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A CHARACTERIZATION OF THE FIELLER SOLUTION

BY MARTIN A. KOSCHAT

Bell Communications Research

We consider the problem of finding a-level confidence intervals for the
ratio of two normally estimated means. We show that there is no procedure
that with probability 1 gives bounded a-level confidence intervals for the
ratio, and we show that within a large class of sensible procedures the Fieller
solution is the only one with exact coverage probability.

1. Introduction. Setting limits on the ratio of two normally estimated
means is a frequent problem of statistical practice. In its abstract form the
problem presents itself as follows. X, and X, are observed, normally distributed
random variables with distribution N((u,, p,)%, 02I). Here I is a known matrix,
which, without loss of generality, may be chosen to be the 2 X 2 identity matrix;
By, ko and o are unknown parameters. Also given is &, an estimator of o, which
is distributed independently of X,, X,. The variable »6%/02 has a x2distribu-
tion with » degrees of freedom. The problem of interest is to bracket the ratio
wo/pq. The frequentist solution most commonly found in textbooks is referred to
as the Fieller solution. It was given by Fieller (1940) in a paper on the
standardization of insulin, and is derived as a fiducial solution. For a historical
account and a discussion of alternative solutions of this problem see Wallace
(1980). The Fieller solution has some well-documented features. The confidence
region for the ratio may consist of a finite interval, two disjoint semi-infinite
intervals or the whole real line. The aim of this note is twofold. First, we will
show that for any positive a there is no procedure that gives bounded a-level
confidence intervals with probability 1. Second, we will show that within a large
class of solutions the Fieller solution is the only one that gives exact coverage
probability for all parameters.

2. Bounded confidence intervals. It was pointed out by James, Wilkinson
and Venables (1974) that the problem can be conveniently addressed in polar
coordinates. Let the random variables R and © and the parameters r, and 6, be
defined by the relations

X,=Rcos®, X,=Rsin0O,
By = rycos b, By = rpsinf,.

R and r, are allowed to vary over the whole real line, while ® and 6, are
unoriented angles. Since tanf, = pu,/u,, questions about 6, correspond to ques-
tions about the ratio p,/p; and vice versa.
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Whenever confidence intervals for §, contain the angle 7 /2, the corresponding
confidence intervals for u,/p, are unbounded. In this section let an unoriented
angle be represented by the angle in (—#/2, #/2]. A confidence interval for the
ratio is bounded if and only if the corresponding confidence region for 6,, based
on R, 0, 6, is an interval (C,, Cy) of the form —7/2 < C, < Cy < 7/2. We now
show that bounds with this property for all R, ®, 6 and some given positive
coverage probability do not exist.

PROPOSITION 1. For the Fieller problem there are no bounds C;(r, 8, s) and
Cy(r, 8, s) such that
(1) —@m/2 < Cy(r,0,s) < Cy(r,0,s) <m/2, forallr,b,s
and )
@ pr(C.(R,0,682) < 8, < Cy(R,0,6%)) > a

forallr,, 8,, o and some positive a.
Proor. If the unoriented angle is represented by the corresponding angle in
(—7/2, m/2], the joint density for R and ® may be written as
fir, &7, 0;75,0,) = ko~ ?|rlexp(—(r? + rZ — 2rr,cos(8 — 6,))/202),
where % is a normalizing constant. Note that
f(R,@)(r’ 0; 15, 6,) < ko_2|r|exp( —(rl - |"0|)2/2°2)-

If we denote by c, the density of a x2-distribution with » degrees of freedom,
then the joint density for R, ©, 62 is found as

f(R,@,Ey?)(r’ 0s $; 7, 00: 0) = VO_ZC”(VS/OQ)f(R,e)(r, 0; To» 00).
For a given pair of bounds C,, C;; satisfying (1) define the family of sets
My, = {(r,8,5): Ce(r,0,5) < 8,}.

It is easily verified that

(@) My 2 {(7,0,s): Cy(r,0,s) < 0, < Cy(r,0,s)};
(3) (b) if 65 < 64’, then My C M

(c) hm Mo = ﬂM,,

Consequently,
pr(C,(R,0,6%) < 6, < Cy(R,0,5?%))

< /UM,, fir.6.50(7> 0, 85 T4, 0y, 0) drdé ds

<k’ ///M (vs/0?) |r|exp( (r - |r0|)2/202)drd0ds.
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In view of (3) the last integral converges to 0 for any fixed r, and o as 6,
converges to — /2. Therefore

, lim/2pr(CL(R,®, 8%) < 6, < Cy(R,0,8%)) =0,
and the bounds C,, C; cannot satisfy (2). O

