates,

|3G>\n,a,,(2)/3x| < wfs’i_lr [exp(0?r?/2)] dr
0

= (77/02)[exp(o283(e'1)/2)]
—k,.

Note that the stronger inequality 0 < J,(8,/£|) < 8,/¢|/2 is used for estimating
|G>\,,, a,,(2)|-

Cover R, by b, closed balls B,, B,,..., B, with common radius r, and their
centers 2, 2,,..., 2, at the lattice pomt of the form (pr,,qr,), where p and ¢q
are integers. Remember that lim d,= oo and we will choose r, such that
lim r, = 0. By considering the mrcumscnbed square we see that

(4.2) b, < (2d,/r,)".
If r, is defined by
(4.3) a,=8rk,,

then lim r, = 0, because lim a,, = lim§, = 0 implies lim &, = co.
WeclalmthatforeachzeB—{z dist(z, z;) < }1<J<b,

(4.4) = Y,(2) - Y,(2)| < a,/2.
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Let w = Re z; + i(Im 2z). By using (4.1) and the mean value theorem for one
real variable,

|G>\m3n(z - Zn,k) - Gxn,s,,(zj - Zn,k)l
£|G}\n,8n(z ~Z, 1) — Gxn,sn(w - Zn,k)l

+|G>\,,,.s,,(w ~Z, )~ G}\,,,S,,(zj - Zn,k)|
<2r,k,=a,/4.
Hence, by taking the expectation,

‘E(Gxn,s,,(z - Zn,k)) - E(Gxn,s,,(zj - Zn,k))‘ <a,/4

and (4.4) follows from these two inequalities and (2.5).
Since X,(z) real implies Y, (z2) is real, by (4.4)
P(A, + ¢) = P(there exists z € R, such that |Y,(2)| > a,,)
b

n

)y P(sgijYn(z)l > an)

Jj=1
(4.5) o

IA

IA

P(IYn(zj)I > an/2)

Jj=1

[P(Y,(2) = a,/2) + P(Y,(2;) < —a,/2)].

We follow Geman and Hwang (1982) to estimate the right-hand side of (4.5).
Let

o (8, 2) = E(exp(t[mesn(z =Z, )~ E(Gx,,,s,,(z - Zn,k)) - an/2]))
be the moment generating function of
[Gx,,,s,,(z - Zn,k) - E(Gx,,,s,,(z - Zn,k)) - an/2]'
By Chebyshev’s inequality, for each # > 0 and z € C,
P(Y,(2) = a,/2) = P(exp[nt(Y,(2) ~ a,/2)] = 1)
ws) < E(explnt(%,(2) - a,/2)])

n
= 1—[ cn,k(t1 2).
k=1

It is clear that c, ,(0,z) = 1 and ¢}, 40, z) = —a, /2. We claim that when n is
large,

(4.7) coi(t,2) <1 —a,t/4
holds for 0 < ¢ < a,, /(288%2) and z € C.



ESTIMATING TRAJECTORIES 565

By (4.1) and (4.3),
cr it 2) < (2k, + a,/2) exp(t(2k, — a,/2))
< (2k, + 4r,k,) exp(2tk,).
For 0 < t < a,/(288k2), (4.3) implies lim r, = 0 and then
lirrlnexp(2tkn) < lirttnexp(an/(l44kn)) = lirllnexp(r,,/16) =1.

Thus for n large such that r, < 1,

cn it 2) = ¢4 4(0,2) + [e u(s, 2) ds
0

IA

—(a,/2) + 2(6k,)%t
—(a,/2) + 12k2a,/(288k2) = —a,/4,

IA

and then
e 1(8,2) = ¢, 4(0,2) + ftc,’l,k(s, z)ds
0

<1l-a,t/4.

This proves (4.7).
Since (4.6) holds for all ¢ > 0 we may take ¢t = a,, /(288k2) and use (4.7) to get
forall zeC

P(Y,(2) > a,/2) < [1 - a2/(1152k2)]" = m,,,

where m,, = [1 — (115272) " la20 ‘exp(— 025X~ D))"
It is clear from the previous proof that the same bound holds for P(Y,(2z) <
—a, /2). Combine together with (4.5), (4.2), (4.3) and (2.10)

YP(A,+¢) < }.2b,m,
< Y.2(2d,/r,)’'m,

= 8%2%) d? [a,zlo“exp( - 0283(“1))] _1mn
< o0.
Thus, by the Borel-Cantelli lemma,
P(A,# ¢i0.)=0.
Or, equivalently,
P(for n large |Y,(2)| < a,, holds forall |z| < d,,) = 1.

