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LOCAL ASYMPTOTICS FOR LINEAR RANK STATISTICS
WITH ESTIMATED SCORE FUNCTIONS

BY GEORG NEUHAUS

University of Hamburg

Modified versions of linear rank statistics Sy (@) with score function ¢
are studied for the two-sample testing problem of randomness. Depending on
the unknown underlying alternatives, some score function ¢ = b is known to
be approximately optimal. Behnen, Neuhaus and Ruymgaart (1983) proposed
estimating b by some estimator & ~ obtained by the kernel method based on
ranks and used the quadratic rank statistic Sy ( SN) for testing the hypothesis
of randomness H,, versus the omnibus alternative. In the present paper the
behavior of the corresponding test as well as that of a variant adapted to
stochastically larger alternatives is studied by means of local asymptotic
results with bandwidth of the kernel fixed. It turns out that the present
asymptotics fit finite sample Monte Carlo results much better than previous
results do and is able to explain to a large extent the power behavior of the
proposed tests. Critical values as well as recommendations for the use of the
tests in practice are included.

1. Introduction and statistical background. In the papers of Behnen and
Neuhaus (1983) (BN), Behnen, Neuhaus and Ruymgaart (1983) (BNR) and
Behnen and Huskova (1984) (BH), some attempts have been made to extend the
range of sensitivity of linear rank tests to larger classes of alternatives. The
present paper concludes these series to a certain extent and so it seems worthwhile
to summarize the statistical background and some new aspects of the philosophy
behind all these papers. As in the above three papers, for the sake of brevity let
us concentrate on the two-sample problem for testing differences in location,
although the two-sample problem for testing differences in dispersion, the
one-sample symmetry problem and the bivariate independence problem and
some other testing problems have been treated in some not yet published
manuscripts by Behnen and the author, too.

Let X,,...,X,,,Y,...,Y, be independent real random variables, the X’s
being distributed according to a continuous distribution function (df) F, shortly
X, ~ F, Vi, and, similarly, Y; ~ G, V. Writing Xnij=Y, j=1,...,n,let R,
be the rank of X; in the pooled sample (X,,..., Xy), N=m + n.

Under the (nuil) hypothesis of randomness H,,

(1.1) H,: F = G,

the rank vector R = (R,,..., Ry) is uniformly distributed on the N! permuta-
tions of (1,..., N), independently of F' = G, i.e., each test based on ranks is
distribution free under H,,. Various alternatives of different generality have been
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492 G. NEUHAUS

considered in the past, e.g., the omnibus alternative

(1.2) H:. F+ G,

the stochastically larger alternative

(1.3) H:F<G, F#+aG,

and the classical shift alternative

(1.4) H\(F,): (F,G) € H,, F,G e {Fy(--t): te R},

where F, is some known continuous df.
Most linear rank statistics for testing H, versus one of these alternatives may
be written as

N
(1.5) Sy(b) = Z cnibn(R;),

i=1
where b is some score function from Ly0,1) = {f: (0,1) > R: [}f2d\ < o0},
by(i) = Nfib(u)((i — 1)/N < u < i/N)X(du),1 < i < N, and

oo = (ﬂ’_‘)vz{ ml, asl<i<m,
Ni N -n7!, am+1<i<N.

For the classical shift problem H, versus H,(F;,), where F;, has an absolutely

continuous density f, with derivative f;, it is well known that the test rejecting

for large values of Sy(9(:, f,)) with

(17) o(u 1) =~
0
is optimal in a local asymptotic sense, see Hajek and Sidak (1967). The drawback
of this optimality result is that it is true only for H,(F;,). For other shift
alternatives H (F)) the asymptotic power of this test depends on the size of
c( for f) = {@C, fo) (5 FUl@C, fllllo(-, filD™Y, ie., on the cosine of the
angle between ¢(-, f,) and ¢(-, f,) being maximal (optimal) for F, = F, but may
be very small for F # F,. Here ( - ,- ) denotes the scalar product in L,(0,1) and
|| - || the corresponding norm.

Since, in practice, the true shape of F;, usually is unknown one is forced in this
setting to make a choice of a more or less suitable F, in advance, and often the
logistic shift model is chosen for the only reason that the most simple test,
namely the Wilcoxon test, comes out. If one really could trust in the shift
assumptions one seemingly should search for data based selection rules of an
adequate Fy, resp. ¢(-, f,). In principle, this problem has been solved by Hajek
and Sidak (1967), who construct a consistent sequence of estimators {pn] for
o(-, f,) based on the order statistics of X,,..., X). Another method for a
data-based selection rule of a suitable score function ¢(-, f,) under shift assump-
tion has been proposed by Randles and Hogg (1973). Starting from a set of three
score functions (-, f;), i = 1,2, 3, corresponding to light tails, medium tails and
heavy tails, respectively, these authors choose one of the three score functions by
a rule based on the order statistics of the pooled sample X,..., X,.

(1.6)

(FyY(uw)), O<u<1,
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The common feature of the approach of Hajek and Sidak as well as that of
Randles and Hogg is that they fully exploit the assumption of shift alternatives.
Only under this ideal model is the score function ¢(-, f,) optimal and it is only
the shift assumption that allows one to use order statistics for estimating
(P( ) f 0 )'

More realistic than shift alternatives are stochastically larger alternatives H;:
F < G, F # G. Since F < G is equivalent to F(x) = G(x — D(x)), Vx, for some
shift function D: R — [0, c0), H, may be interpreted as shift alternatives, where
the size of the shift may vary for different parts of the distribution. In such a
general situation, the score function ¢(-, f,) loses its meaning and since H,, and
H, are invariant under bijective, increasing transformations of the observations,
the order statistics will contain no useful information for deciding between H,
and H,.