3. A uniqueness property of the Fieller solution. To actually find bounds
for 6, which have a certain prescribed coverage probability, consider the coordi-

nate transformation
X\ [ cosf, sinfy|(X,
X;| | —sin, cosf,)\ X,/
The variables X/, X; are normally distributed with distribution N((r,0)’, 62I),

and the correspondmg polar representation ®’ and R’ is related to ©® and R by
R’ =R and ®’ = © — §,. Denote by R = R/ and R’ = R’/5. Then

R%in%(® — 6,) = (R'sin®’)” = (X3/6 6)%

Therefore R%sin?(® — 6,) has an F distribution with 1 and » degrees of freedom.
To find an a percent confidence interval, choose for given B and © all the 8
satisfying R2sin(® — 0) < Fy,, where F}', is the upper percentage point of an
F distribution with 1 and » degrees of freedom. The resulting bounds comprise
the Fieller solution. If R? < FY,, no angle is ruled out; this is known as the

Fieller paradox. If ¢ is known, R is replaced by R and the F distribution is
replaced by a xZ2-distribution with 1 degree of freedom.

The distribution of @’ is symmetric around 0 and depends only on 7, where
7 = ry/0. The variance of ©’ decreases as |7| increases. (O, |R|) is the maximum
likelihood estimator of (6,, |7|). It is therefore intuitively appealing to look for
bounds on 6, that are centered at ® and whose width is a decreasing function of
|R|. In other words, it is reasonable to look for bounds for the unoriented angle
that can be written as ® + w(|R|), where w is a decreasing function. The Fieller
bounds have precisely this form. It turns out that the Fieller bounds are the only
ones of this form that have exact coverage probability for all parameters. This
fact is the content of the next proposition and its corollary.

PROPOSITION 2. If for the Fieller problem w and v are two decreasing left
continuous functions with w(0) < 7/2, v(0) < 7/2, and such that

@ pr(® — w(R|) < 6, < © + w(Rl))
= pr(@ -o(R)<6,<0+ v(|1~2|)), forall 8y, ry, 0,

then w = v.
Proor. We will use the notation already introduced. Again, let the unori-

ented angle be represented by the corresponding angle in (—/2, 7/2]. Our
interest is in the joint distribution of ®’ and R. For our purpose it is sufficient to
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note that (R, ®’) is the polar representation of the variable (X, Xy), where
X;=X{/6, Xj=X4/6 and X{ and Xj are defined as before. The joint
distribution of X/ and Xj is a noncentral ¢. Denoting r,/o by 7, its density may
be written as

f(x{’gé)(xl,xz) = k/R s"/2exp(—((x1\/.; - F)2 +x2s + vs)/2) ds.

If v and w are two decreasing functions satisfying (4), then
pr(8 — w(R|) < 6, < 0+ w(R|)) — pr(6 — o(R|) <8< 6 + o(|R]))
- /"/2 [ fia,e(r,0)D(r,6) drds,
-a/2R,
where
D(r,0) = -1, for w(|r|) < 18] < o(rl),
(5) =1, for D(lr|) <10] < w(lrl)’

=0, else.
Therefore (4) can be rewritten in Cartesian form as

jR fR foxe, xp( 1> 22)D(r (21, %5), 8(xy, %5)) dx, dxy = 0, forall 7,

or after substituting for f 2, ;)

/IJR/RfXP(_((xﬂ/g —F) +ads + vs),/2)s"/?

X D(r(xy,x5),0(x,, x,)) dsdx, dx, = 0, for all 7.
This becomes after the transformation
xS = Xy, Xy > Xy, § = 8, Vs dsdx, dx, > dsdx, dx,

and some rearrangement,
fR/R/ D(r(x,/Vs, xy),0(x,/Vs, x2))s("‘1)/2exp( —(x2s + vs)/2) dsdx,
R,

X exp( —x2/2)exp(7x,) dx, = 0, for all 7.

The integral on the left-hand side exists for every 7. This allows an application
of the uniqueness theorem of the bilateral Laplace transform [see, e.g., Widder
(1941), Chapter 6, Section 6, Theorem 6h]. Consequently,

-ﬁej;eD(r(xl/‘/;’ xz), 0(x1/¢§, x2))s(v—1)/2

x exp( — (x3s + vs)/2) dsdx, = 0, for almost all x;.

The left-hand side of (6) is a continuous function in x,. The function
D(r(x,/ Vs, x5), 0(x,/ Vs, x,)) is for fixed x; symmetric in x,. Therefore (6) is

(6)
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equivalent to
./R f D(r(xl/‘/s_’ xz), 0(x1/¢;, x2))s(v—1)/2

(7) + Ry
X exp(— (x2s + vs)/2) dsdx, = 0, for all x,.

