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ASYMPTOTIC EXPANSIONS IN ANSCOMBE’S THEOREM
FOR REPEATED SIGNIFICANCE TESTS AND ESTIMATION
AFTER SEQUENTIAL TESTING!

BY HAJIME TAKAHASHI

Toyama University and Hitotsubashi University

Let x;, x,,... be independent and normally distributed with unknown
mean 6§ and variance 1. Let 7 =inf{n > 1: |s,| = y2a(n + ¢) }. Then a
repeated significance test for a normal mean rejects the hypothesis § = 0 if
and only if 7 < N, for some positive integer N;,. The problem we consider is
estimation of  based on the data x,,..., x7, T = min{r, N,}. We shall solve
this problem by obtaining the asymptotic expansion of the distribution of
(s, —18)/Vr as @ > o, and then constructing the ¢onfidence intervals
for 6.

1. Introduction. Let x,,x,,... be independent and normally distributed
random variables with unknown mean 6 and variance 1. For a > 0 and ¢ > 0, let
us define a stopping time

(1.1) r=1, ,=inf{n >1:s,| > ¢c,},

where s, =x, + --+ +x, and ¢, = y2a(n + ¢), n > 1. Then for a given posi-
tive integer NN,, the repeated significance test for a normal mean rejects the null
hypothesis H,: § = 0 in favor of the alternative H,: § # 0 if and only if

(1.2) T < N,.

Using the method of numerical integration, Armitage, McPherson and Rowe [3]
and McPherson and Armitage [6] studied the error probabilities and the ex-
pected sample sizes 6f the test under the null and the alternative hypotheses,
respectively; some of their results are also found in Armitage [2], page 105. (It
may be worth noting that the application of the methods in [3] and [6] to group
sequential methods is found in Pocock [9].) Applying the nonlinear renewal
theorem of Woodroofe [14], [15] and Lai and Siegmund [5], Siegmund [10] has
calculated the limit of error probabilities and expected sample sizes of the
Armitage repeated significance test. The results of [10] as a method of numerical
analysis are satisfactory in most of the cases, except for the type I error
probability for large ¢ > 0. The latter problem has stimulated the research of
developing an asymptotic expansion in the nonlinear renewal theorem. The first
result in this direction was obtained by Siegmund [10], which, however, is valid
only for a Brownian motion. Although it is limited to the normal case, the result
for the random walk was obtained by Takahashi and Woodroofe [13]; their
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result gives very accurate numerical approximations for the error probabilities
when ¢ > 0 is large (Woodroofe and Takahashi [17]).

Now let T = min{r, N,}; then x,,...,x; are the available data after the
repeated significance test. In this paper, we shall consider methods of construct-
ing confidence intervals of § from x,,..., x;. Note that Anscombe’s [1] central
limit theorem for randomly stopped sums asserts

(1.3) (s,— 0r)/Vr >, ®(x) asa — o,

where ® denotes the standard normal distribution function. It follows that the
naive (1 — «)100% confidence interval for § would be

(1.4) [%r = 20/2/VT , Zp + 24p/NT |,

where X7 = s7,/T and 1 — ®(2, ;) = ;a. But this interval suffers from a bias; if
6 > 0 is large, then X, tends to have a large upward bias. To correct the bias,
Siegmund [11] utilizes our intuitive feelings that small values of the stopping
rule 7 are evidence in favor of large values of |0]. He nicely quantifies this
heuristic argument to construct a confidence interval of 6, which, however,
disregards the overshoot s, — c,. As indicated in Tables 3 and 4, Siegmund’s
intervals are wider than those of (1.4). The differences are slight for Armitage’s
test, but they are serious for Pocock’s test where |f| is large and N, is small.
Hence, in what follows, using the asymptotic expansion in the nonlinear renewal
theorem of Takahashi and Woodroofe [13], we shall obtain an asymptotic
expansion in Anscombe’s theorem with remainder o(a!) as @ = co. Asymptotic
expansions in the distributions of stopping time and the overshoots will be
considered in Section 2. Section 3 gives the asymptotic expansion in Anscombe’s
theorem. Confidence intervals for # and their numerical accuracy will be dis-
cussed in Sections 4 and 5. Other problems in sequential analysis are considered
in Section 6, among which is an asymptotic expansion for the power of the
repeated significance test for these 6 in the neighborhood of +6,, where
0y = y2a/N,.