For a better understanding of the structure of H? and H,, we will replace the
parameter (F,G) by an equivalent one. For that purpose write H = nF +
(1 — ny)G with n, = m/N, see Behnen and Neuhaus (1983). Then the df of
H(X,)is FoH ' for1<i<m,resp. GoH ! for m+ 1 <i < N. The corre-
sponding distributions are dominated by the Lebesgue measure A on (0,1) with
f=dFeH '/d\ and §=dG o H '/d\. Since nyf +(1 — ny)g = 1 the score
function b = f — g satisfies
(1.8) BELO(O1)={feL(01)'f1fd>\=O} ——A—’<B<ﬁ

' e 2 ’ n= T om’

We could use the well-defined pair (b, H) as a new parameter instead of (F, G),
since (F, G) can be reconstructed from (b, H) by the equalities

dF - aGg -
(1.9) 'C—Z;_I—=1+(1—T]N)b°H, EE=1_7’NbOH'

In fact, for discussing local asymptotic results, it is more convenient to replace
b by its rescaled version b = (mn/N)"/?b. Therefore, we will use (b, H) as our
new parameter. Whereas H is a nuisance parameter, the function b contains all
information on the belonging of (F,G) to H, and H,. This follows from the
equivalences

F<Ge B(t) = ftbdk <0, vte(0,1),
0

1.10)
( F=Ge b=0,

which themselves are entailed by
(1.11) (mn/N)/*F - G)o H"\(t) = fotbd)\ = B(t), Vte(0,1).
Writing % ¢ = {F: F continuous df on R} and

My = {b € LY0,1): —=(Nm/n)"* < b < (Nn/m)"*},

the new parameter (b, H) can take on each element in My X % ¢ for fixed
sample numbers m, n. Here and below we always assume that m = m(N) and
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n = n(N). Adding an index N we may write Hyy: b =0, H;: b # 0, [(bdA <0
and HY: b # 0.

Similarly, as in the shift case for every b € L)(0,1), b # 0, the sequence of
rank tests {¢%} with

(1.12) ¥ = 1(Sy(d) = @71 — a)1b]),

where @ is the standard normal df, 0 < a < 1, is optimal in a local asymptotic
sense. More exactly, define for each sequence {Hy} C % ¢ local sequences

((Fy, Gw)) by
Hy
Fy=["iyd\,  fy=1+ cyby,
0

(1.13) -
Gy = _/(; NgN dA, &v =1+ cynby,

with by € My, VN, and by — b = 0 in L,(0,1). Let Q,’:,N denote the joint dis-
tribution of X,,..., Xy with X; ~ Fyasl<i<m, X;~Gyasm+1<i<N.
Then the sequence of linear rank tests {y%} is asymptotically optimal at level
a for testing H,, versus {Q2~}. Seemingly, here we are in a similar situation as in
the shift case: For every dzrectzon b e LY0,1), b+ 0, the corresponding se-
quence {y%) is asymptotically optimal, but only for its “own” alternatives
{Q;‘\,N}. For other directions & # b, the limiting power depends on the size of
c(h,b) = (h, b)/||h| | b, i.e., on the angle between h and b. In practice, one is
confronted with the same problem as in the shift case: Since b is unknown, one
needs some rules for the choice of a suitable b. Whereas in the shift case,
estimators ¢, of ¢(-, f,) have been constructed, here in an analogous way we
will search for estimators or approximations bN, say, of the unknown score
function b, leading to (nonlinear) rank tests based on S N(b ~)- Yet the analogy is
not as complete as it appears at first sight. Whereas under the shift assumptions,
(-, fo) is a nuisance parameter, which bears no information about the question
whether H|, or some alternative holds true, the score function b contains all
information on that question. This difference has far-reaching consequences.
Whereas the nuisance score function ¢(-, f,) can be estimated consistently
resulting in an “adaptive” test, i.e., a test with the same asymptotic power as if
fo would be known in advance, a consistent estimation of b under local alterna-
tives (1.13) is, in principle, unposs1ble since {Q v} is contiguous to H,, implying
that every sequence of estimators {b,} estimating b under H, ie., b= 0, would
likewise tend to zero under {@2~} for b # 0. Therefore, under local alternatives
(1.13) one has to content oneself with estimators b, having weaker convergence
properties than consistency. In fact, we will consider estimators b ~(t) converging
under (1.13) in distribution towards a limiting distribution with (approximate)
mean b(t).

2. Approximating the score function by kernel estimators. Adopting
the notation of Section 1, we will consider data-based approximations of the
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score function

2.1 b= (™" % pomr_ge1 =B
(2.1) _(—) FT )= an

N
Since b remains invariant under bijective, strictly increasing transformations of
the observations and since the vector of ranks (R, ..., R, ) is maximal invariant
under the group of such transformations the estimators will be based on
(Rl,... Ry). If Fy, resp. Gy, denotes the empirical df of Xj,..., X, resp.

Y,..., Y, and H =1 NF +1 -9 N)G N the empirical df of the pooled sample

‘9 n?

X,,..., Xy, a natural estimator of B is B
mn\1/2 A N
(2.2) By(t) = ( ) (Fy-Gy)eHy'(t), O<t<l.

For notational reasons it will be more convenient to consider the linearized
version Wy, of By, i.e,
W7 i B i
N N - PN N ’

i=0,1,..., N, Wy linear in all intervals [(i — 1) /N, i/N].

(2.3)

A preliminary “estimator” of b is a version by, of the A-a.s. existing derivative of
Wyt

_ R L (i-1 i—1 i .
(24) bN(t)=N(BN(N)—BN( N )), for N <t< N,lszsN.

In order to handle the one-sided testing problem H, versus H,, we need the
projection W9 = Wy, A 0 of W), onto the cone of nonpositive functions on [0,1].

Then b3 = dWN /dt denotes a version of the A\-a.s. existing derivative of Wy.
Using Wy, and its derivative b, the linear rank statistic Sy(b) in (1.5)
becomes a simple scalar product

(2.5) Su(B) = % exbu(R,) = [[bdWy = (b, By).
i=1
If by is an estimator of b we will use Sy(by) = (by, by) as a new test statistic.
2.1. Definition of the test statistics and finite sample results. In BNR kernel

estimators by of b are defined in the following way. Let K: R — R be a kernel
with

(26) K(x)=K(-x), Vre€R,K(x)=0aslx|>1land [ KdA=1.
-1

Usually K will be nonnegative, i.e.,, a density on R. But, sometimes it will be
convenient to admit also negative values for K, see Example 2.3 below. K is the
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basis for defining convolution kernels K (-, ) by

I e R G R G

0<s,t<1,

for some bandwidth a € (0,1]. Usually a convolution kernel would be defined as
(1/a)K(s — t/a); the first and third term in the curled brackets are included for
compensating “disappearing” mass of K near the boundary point s = 0, resp.
s = 1. Under the additional assumption