Next we make the transformation z, = x,/ Vs, 2, = s(x2 + »)/(2x%), dsdx, =
2x227 Y2222, — v) "% dz, dz,. To simplify the notatlon let us define the func-
tions K, r*, 8* and D* as

K(z,,2,) =1, ifz,>»/(222), and 0 otherwise,
r*(z,z,) = r(zl,(2zfz2 - v)1/2),
0*(z,, 2,) = 0(21,(221222 - v)l/z),

D*(2, 2,) = D(r*(2y, 25), 0*(2,, 2,))-
Then (7) becomes

[ [ K(z1, 2)D*(21, 20) (222, = v) 21"y
R.“R,

X exp(—x22,) dz, = 0, for all x;.

Applying the uniqueness theorem for the unilateral Laplace transform [see, e.g.,
Widder (1941), Chapter 2, Section 9, Corollary 9.3.b], we may then conclude that

(8) fR K(z,, 2,)D*(2,, 2,) (2222, — 1))_1/221"’dz1 =0, for almost all z,.

For a given z,, D* as a function of 2, is either nonnegative or nonpositive. To
prove this it is sufficient to show that the function values for any pair of
numbers z/, z{’, such that z{ < z{’, are either both nonnegative or either both
nonpositive. If D*(2{, z,) = 0, there is nothing else to show. If D*(2{, z,) = 1,
then by definition of D

w(r*(z{,z,)) < 0*(2{, 2;) < o(r*(z, 2,))-
Note that for a given z,, r* and 8* are increasing functions in |2,|. Hence
w(r*(zf, 2,)) < w(r*(2f, 2,)) < 0*(2{, 2;) < 0*(2{’, 2,),

which implies that D*(z{’, z,) > 0. Similarly one can show that if D*(z2{, z,) =
—1, then D*(z/, z,) < 0. Therefore for a given z, the integrand in (8) is either
nonnegative or nonpositive, and (8) can be satisfied if and only if D*(z,, z,) = 0
almost everywhere. This implies that D(r,0) = 0 almost everywhere. Conse-
quently, w(r) = v(r) almost everywhere, and because of the continuity con-
straint imposed on w and v, w = v. O

The last proposition immediately yields the following uniqueness property of
the Fieller bounds.
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THEOREM. For the Fieller problem the Fieller solution is the only procedure
that gives confidence intervals for 8, that are of the form ® + w(|R|), where w is
a decreasing function, and that have exact coverage probability for all parame-
ters 0y, ry, o.

Naturally the last proposition and theorem have corresponding versions for
the case o known. It is of some interest to investigate what happens if the
assumptions of the last theorem are relaxed. If we no longer require w to be
monotonic it is possible to construct exact confidence bounds of the form
© + w(|R|) other than the Fieller bounds. Since it leaves the essence of the
problem intact, we may choose ¢ to be known. Figure 1 shows the halfwidth of
the 95% limits for the unoriented angle for the Fieller solution and an alternative
solution. Both solutions have exact coverage probability for all parameters. The
second curve differs from the Fieller curve only in the interval 3.3 < R < 4.32
and was found by first changing the Fieller solution in the interval 3.3 < R < 4
and then correcting for that change in the interval 4 < R < 4.3 using an
equivalent to (7).
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Fic. 1. Halfwidth profile of the Fieller solution (dotted line) and an alternative (solid line).
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This example demonstrates a characteristic feature of alternative solutions.
The negative deviation from the Fieller solution has to be corrected by a brisk
increase in bandwidth elsewhere. This property renders them worthless for
practical considerations and further enhances the standing of the Fieller solution
among the exact bounds.

If we no longer require exact coverage probability for all parameters but are
content with conservative bounds for 6, we may find a plethora of reasonable
alternatives to the Fieller solution. It is not hard to construct intervals of the
form ® + w(|R)), where w is a decreasing function, whose coverage probability
exceeds a certain preassigned value for all parameters. In particular, it is possible
to find conservative bounds for 6, that are nontrivial, i.e., do not enclose all
angles with positive probability. We conclude the discussion with the outline of
an example. Again assume o to be known to equal 1, and consider the function v
defined on R, as

o(r) =¢,, for0 < r < c,,

arcsin(c,/r), forr > c,.

The parameters c,, ¢,, c; shall be chosen such that v is a continuous function on
R,. It is not hard to verify that the coverage probability of the bounds
® + o(|R|) increases with r,. If ¢, ¢y, ¢; are chosen such that the coverage
probability of these bounds equals « for r, = 0 + , the coverage probability will
exceed a« for ry > 0. These bounds are therefore conservative.
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