The recent paper by Woodroofe and Keener [16] is closely related to this one.
It obtains more general, but less detailed results.

2. Asymptotic expansions. Let P, § € (— o0, 0) denote the probability
measure under which x,, x,,... are independent and normally distributed with
mean 6 and variance 1. It is convenient to consider the one-sided version of .
We let

(2.1) t=t, ,=inf{n>1:5,>c¢,}

and R=R, . =s,— c, We shall consider the asymptotic expansions for the
joint distribution of (¢, R) and the marginal distribution of ¢ as @ — . Let

Yo(n,r) = Pt = n|s,=c, + r},

Y(e,r) = Py(s, < sek—r,Vk>1}, -0 <r<oo,e>0.
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Then,

Yo(n,r) = Pspr < B, k<n-—1},
where s,;, = s, — (k/n)s,, Bir=cpp—[1—(k/n)c,+r) 1<k<n-1
Now as n = n(a) > o, a > oo with y2a/n —» ¢ € (0,0), B — 3¢k —r and
8,5 — S;, (a.e.) for each fixed & > 1. It follows that
(2.2) You(n,r) > yY(e,r) asa— oo
(cf. [14], [15]). Now there are two major sources of error in approximating
Y (n, r) by Y(e, r): B, is not exactly equal to 3ek — r, and the joint distribu-
tion of {s,;,1 < k < n — 1} is not quite equal to that of {s;, & > 1}. Obtaining
the asymptotic expansions of these errors, we have the following refinement of
2.2).

LEMMA 2.1. Let ¢, = ¢,(a) = y2a/n, e¥ = e¥(a,r) =¢, + (2r/n) and
(2.3) Dy(n,7) = nlyu(n,r) —¥(e¥, )] + vlen, 1),
for —w <r< o, n>1anda>0, where

vle, ) = {[¥(e,0)/4(e,0)] + 37— See}y’(e, r) +¥(e, 1)

and the prime denotes differentiation with respect to €. If n = n(a) - o as
a — oo with &, bounded away from 0 and bounded above by O(a'/®), then
D,(n, r) = 0 uniformly on compactain —oo <r < oo; if Ag>0and 0 < A, =
o(exp{‘/iog n})), then there are positive constants C and v for which

|D(n,r)| < Ce,, —o0<rs<Aa,,
(2.4)

|D(n,r)| < Cexp{—nel} +o(n"®), —oo<r=<A,,
where 6(n~®) denotes a term of smaller order of magnitude than n™* for all
a>1.

The proof of Lemma 2.1 when ¢ = 0 is given by Takahashi and Woodroofe
[13]. The extension to ¢ > 0 is straightforward and is omitted.

Now for any fixed 8 > 0, let t* = 10(¢t — N)/ VN, where N = 2a/6° 1t is
not difficult to see that the joint distribution of ¢* and R,

H(x,r)=Pf{t*<x,R<r},

hasa densityiin R: h(x,r) = (3/9r)H (x, r). By the same reasoning leading to
(2.2), it follows that

(2.5) h(x,r) - %¢(0, r)®(x) asa — oo,

uniformly on compacta in r > 0 and x € (— o0, ), where ®(x) = [Z o(x) dx,
o(x) = (1/ V27 )exp{ — 1x?} ((14], [15]). Moreover, it can be shown that

2 ro0
(2.6) P{t*<x,R>r} — 3-/ ¥(0,r)dr®(x) asa— oo,

for all r, > 0. The next theorem is the refinement of (2.6).
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‘THEOREM 2.1. Let 0 > 0 be fixed and t* be defined as before. Then, for any
x such that K, = N + (2x/0)VN is a positive integer, and for any ry > 0,

PO{t* <x,R > rO}

2 0 1
@rn E*['o {¢(0, r)®(x) + Wplc(a’ r,x)9(x)