(2.8) 0 > fl K2d\ = o2, say,
-1
K (-, ) is square integrable on [0,1] w.r.t. A ® A; hence
1 )
(2.9) Hg = [8E(L M), g€ Ly0,1),

defines a linear operator : L,(0,1) = L,(0,1) of the Hilbert—Schmidt type.
According to the philosophy of kernel estimators, b, estimates b and the
resulting test statistic for testing H,: b = 0 versus the omnibus alternative
H?: b # 0 becomes

Sw(H,by) = (A.by, by = [ ' [ 'K o(s, £)By(s) by (£)A(ds)A(dt)

(2.10) = flfOlKa(S, t) Wy (ds) Wy(dt)

=)

I
™M=
™M=

cNichaN(Rw Rj)’

]
—

1

i=1j

with
@11) ay(i, ) =N*["" [N K ()dNdX,  1<i,js<N.
(i-1)/N¥(j-1)/N

In fact, in BNR a slightly altered version was used with a (i, j) replaced by the
approximating quantities (if K is smooth)

i—-1/2 j—-1/2
2.12 K , ;
Similarly, for testing H,: b = 0 versus the stochastically larger alternative

H;: b+#0, [(bd\ <0, let us replace by by b% (satisfying [;b% dA = W2 < 0 by
construction):

), 1<i,j<N.

SN(‘){bRI) = b » by)

8

zo

a

(2.13)

I
M=z
Mz

cNicha?V(Ri’ Rj)’

J

~.
I

-
I

it
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with the random quantities
(2.14) a%(i, j) = N?/‘/” K (s, )1(Wy(s) < 0)A(ds)A(dt).
(=1/N(j-1/N

One may expect the test statistic (2.13) to be more specific to H, than the
omnibus statistic Sy(¢,by). Again for computational reasons a(i, j) may be
replaced by

(2.15) K,,(i_;/z,j_;ﬂ)a]v(i),
with
(2.16) 8y(i) = N[ 1(Wy(s) < 0)A(ds).

(@-1)/N
Apparently, 0 < 85 (i) < 1 with 8,(i) = 1if Wy((i — 1)/N) < 0, Wy(i/N) < 0
and 8,(i) = 0 if Wy((i — 1)/N) > 0 and Wy(i/N) > 0. 8 is a “cutting rule”
taking care of the property [;bdA < 0. We will get a better understandlng of the

performance of (X, bN, bN> resp. (X, bN, bN> by computing the spectral repre-
sentation of .

LEMMA 2.1. Let ¢, € LY0,1) be given by
(2.17) Y (t) = V2 cos wkt, 0<t<l,k=x>1,
and write

(2.18) A, =Aa)= /_IIK(t)cos(wxat)}\(dt), k>1,0<a<l.
Then
(2.19) X,b=(b,1) + i MY, BDY,, Vb e Ly0,1),
k=1
where in (2.19) the infinite series converges in L,(0,1).

Proor. Since 1, ¢, ¢, ... form a complete orthonormal basis in L,(0,1) and
because of )£, 1 = 1, see (2.9), (2.7) and (2.6), we only have to show Xy, = A ¢,
Vk > 1. With A = 7k a straightforward calculation yields

(2.20) flKa(s, t)V2 cos At M(dt) = V2 cos Asf_1 K(x)cos Aax A(dx). O

The functions 1, {, ¥,,... are the eigenfunctions of X, while 1, A}, A,,...
are the corresponding eigenvalues. The remarkable feature is that for all kernels
K the set of eigenfunctions remains the same. Only the sequence {A, (a)} varies
for different kernels and different bandwidths. Using (2.19) we obtain the finite
sample (1) expansion

(2.21) Sn(,b,) = me,bm“’ ZA (WL, Wy )2,

k=1
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with ¢/(t) = dy,/dt and (Y., Wy) = —({,, by) (partial integration). Simi-
larly,

2
\
[Sall

zo

~
I

;1}\“(4)4" EN><‘PK’ E?\l>
(2.22)

3 ALY WL, Wy,
k=1

From Section 1 we know that the linear rank statistic (y,, by) leads to
asymptotically optimal tests for alternatives (1.13) with direction b = y,. There-
fore, the test based on (¢ by, bN> being a quadratic form in (y,, by), k > 1,
will be sensitive to all directions b in the L,(0,1)-span [{,, ¥,,...] = L3(0,1), of
course at different rates for different ¢, according to the size of the weights A,
in (2.21). Actually, in most examples only the first few eigenvalues A, will be
significantly different from zero.

In general, the eigenvalues A, may be negative, but, as we will see below, the
test based on (X, by, by) will be asymptotically unbiased if and only if all A,
are nonnegative. Therefore, we shall consider mainly kernels K with A, (a) > 0,
Vi > 1.

For a given kernel K the shape of the sequence {A (a)} is completely
determined by the choice of the bandwidth “a.” In general, a small “a” causes a
slow decrease to zero of A (a) for k = 1,2,..., whereas a big “a” entails a fast
decrease, see Table 1 and (2.18). In principle, the same arguments apply to (2.22)
though the single terms (y,, b% )(¥,, by) do not allow such a simple interpreta-
tion as for (y,, by)? in (2.21). _

Having identified the omnibus statistic Sy(¢,by) as a quadratic form in
linear rank statistics one could ask why we have made the above lengthy
development instead of starting immediately with arbitrary quadratic forms in
linear rank statistic. Beside the fact that this connection was not clear in
advance, the above considerations indicate how to adapt the omnibus test
statistic to the one-sided case H,, versus H,, which would be impossible to guess
when starting from quadratic forms directly.

Let us give some examples.

ExXAMPLE 2.2 (Cramér-von Mises statlstlcs) Consider the rather artificial

kernel
K(t) = {3 _ I—zt—l(l _ %)}m <1).

Then (2.18) yields for A = 7xa

A—-sinA 5 sin A
A 6 4

(2.23) A(a) =
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Putting a = 1 yields A, = A (1) = 1/(7k)?, Vk. Therefore,

Su(HiBy) = (B, By = 5 AU, Ty Y?
(2.24) =

[ee]
Y (2V2%sinak -, Wy)? = [|[Wyll?
=1

and, similarly,
(2.25) Sn(H:B%) = (W, W) = [WgII>.
Replacing W,,, W2 by its jump versions By, B = By A 0 leads to

. mn R 4 22 oA
(2.26) 1B = 5 [(Fy = Gy)"atly,
i.e., the omnibus Cramér—von Mises statistic, resp.