Note that by definition Y,(2) = X,(2) — E(X,(2)).

Under (2.9) a, = 0(8°) and R, eventually contains the trajectory L. By
using the triangular inequality (2.11) follows immediately from (2.8). This com-
pletes the proof. O
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5. Proof of Theorem 3. Since (2.6) is not used in the proof of Lemma 3.1
the second set-inclusion formula

(5.1) E, c {z: dist(z; L) < (477M2)2/38'(11—2ne)/3},

in (2.8) is true as in Theorem 1. In order to prove (2.13) it is then enough to show
that L becomes “contained” in E,,.

If L is degenerate to a point, say z,, the computation leading to (3.6) shows
that for n large

E(X,(z,)) = 782¢7' /8 > 80 /8 > 8.
Thus L C E, in this case. Otherwise, Sard’s theorem is applicable and (2.12)
holds. Then

(5.2) lin('; D, = L in the Hausdorff sense,
vi

where D, = {z € L: |f'(8)| > » for each 8 € f~(2)}.
Since |f’(8)| > v for each 8 € f~}(D,), it can be seen from the proof of
Theorem 1 that for fixed » > 0,

(5.3) D,={(i"X(D,)) cE,
holds for all n larger than some constant which might depend on ». Now (2.13)
follows from (5.1), (5.2), (5.3) and the fact that D, c L.

Once again (2.13) can be improved to probability one convergence by the
technique in Geman and Hwang (1982). The proof is the same as that of
Theorem 2 and is thus omitted. O

6. Remarks. (i) Random observation points. From the proof of Theorems
1 and 2 it is clear that similar results hold if the observation points are chosen
randomly. More precisely, we may replace the random set (0.2) by the random
set
{f(u, ) te, 11 <k<n},

where e, , are as before, u, , arei.i.d. with a positive density p(6) on [0, 1], and
{e, r}>{u,, 1} are independent. Note that p(6) need not to be known.

(i) One-dimensional analogue. Problem (0.2) has the following one-dimen-
sional analogue. Let f be a nondecreasing, right continuous function on (0, 1).
Suppose that at time n we are given the random set

{f(k/n) + e, ,:1 <k<n},
where e, , areiid. and N(0,0?). We do not know how to restore f by using the

empirical distribution approach. But the Hankel transform applies again. It has

been shown in Chow (1980) that with probability one its distribution function
F(¢t) =m{6 € (0,1): f(0) < ¢}

can be found, where m is Lebesgue measure. This in turn determines f.

(iii) Higher-dimensional case. Similar to (2.4) it can be shown formally that
Theorem 3 should be true if f is a continuously differentiable function from
[0,1]* to R™ with k < m. The case k = 2 has been treated. Since f([0,1]%) can
be found with probability one, so can some related quantities, like arc length (for
k = 1) or area (for k£ = 2). These will appear in a forthcoming paper.
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(iv) Questions. Throughout the paper we assumed that ¢% is a known
constant. It is clear from (2.2) and (2.5) that our detector function X,(z) depends
critically on o. This is an unpleasant assumption on the random error e, . Can
it be removed? Besides X,(z) is very complicated. Does there exist a simple one?
In view of (2.4) our results, namely (2.8) and (2.11), are not so satisfactory. Can
one find A, and §, such that (2.4) is reached?
(v) A comment on Theorems 1, 2 and 3. Under (2.6) it is clear from (2.8)
that L C liminf E, C limsup E,, C L. Hence

(6.1) lim E, = L in the point-set sense

as well as in the Hausdorff sense.
In case that (2.6) is not true, we conclude from (5.1) and (5.3) that

(6.2) U D, c liminf E, C limsupE, C L.
»>0

Since L — U, . ,D,={z< L: f’(6) =0 for some 8 € f~%(2)}, (6.1) may no
longer be valid in the present case. Because L is a compact subset in C, Sard’s
theorem and (6.2) guarantee that L can be recovered after knowing all E,,.

Similar remarks hold for T,.

(vi) Epilogue. The case that f is a conformal mapping on the closed unit
disk was treated in Chow (1980). There the data set (0.2) was replaced by the
random set

{ f(exp(2mik/n)) + e, ,:1 <k < n}.

Being conformal implies that f(exp(i2#0)), as a function of 6 € [0,1], is
one-to-one and satisfies (2.6). Therefore, the boundary f({z: |z| = 1}) can be
found. Then one version of f can be constructed by using the orthogonal
polynomials on the boundary f({z: |z| = 1}) [see Smirnov and Lebedev (1968)].
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