1
+ 37 (P20 7, 2)26(2) + o0, )0 + 0(a)

as a - o, where

0

2 . 6
pud07,5) = =[5+ 55| 9t0.) - (0r) = rut0.) - uco.n),

s

- 5w = rvto

[(1/6 x2\ 1(6 =x2
P8 0) = 15\3 % 20) " 2|7 " 20

/] 2
(3

X
"2
r2 1
+rlp’(0, r) - ?lp(a, r) - Elp"(o, r):l
6(6 x? 4
+c {1 - E(Z + g)}g&( ,r)

b ((0,7) = ro(0, 7)) ~ 90, )]

and

0.1y =~ get0.0)+ (342 | L0 lvren)

_ %W, r) + {6y (6,7) — 4(6, 7))}

The proof of Theorem 2.1 is long and complicated; we defer it to the
Appendix. By letting r, = 0, we have an asymptotic expansion for Py{t* < x}.
The following notation will be used throughout the rest of this paper:

2 0/2)n ( 0 )l d:
2.8 (9 Jj —
8 5= L 5[ v{on) 5

We shall sometimes write v;(8) for »?(6) if there is no confusion. Note that
v10(0) and »y(0) are the asymptotlc means of R and R?, respectively.

-y(8,r)dr, i,7,1=0,1,2.
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THEOREM 2.2. Under the same conditions as in Theorem 2.1,

Bt <x) =00 + 705 -0 - (5 + 35) - 5 o

1{[1 x2 1(0 x2)2 1 92
+—= t—=-—=l-+=| -5 +=

(2.9) 6 = 1
(54 35— )@ o) - ou)
oo, x*\ 3 8 . b
e _2(Z+ 20) tg T gnold) m g |jxel®)

+o(a™') asa- .

PROOF. Since (2/6)((0, r) dr = 1, by interchanging the order of integra-
tion and diﬂ'erentiation we have

(1)(0) - _, v@(0) = v{Q(0) = Vlo(a) + :0 v10(6)

(cf. [13], Section 2). Now, from [15] we have
¥'(6,0) } L

0f pac 0, 7) dr = '210”10(0) " ; aaa”“’( - ; [¢(0 0)
- Ewela) <5 Eel5)

1
Vlo(o) = 5 +

It follows that
2 ;o 0
(2.10) 7l fo ps(0, 1) dr=0.
The theorem follows from (2.7) with r, = 0 and (2.10). O

AI%

REMARK 2.1. Since ¢ has a lattice distribution with span 1, we have an
alternative expression for (2.9),
0 x2 cl
S

P,,{t*sx}=<l>(x)+‘/—lﬁ‘{%"’w(a)J’ 4 20

1 1 x2 1/6 x221+02
"Nzt " 2l1 28 et oo

(2.11) +(§ S l)vmm +v8(6) - gw)]
-2 5]
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REMARK 2.2. We may use a polygonal approximation F}#(x) to the distribu-
tion of ¢t*. If we set

1
Fi(x) = S[B{t* <x} + B{t* < 2)]

=5 + {7 @) - 5 - F)e)
VN6 % 20 2
1 ([x2 1/(6? x* 1
(212) +N{[ﬁ‘a(a+@—z)‘ﬁ
x2 1 1
(55 3]0+ 0 < Evzo(ea)]
2 2
+c[—% o 0 - %]}xqs(x)(l +o(),
then formal integration yields
(2.13) 7 xdF3(x) = Eo{t*} + o(N7).
o

It follows that

2a -1
(2.14) Ep(t} = —gz—
as @ — oo (cf. [10]). The justification of (2.14) is straightforward and we shall
omit the proof.

2
+ va(ﬂ) +c+o(a"?)

Now, the proof of Lemma 2.1 indicates that the remainder term is of the order
o(a~%?) as a - c0. We may obtain a refinement of Theorem 2.1 up to terms
involving a~3/% as @ — oo. It follows that the o(a™'/?) term in the right-hand
side of (2.14) is of the order a~! and the exact constant for this term will be
calculated by the method of this paper. Unfortunately, the algebra is very
complicated; we shall address the problem in a separate paper.