(2.27) 18312 = = [{(Fy - Gy) ") atly,

i.e., the one-sided Cramér-von Mises statistic. Thus, the Cramér-von Mises
statistics are (essentially) linear rank statistics with estimated scores, based on
the above kernel K with a very large bandwidth a = 1 corresponding to the fast
decrease of 1/(7x)? for k = oo.

If we allow the kernel to take on negative values the sequence of nonnull
eigenvalues even may become finite.

ExAMPLE 2.3 (Dirichlet kernel). Let K = K, be given by
sin(r + 1)mt
2sin(wt/2)
which is known as the Dirichlet kernel of order r. Here r~! plays the role of the

bandwidth, while the parameter “a” is fixed to @ = 1. The eigenvalues A, = A (1)
become

(2.28) K.(t) = 1(t| < 1), forr=1,2,...,

(2.29) A,=lask=1,...,r and A, =0ask>r.
If &, denotes the operator (2.9) corresponding to K, then (2.19) yields
(2.30) Hb=(b1)+ X (¥, D)%, b E Ly0,1),

k=1

which is the finite Fourier expansion of b in Ly0,1). If V=[1,¢,...,¢,]
denotes the linear subspace of L,(0,1) spanned by 1, ¢;,..., ¥,, X, issimply the
orthogonal projection on V, i.e., ), = I1,. In this case,

(2~31) ' SN(‘X;EN) = ”HVEN”Q = Z <‘Pm 77N>2’
k=1
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resp.
(2.32) Sn(H8%) = X (e DY ¥es BR)-
k=1

This example links the present method of constructing data based approxima-
tions of the score function b by kernel estimators to the following projection
method: Take a suitable cone or linear subspace in LY0,1) and use the projec-
tion I1,by = by as a data-based approximation for b, leading to (I1,,by, by) as
a test statistic. For example, for testing H, versus H, one could choose some
representative score functions b,, ..., b, from H, and put V= {£7_A;b;: A, > 0;
Vi}. This method has been studied in a not yet published manuscript of Behnen
and the author.

A less exotic kernel than the above ones is the following kernel of Parzen,
which plays an important role in time series analysis as a so-called lag window;
see, e.g., Koopmans (1974), Chapter 8. We will use this kernel in our Monte Carlo
study below and recommend it for practical applications.

EXAMPLE 2.4 (Parzen-2 kernel). Let K be the density of U = (U, + U, +
U, + U,)/4, where U, are i.i.d. with uniform distribution on (-1,1), ie.,

1 -6t + 6|t for|f <3,

(2.33) K(t) = 34201 - 14)", forl < |f] <1,
0, for |t] > 1.
Then
) sinx/4\*
(2.34) A (a) = g(7ka), with g(x) = a |

Since the characteristic function of U; is go(x) = sinx/x, 1 < J <4, (2.34)
follows from (2.18) and

. ) 4 , x
fl cos(xt)K(t) dt = fl e“K(t) dt = Ee*V = [] Ee'=/%U = gg(z).
1 1 j=1

2.2. Asymptotic distributions of the test statistics under local alternatives.
In BNR kernel estimators of d(F — G)o H !/d\ were introduced and con-
sistency results were proved under fixed alternatives with bandwidth a = ay = 0
as well as asymptotic normality of the standardized omnibus statistic Sy(¢,by).
But, it turned out in Monte Carlo simulations that these asymptotic results did
not fully explain the power properties of the test based on Sy(X,by) for finite
samples. From here the need for a better asymptotic arose. Moreover, the results
in BNR when specialized to H, degenerate to convergence towards 0. Therefore,
using another standardization BH subsequently proved asymptotic normality of
Sy(X,by) for ay — 0 under H,. Extending these results to contiguous alterna-
tives (1.13) shows the completely unsatisfactory feature that this sort of local
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theory predicts a power equal to the level a of the test, quite in contrast to the
reality. The reality is that the test shows very good power behavior in Monte
Carlo studies for the same situations, where the local theory with bandwidth
a, — 0 predicts power a. Therefore, we will keep the bandwidth “a” fixed in the
asymptotic theorems of the present paper and it will turn out that the power as
well as the critical values computed from this sort of asymptotics fit much better
the finite sample Monte Carlo results than using the asymptotics of BNR,
resp. BH. With the help of the expansion (2.21) one easily recognizes why
asymptotics with a, — 0 only poorly reflect finite sample properties: According
to (2.18) A(a) =1 for a » 0, Vk > 1. Consequently, the quadratic form

©_ A (¥., by )? takes into account more and more linear rank statistics (Yor by
for a - 0, ie., its distribution will vary markedly for decreasing a, and
increasing N, so that the asymptotic distribution has only little connection with
its finite sample counterpart. Having the expansions (2.21) and (2.22) at our
disposal, it is very easy to get the limiting distributions of S,(X¢,by) and
Sn(,b%) under local alternatives (1.13). We use the following functional limit
theorem [see Hajek and Sidak (1967), V.3.5]: Under alternatives (Fy,Gp) from
(1.13) and

m
(2.35) nN=E_)7’E(O:1) as N - oo,

one has convergence in distribution (- ) of the rank processes Wy, in the space
C = C[0,1] of continuous functions on [0,1]

(2.36) Wy =g W, + f'bdA as N - oo,

where W, is a Brownian bridge process on [0, 1].

In fact, Hajek and Sidak (1967) prove (2.36) only under H,,. Since tightness is
preserved under contiguous alternatives (1.13) [use the ¢ — § form of contiguity,
cf. Strasser (1985), Lemma 18.6] one only has to prove convergence of the
finite-dimensional distributions of W, to the appropriate limit, which can be
achieved by the Cramér—Wold device applied to the linear rank statistics B N(D),
t fixed.

THEOREM 2.5. (a) Under {(Fy,Gy)}, from (1.13) and assuming (2.35) as
well as [ for some fixed a € (0,1], A, == A (a)]

(2.37) Y Al < oo,

k=1

it follows that
[o¢]

(2-38) SN(x/aBN) = <‘)fa?)N! BN> 9 E }‘n(gx + PK)2 = Xz(a, b), say,
k=1

with i.i.d. standard normal random variables ¢, k > 1,
(2.39) b= - [UWdN, o= ($,b), k=1
0
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(b) Moreover, if even

(2.40) Y Ak < o0

k=1

holds true, then
(2.41) Sy(H,8%) »0 X >\n<%Wo + /'bdx><¢;,(Wo + f’bdx) A 0>.
k=1 0 0

PROOF. (a) Write 5,(f) =Xr_ Ay, f)? for fe C, k=1,2,...,00. For

k=1

finite £ the function s#, is continuous on (C, || - ||,,). Thus, (2.36) implies
(2.42) (W) =0 9tﬂ,e(w0 + /'bdx), Vk € N.
0

Using (2.21) we have Sy(X,by) = #(Wy) and we want to extend (2.42) to

= oc0. We begin with a look at the right-hand side of (2.38). It is a well-known
fact that for {g,: k > 1} C L,(0,1) the stochastic integrals { [og.W, d\}, ., are
centered, jointly normal with covariances

(2.43) EfOngWO dk/olg,WodA = fOlGKG,dA - fOlGK dAfOlG, d\,  k,T>1,

where G, denotes an integral of g,. Putting G, = V,, &, = ¥, one obtains that
the rv’s £,, k > 1, are indeed i.i.d. standard normal. Since — [Qy4( [¢bdA) dA =
(Y., b) = p,, it follows from the Khintchine-Kolmogorov convergence theorem
[see, e.g., Chow and Teicher (1978), Theorem 5.1] that the right-hand side of
(2.38) converges a.s. and in quadratic mean. Under H,,

EH0|‘%poo(WN) _‘}fk(WN” = EHO Z ALY, 7’1\/)2

k=k+1
=< Z IAK|EHO<‘PK’ EN>2
(2.44) Kokl |
- > |(i§{N Ny dx}Q)
N-1,5%0 “\N U da-yw'"
[o¢] 0
<2 Y MNIdE=2 X A
k=k+1 k=k+1

Now, (2.44) and Markov’s inequality yield
(245) limsup Py (|, (Wy) — #,(Wy)| = &} >0, fork > oo, Ve > 0.
N—-

Contiguity, {QII(,N} < {Q%}, implies that (2.45) holds true under (Fy, Gy), too,
see e.g., Strasser (1985), Lemma 18.6. Since (W, + [(bdA) =4 H# (W, +
[obd\) for kB — oo, Theorem 4.2 of Billingsley (1968) yields (2.42) for & = oo.
(b) In order to show (2.41) we proceed as above and define
k

HP(F) = X ANVl P )

k=1
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forfeC, fO=fA0,k=1,2,...,00.8Since #; is continuous on (C, || - ||,.) for

finite &, (2.42) holds true with ¢, replaced by 5. The infinite series in (2.41)
converges in L,(0, 1), since

E'(;{ﬂk" -xog)(m + /'bdx)'
0

0 . 9\ 1/2
(2.46) < X IMI{E(& + 0. ) IV E| W, + fObdA }
k=k+1
o0
<const. Y, |\Jk, since |y’ = m«.
k=k+1

Instead of (2.44) we get, similarly,

0
(247)  Ey |#2Wy) - #%Wy)| < const. Y N Jk, VE>1.

k=k+1

The remainder of the proof is the same as before. O

Apparently the above theorem applies to the Parzen-2 kernel (2.33) for every
a € (0,1]. Under H, the limiting distribution of Sy (¢, by) is that of ¥2 A £2,
i.e., a weighted sum of i.i.d. x? random variables. Nowadays there are standard
methods for numerical computation of such distributions as well as the distribu-
tion of X?%(a, b) under alternatives (b # 0). Table 2 (N = o) and Table 4
(N = o) are computed by the method of Davies (1980).

At times a method for numerical evaluation of the limiting distribution
of Sy(X,b}) is not available, even under H,, since the random variables
(Y1, Wy A 0), k > 1, are neither normally distributed nor independent. So we
have to be content with simulation results in this case.

REMARK 2.6. Under the assumptions of Theorem 2.5, the test statistics

NN N
(2.48) Sy=2 X cNichKa(Ri’Rj)’ R;=
i=1j=1 N
[cf. (2.12)], resp.
N N L
(2.49) SI(\)I = Z Z cNichKa(Ri’ Rj)SN(Ri)

i=1j=1

[cf. (2.15) and (2.16)], have the same limiting distributions as in (2.38), resp.
(2.41). In order to prove the limiting results, define the empirical jump rank
process Wy(¢) = LN ey (R, < t),0 < ¢ < 1. Then

(2.50) Sy = X ALY, Wy,
k=1
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resp. [with § ~(8) = 0y([Ns] + 1), [-] denoting the integer part function]

St = XA [lv ([ awn)
(2.51) -
= §1>‘n<¢;1W13><‘P;’WN>’

with W = Wy, A 0. The last equality in (2.51) follows from
1 = 1
(2.52) [WdydWy = [V dWs = —(¥i, Wi,
0 0

where the first equality in (2.52) follows from

(2.53) 8N(i){WN(%) - WN(RiI\; 1)} - Wg(%) - WA‘}(RiZ\_I 1), Vi,

which itself is a consequence of the convenient definition of §,; the second
equality in (2.52) follows from integration by parts. One notices that the only
difference between the proof of Theorem 2.5 and the present one is the use of Wy
instead of W), resp. Wy instead of Wy. Since ||Wy — Wy||,, = O(N~?) (2.42)
holds with W, replaced by Wy, for 5, as well for #, . The remainder of the
proof is essentially the same as before.

REMARK 2.7. If one is only interested in (omnibus) quadratic rank statistics

N N
(2.64) Ty=Ty(ky) = E E cNichkN(Ri’ Rj)’ R,= ——,

i=1j=1 N
with ky € U2 = {k € Ly(0,1)% k constant on all intervals [(i — 1)/N, i/N) X
[(j—=1)/N, j/N),1<1i, j< N} one can derive more general results than (2.38)
under less stringent assumptions. Let us shortly discuss these results. Assume
that for some k& € L,(0,1)?

(2.55) ky— k in L,(0,1)°

and let % and all &, satisfy

(2.56) (s, t) = k(t,s), V(s,t) € (0,1),
and

(2.57) /Olk(-, H)A(dt) = O[], . /Olk(s, JA(ds) = O[A].