3. Refinement of Anscombe’s theorem. In this section we shall develop
an asymptotic expansion in Anscombe’s central limit theorem for the randomly
stopped sums [1]. Let 6 > 0 be fixed and let a = oo through the integer
multiples of 62/2. Let B = B(a,8) = {|t — N| < N*?}; then it is easy to see
that 1 — P,{B)} = 6(a” ) as @ - . We shall expand vt and 1/ Vt into Taylor
series about ¢ = N on the set B. It follows that as a — oo,

1¢t—N 1(t-N)> 1 (¢-N)°
BN T N T N

+ O(N- 11/10)

a.e.on B,
t— N

VN?

+ O(N~1¥/1%) ae.on B.

DN =

1/\/Z=—‘/}—N——
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Remember that ¢* = 10(¢ — N)/VN and R = s, — c,. It is easy to see that as
a — oo,

(3.1)

1 1
— *3__ * * (1
+N{202t 0Rt +ct }+o(a )

where 6(a™!) is a random variable such that
Pfl6(a )| > ea !} =o(a”!) asa— .

It follows that for all x € (— o0, ),

s, — 6t
P"{ Vi 5"}

1 (1 0
=P{ t* + ——{—t*2+R c—}

VN | 26 2
(3.2) 1 1
— — *3__ * * -1
+N{202t 0Rt +ct} }+o(a )

=Py{t*> —x + - x2+R+0c i +o(a™t)
ST N 26 2| an[T 2"
as a > 0.

Here the last equality is obtained by solving the inequality inside the probability
sign of the second equation with respect to ¢*. We shall apply Theorem 2.1 to
the right-most side of (3.2), and for this purpose we shall write

3ex

K=K/ (a,0 NoEwaE
x x(a’ ,C)— - 0 F"‘c _0‘/N.

Now for all x such that K is a positive integer, we have

2
0/2 1 X 0 fc
s (2 )
8/2)(n—1)

t‘\\

3ex
—_ -1
2N,Redr}+o(a )

as a > 0.

Hence, to obtain an informal expansion, we may apply Theorem 2.1 and (2.10) to
the probability inside the integral sign for each n > 1. By Taylor’s theorem and
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by some straightforward but tedious algebra, it follows that (3.3) becomes

l f‘”/z)" ¥(0, 7) dr ®(~x)
0 J6/2n-1)

1 { ® E 0/2)n

(/]
T {— Z0(8,r) + (6, r)
ne1 0 70/2(n-1\ 4

VN

+(gn - r)¢(0, ")} d’}¢(x)

1(x 2 n 6* 1
(3.4) +N{ Z E “m {(E - Z - 20)4/(0, r)‘

n=1Y"(0/2)(n-1)

[5-
(;i::z:_n{[%(én—-r)ﬁ i- %)(%n-r)]w )
+(gn - r)gb'(ﬂ, r)} dr}x¢(x)] +o(a™)

as @ — . Indeed this heuristic argument can be justified as in Woodroofe and
Takahashi [17] (also see the Appendix). We have thus obtained the main result
of this paper.

THEOREM 3.1. Let > 0 be fixed and v{(0) be as in (2.8). Then for each
x € (— 0, ) for which K/ is a positive integer

p,{ st;lf” < x} — o(x) + ¢_ —Q,(8)6(x)

(3.5)
+2-@u0)x9(x) + o)
as a —» o, where
Qu(0) = — {1 — 167 + 6(vou(0) — »1(9))},
@u(0) = — {&6% — 107 + 1 — 2¢67 + 02(4vg5(8) + 3u(6) — v11(6))
+(0 = 16°)(vu(8) — v10(8)) + 67(v(8) — »{3(0))}-

We shall next present the Cornish-Fisher-type expansion for the distribution
function of (s, — t)/ Vt, and for this we shall let

(3.6) Q*(8) = —Qi(8),  @3(6) = —(3Qu(6)" + Q4(9)).
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COROLLARY 3.1. Let 2z’ =2'(z,a,0) =z + Q*(0)/V2a + Q¥(0)z/2a. If
K, is a positive integer, then
s, — 0t

61 B{* <o 4 2=Qr(0) + £01(0)] = 8(2) + o(a™)

Proor. The proof is a straightforward application of Theorem 3.1. We shall
omit the proof. O

In order to calculate the constants @,(#) and Q4(#), it is necessary to evaluate
the integrals involving (0, r) and y’(0, r) in the intervals ;6(n — 1) < r < }0n,
n > 1. Although we do not know any bona fide' method performing these
integrations, we may apply the diffusion approximation of Doob [4] and its
modification by Siegmund [12]. Let {W(¢), ¢ > 0} denote a standard Wiener
process; then for any positive constants b and d,

(3.8) P{W(t) <bt+d,Vi>0} =1- exp{—2bd}.