It is well known that for k& € L,(0,1)? with (2.56) and (2.57), there exists a
sequence {A,} in R with Y*_ ;A2 < o0 and an orthonormal system {¢,} in L3(0,1)
with

(e o]

(2.58) k() = L AP ® P,

k=1

where @, ® (s, t) = ¢.(s)p(t). The convergence in (2.58) is understood in the
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space L,(0,1)% see Dunford and Schwartz (1963), Volume 2, XI, 8.56. Then,
under the above assumptions and notation under (Fy, Gy), from (1.13) and
(2.35) we have

(2'59) TN - EHOTN g Z An{(gn + pn)2 - 1})
k=1

with p, = (¢, b), k > 1, and £, &,,... ii.d. standard normal rv’s. Apparently,
(2.59) entails (2.38).

The pattern of deriving the limiting distribution of quadratic forms similar to
(2.54) is well known; see, e.g., Gregory (1977), Schach (1969) and especially Rothe
(1976). Another way for deriving these results consists in comparing T, in (2.54)
with

N
_Z NiCNj N( i 1) I]i=HN(Xi)’

||[v]z

being essentially a U-statlstlc, for which the limiting distribution is well known;
see Gregory (1977).

3. Some asymptotic power considerations for the omnibus tests. Un-
der H, the limiting rv in Theorem 2.5 is XZ%*(a) = X%(a,0) = X2 A £2
For 0 <a <1 let ¢(a, a) fulfill P(X?*(a)> c(a,a)} = a. Then the sequence
{ok = 1(SF > c(a, @))}, S¥ = Sy(A,by), has asymptotic level a. Applying
Theorem 2.5 to alternatives (1.13) with b = ¢y, c¢ large, x > 1, immediately
shows that {¢} ] is asymptotically unbiased iff A, > 0, Vk > 1.

The only optimality result which seems to be possible for asymptotically
unbiased tests {@%} in general is asymptotic admissibility. In order to formulate
this result we need some notions and results from the theory of experiments as
described, e.g., in Strasser (1985): Recall that QI’(,N is the joint distribution
L(Xy, ..., XnN|Fn, Gy) for (Fy, Gy) from (1.13) with

by € My = {b e LY0,1): —(Nm/n)"* < b < (Nn/m)1/2}
and put M = U%_,M). Then it is well known that

d b
3.1
with

exp{XN(b) - -—||b||2 + oQN(l)} vbe M,

N ‘
(3.2) Xy(b) = X cyibo Hy(X;) > Normal(0, [|b]|*) under Q.

i=1
According to Strasser (1985) the sequence of experiments

(3.3) Ey(Hy) = (RV,BN, {Q%: be My}), N=2,
converges weakly to the Gaussian-shift experiment
(3.4) E = (B,Borel(B), {p,: b€ M}),

where B = {f € C[0,1]: f(0) = f(1) = 0} and p, = L(W, + [;bd]).
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Under the assumptions of Theorem 2.5 it follows from (2.42) with & = oo
and £ (Wy) = S§,

(35) [oxd@k ~ [o*du,, Vbem,

with *(f) = (S (f) > c(a, a)), f € B. Asymptotic admissibility means that
each sequence {py} of tests with limsup [py dQ% < a and liminf (¢, dQ% >
Jo* du,, Vb € M is asymptotically equivalent to {p%}, i.e., [|on — 9% dQE — 0,
Vb € M. Following the lines of Example 82.23 of Strasser (1985), where the
Kolmogorov—Smirnov test is considered, we obtain immediately the asymptotic
admissibility of {¢}} by noticing that

) k
(36)  (feB: A (f)sc)= {f eB: YA )< c}
k=1 k=1
is closed and convex in B if A, > 0, V«.

The above result shows that, e.g., the sequence of omnibus tests {¢%} based
on the Parzen-2 kernel of Example 2.4 (A (a) > 0, Vk > 0, Va € (0,1]') cannot
be improved for some direction “b” without diminishing the power for some
other direction. In this sense the test {¢%} puts its power in an optimal way onto
the principal directions b = {,, k > 1, the influence of each direction ¢, being
weighted by the eigenvalue A (a). Since S = £2_,A (a){¥,, by)? the corre-
sponding test, ¢%, is completely determined by the sequence {A (a)}.

For practical applications one has to choose a suitable kernel K: R — R and
to choose a suitable bandwidth “a.” Similarly, as in density estimation, the
choice of the bandwidth is of much more importance for the power behavior of
the test than the shape of the kernel K, as long as it is bellshaped. The following
result is helpful for showing this fact.

THEOREM 3.1. Let K be a nonnegative, bounded kernel fulfilling (2.6) and
let 0> = [1,K?dA\ be finite. Then :

(3.7) Va i A (a)(¢2-1) >, Normal(0,262) asa — 0.

According to (3.7) two kernels K, with 02 = [1,K?dA, i = 1,2, lead to the
same limiting normal distribution if the respective bandwidths a,, a, satisfy

o2 o}
3.8 —=—.
(3.8) e

To give an example, let K, be the Parzen-2 kernel of Example 2.4 and let K,:
R — R be the quartic kernel

(3.9) Ky(x) =21 -22)"1(x| <1), x€R,
with eigenvalues
(3.10) A(a) =gy(mka), k=1,
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TABLE 1
Some eigenvalues \ (a) corresponding to the Parzen-2 kernel. In parentheses the eigenvalues of the
kernel K,, see (3.9), with bandwidth a - 225/302, see (3.11).

N 1 2 3 4 5 6 7 8
0.30 0.96 0.86 0.71 0.54 0.38 0.24 0.13 0.06
(0.96 0.87 0.72 0.55 0.37 0.21 0.09 0.01)
0.40 0.94 0.77 0.54 0.33 0.16 0.01 0.00 0.00
(0.94 0.77 0.55 0.32 0.13 0.01 —-0.04 —0.04)
0.50 0.90 0.66 0.38 0.16 0.05 0.01 0.00 0.00
(0.90 0.66 0.37 0.13 —-0.01 —-0.04 —-0.02 0.00)

with g,(x) = 2{(24 — 8x2)sin x — 24x cos x} /x°. Since o = 302/315 and o} =
5/17, equality (3.8) means

(3.11) a, = Za,.

In Table 1 some eigenvalues for K, and K, are computed for a, = 0.5, 0.4, 0.3,
resp. [according to (3.11)] a, = 0.37, 0.30, 0.22. One recognizes that under (3.11)
there is no essential difference between K, and K,. Therefore, we choose a fixed
kernel, namely the Parzen-2 kernel, and will discuss in the next section only the
choice of the bandwidth “a.”

ProOOF OF THEOREM 3.1. Define the iterated kernel K (-,- ) of K (-, ) by

i>1.

a’

(3.12) K(*V(s,t) = /1K((zi)(s, u)K (u, t)\(du), KO =K
0

Then the following equality is well known for A, = A (a) [see, e.g., Dunford and
Schwartz (1963), Volume 2, XI, 8.49],

(3.13) 1+ ¥ X, = [K@(s,8)\(ds), Viz2.
k=1 0

We show that all moments of the left-hand side of (3.7) tend to the correspond-
ing moments of a normal distribution. Write

k
(3.14) X2(a)= XA (2-1), k=1

Then, for p > 2
k

B(X(@) = ¥ -+ XA o A (g - 1) (8 )

i=1 i

(3.15)
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where Z over #. means the summation over the set %, of all partitions
{I,..., I} of {1,..., p} with number of elements |I}| > 2. (3.15) shows that for
p=>1 the sequence {(X2(a))?: k > 1} is uniformly 1ntegrable Therefore, using
(3.13), one has

(316) E(X%(a))’ = z 13( [[E$(s, 5)M(ds) = 1) (82 - 1)1

From (3.12) we get for i > 1 with || - ||, denoting sup—norm

[EGD(s, 5)M(ds) <|K ()., [* [K(s, )A(ds)A(de)

0 0o

(38.17) 3
||K||

implying that each term I1;_,( oK {%(s, s)A(ds) — 1) has order O(a™"). Be-

cause of r < p/2,one gets for p =2m -1, me N,

(3.18) E(X}(a))” = o(a™?7?),

resp. for p = 2m, m €N,
(319) E(X}(@)"" - 12, [ (s, 9)Mds) - 1) (B - 1)) = o(am.

Because of |2, | = (2m)! /(m!2™), E(¢2 — 1)2 = 2 and
'K (s, s)A(ds o !

(3.20) [E(s,)Mds) = 1= — = 2,

following from an orthogonal series expansion of (1/a)K(- /a) w.r.t. 1, ¢y, ¥g,...

and (3.13), we get

(2m)!

S (26)™ + o(1).

Since (2m)! /(m!2™) = E£2™ ¥Ym € N, the theorem is proved. O

(3.21) E(VaX%(a))™" =

The above theorem is in accordance with the main result of BH, where
asymptotic normality of Sy(¥,, by) towards Normal(0,20?) is proved under the
assumption ay — 0as N — co. Since this normal approximation becomes rather
bad if only a few of the A (a) are large, i.e., A (a) = 1, it is usually not suited in
practice for computing critical values and, in fact, not needed since the exact
distribution of the left-hand side may be computed by standard methods, see
Section 2.

REMARK. (3.7) holds true under alternatives, i.e., if £, is replaced by (§, + p,),
since the factor Va suppresses the influence of p, as @ — 0. This shows again
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that local asymptotics with bandwidths ay — 0 cannot exhibit the real power
situation.

In the present section we only considered omnibus tests. Parallel results for
the test based on the one-sided statistic Sy(¥,b%) would be desirable but are at
time unknown because of the complicated form of the limiting distribution in
(2.41).

4. Numerical results and practical considerations. In practice, having
fixed the kernel K one has to choose a suitable bandwidth “a.” The smaller “a”
is chosen, the more A (a), k > 1, will gain influence and the test will pay its
attention to more and more alternative directions b =, paralleled by ne-
glecting the power for each single direction. In order to balance the contradicting
aims of broad sensitivity and high power, we have systematically computed the
expansions b = ¥2_p.{,, p, = (b, ¥,), for many directions

b= (mn/N)"?d(F - G)e H™'/dA,

see Section 1, with df’s (F, G) taken, e.g., from normal-, logistic- and Cauchy-shift
models. In all cases it turns out that the first three to four p,’s dominate. This
leads to rather large values of “a” for the Parzen-2 kernel, e.g., a = 0.40 or
a = 0.50; see Table 1.

In order to demonstrate the power behavior of the omnibus test, based on Sy,
see (2.48), resp. of the one-sided test, based on S, see (2.49), two different Monte

TABLE 2
Power (in%) of the omnibus test for the two-sample problem H, versus H? based on Sy [see (2.48)]
with Parzen-2 kernel (2.33) for various bandwidths “a” under alternatives (fx,&xn) from (1.13)
with by = 3Y2cos 7k - for k =1,2,3,4 and m=n, N =m + n = 20,80 (obtained by simulation)
and N = oo (exact asymptotic power). The last two columns show the corresponding power of the
rank test based on |[Z;cy,@(R;)| with ¢ = id — 1/2 (two-sided Wilcoxon test) resp. ¢ = cos(mx - )
(two-sided rank test with asymptotically optimal score function). All tests are at level a = 0.1.

N=20 N=40
X 030 040 050 Wil opt. 030 040 050 Wil  opt.

89.7 92.7 94.1 96.4 96.7 84.4 87.5 89.6 93.8 94.0
83.7 86.0 85.0 11.9 88.7 81.1 82.3 82.0 12.4 89.8
71.4 68.4 58.1 11.9 719 73.2 68.3 59.5 12.7 82.5
55.2 423 25.4 9.8 54.2 58.9 44.7 28.2 10.9 72.9

W N~

N=280 N=o
X 030 040 050 Wil opt. 030 040 050 Wil  opt.

83.4 86.5 88.4 91.5 91.8 81.4 84.6 86.7 90.9 91.2
80.5 82.1 82.0 10.7 91.2 78.6 80.2 80.2 10.0 91.2
73.5 70.0 61.7 11.9 874 73.0 70.0 62.1 119 91.2
62.0 484 29.4 9.9 82.1 63.4 49.9 29.2 10.0 91.2

W N =
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Carlo studies have been performed: In the omnibus case principal alternatives
(1.13) with fy =1 + cp 3¢, &v = 1 + cyn3¢, were used for various values of .
Though the directions y, cannot be interpreted directly one should recall that
they form a complete orthonormal system in the space L3(0,1) of all possible
directions b = X2_,p,¢,. If b € [{,,..., ¥, ], with fixed norm ||b|| = d > 0, and if
A(a) > -+ = Ay (a) > 0 it may be shown with the help of Proposition 2.1 in
Neuhaus (1976) that the asymptotic power under these direction b is in between
its maximal value for b = d¥, and its minimal value for b = dy,. As mentioned
above the space [¢,..., ¥,] with 2 = 3 or k& = 4 is large enough to cover most

TABLE 3
Power (in %) of the one-sided test for the two-sample problem H,, versus H, based on Sy, [ see (2.49)]
with Parzen-2 kernel (2.33) for various bandwidths “a” under generalized shift alternatives (F, G)
with F(x) = G(x — D(x)) and D from (4.1) resp. pure shift D = 1/2 for G standard normal (N),
logistic (L) and Cauchy (C) df’s. The cases m = n and N = m + n = 20,80 are handled. The last
two columns show the corresponding power of the Wilcoxon test (Wil.) resp. of the test based on
™ log(dF, /dG)o G~ Y(R,) (opt.), which is approximately the rank-likelihood ratio statistic. All
tests are at level a = 0.1.

N=20

Shift G a =030 040 0.50 Wil. opt.
Upper N 26.7 27.0 27.7 23.5 32.1
L 17.9 18.0 18.4 159 22.3

c 17.6 177 182 15.8 20.8

Central N 24.5 24.8 26.0 22.3 31.2
L 175 17.6 18.3 165 21.5

c 19.9 20.0 20.7 185 24.2

Lower N 22.2 22.5 23.0 19.4 31.0
L 16.2 16.1 16.4 14.6 20.8

c 15.5 15.6 15.8 14.3 19.3

Pure N 36.1 36.9 38.1 39.6 419
L 23.4 23.6 24.3 24.2 26.1

c 23.5 23.7 24.8 23.2 27.7

N=280

shift G a=030 040 0.50 Wwil. opt.
Upper N 64.0 64.6 64.5 48.1 75.6
L 33.0 33.7 335 28.1 471

c 33.4 33.6 33.1 275 472

Central N 57.4 57.7 56.8 45.6 69.1
L 32.9 33.2 33.4 29.6 472

C 40.9 415 41.2 35.0 54.7

Lower N 51.0 52.3 52.2 37.7 68.2
L 29.2 29.7 29.6 25.0 40.7

C 26.8 27.0 26.6 23.6 38.8

Pure N 75.5 76.4 77.3 82.0 832
L 45.0 46.0 47.0 50.9 51.0

C 46.8 485 49.5 48.0 58.5
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interesting alternatives. E.g., for a = 0.4 one notices from Table 2 (N = o) that
at the cost of about 6.6% of the maximal possible power 91.2%, which a two-sided
test may achieve for alternatives (Fy, Gy) as above, the present omnibus test
has asymptotic power at least 49.9% for all alternatives (1.13) with fy = 1 + cy; b,
gy =1+ cynb, ||bll=3and b €[y,,...,¥,] Notice the poor power properties
of the (two-sided) Wilcoxon test for x = 2,3,4 in contrast to the new test.
Furthermore, a comparison of the cases N = 20, 40, 80, oo shows the good agree-
ment of finite sample Monte Carlo results with its asymptotic counterpart. Even
for the case m = n = 10 the qualitative power properties of the new test are the
same as for N = co.

In the one-sided case we introduce the notion of generalized shift alternatives
with F(x) = G(x — D(x)) for some shift function D > 0; see Section 1. In order
to get realistic departures from the ideal shift model (D = const.), we consider
shift functions D shifting only the “upper part,” the “central part” and the
“lower part” of G. More formally, we choose

upper shift: D(x) = G(4x) /2,
(4.1) central shift:  D(x) = 2G(2x)(1 — G(2x)),
lower shift: D(x) = (1 - G(4x))/2,

with G the standard normal, logistic and Cauchy df’s. The results are contained
in Table 3. Notice that in Table 2 the alternatives vary for N — oo in order to
demonstrate how well the asymptotic results fit the finite sample results, while
in Table 3 (F, G) are the same for N = 20, 80. Table 3 (@ = 0.4) shows that the
new test beats the Wilcoxon test for upper-, central-, and lower-alternatives.

TABLE 4
Critical values of the omnibus test, resp. one-sided test, for the two-sample problem H, versus HY,
resp. versus H,, based on Sy [see (2.48)], resp. Sy [see (2.49)], with Parzen-2 kernel (2.33) for
various bandwidths “a” at various levels a for N = 20, 40, 80 (obtained by 10,000 Monte Carlo runs)
and for N = oo (exact asymptotic value).

omnibus test one-sided test
bandwidth bandwidth

a N 0.30 040 0.50 030 - 040 0.50
0.01 20 9.93 8.45 7.38 8.40 7.16 6.27
40 10.96 9.06 7.88 8.83 7.34 6.31
80 11.01 9.10 7.80 9.27 7.1 6.58

© 11.49 9.42 8.06 — — —

0.05 20 791 6.43 5.42 6.07 4.89 4.07
40 8.22 6.53 5.42 6.17 4.85 4.01
80 8.28 6.48 5.42 6.01 474 3.89

00 8.40 6.61 5.46 — — —
0.10 20 6.96 5.42 4.48 4.84 3.74 2.98
40 6.98 5.44 4.41 491 3.75 3.01
80 6.95 5.35 4.34 4.70 3.57 2.86

0 7.02 5.39 4.35 — — —
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Only for pure normal- and logistic-shift the Wilcoxon test wins. These dif-
ferences in power are, of course, rather small for small values of N (for small N
all sensible rank tests are more or less identical) but increase for increasing N. A
comparison with the best possible rank test in column “opt.” shows that the
increase in power of the new test is substantial. In conclusion, we can recommend
the new tests in situations where there are doubts that all parts of the underly-
ing distribution are shifted at the same rate. A good choice of the bandwidth for
the Parzen-2 kernel is a = 0.4. Some critical values of the omnibus test, resp.
one-sided test, are contained in Table 4.
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