(See [4].) When we approximate Py(s, < bk + d,Vk > 0} by the left-hand side
of (3.8), Siegmund [12] suggests changing d to d* = d + 0.583. Here the con-
stant 0.583 is the asymptotic mean of the overshoot when the standard normal
random walk crosses the straight line boundary as the height of the boundary
goes up to infinity. The numerical accuracy of this method has also been
demonstrated in [12]. Hence, we have

¥(8,r) = Pys, < 30k —r,Vk > 1}

(3.9) - /‘(0/2)—rPO{Sk -8, <30(k-1)+40—x—-rVk> 1}¢(x) dx

= [~ exp(~0(x ~ r))]o(x - 36) d,

where r* = r — 0.583. We shall approximate y’(8, r) by the derivative of the
right-most side of (3.9). After some algebra,

0,r)=®(10 —r) — e7"0(-160 — r),
10 Y7 (36— 1) (=30-1)
Y(0,r)=16(20 —r) — e’ {r*®(-10 - r) - é¢(%0 +r)}.
Thus, we have approximations for »{(6), which are amenable for numerical
calculation. For example,

0

(8/2)n
ro0) = nol0) =2/6( 3 [ (36m~1r)
(3.11) et

X{®(10 —r) — e ®(—10 — r)) dr}.

The selected values of the approximations Q,(8) and Q,(8) of Q,(8) and Q,(6)
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are listed in Table 1. The approximations for @;*(8) and @3(6) may be available
via (3.6).

We shall next consider the numerical accuracy of (3.5). In Table 2, the
“Simulation” values are obtained from the average of 100,000 simulations of
P,{(s,— 0t)/Vt < x} using the subroutine RANN 2 in SSL2 (supplied by
Fuyjitsu) and the system Facom M360 at Toyama University. The ith order

TABLE 1
Approximate values of @,(8) and Q4(0)

0 Q.(9) Q;(0)
0.05 —1.0000 ~1.0000
0.10 —0.9999 —1.0000
0.15 —0.9999 —1.0002
0.20 —0.9999 —1.0006
0.25 —0.9999 —1.0013
0.30 —0.9999 —1.0023
0.35 —1.0000 —1.0040
0.40 —1.0002 —1.0062
0.45 —1.0005 —1.0091
0.50 —1.0010 —1.0128
0.55 —1.0015 —1.0175
0.60 —1.0021 —1.0232
0.65 —1.0030 —1.0300
0.70 —1.0040 —1.0381
0.75 —1.0051 —1.0475
0.80 —1.0067 —1.0584
0.85 —1.0079 —1.0709
0.90 —1.0096 —1.0850
0.95 —1.0115 —1.1008
1.00 —1.0137 —1.1185
1.05 —1.0160 —1.1382
1.10 —1.0186 —1.1599
115 —1.0214 —1.1837
1.20 —1.0245 —1.2097
1.25 —1.0278 —1.2380
1.30 —1.0313 —1.2686
1.35 —1.0351 —~1.3015
1.40 —1.0392 —1.3369
1.45 —1.0435 —1.3748
1.50 —1.0481 —1.4151
1.55 —1.0530 —1.4580
1.60 —1.0582 —1.5034
1.65 —1.0636 —1.5512
1.70 —1.0693 —1.6016
175 —1.0753 —1.6545
1.80 —1.0816 —1.7098
1.85 —1.0881 —1.7674
1.90 —1.0950 —-1.8275
1.95 —1.1021 —1.8897

2.00 —1.1095 —1.9542




288 H. TAKAHASHI

TABLE 2
Numerical accuracy of (3.5)

x First order Second order Third order Simulation
V2a =3.45,0=06,c=0
0.1 0.540 0.425 0.421 0.419
0.5 0.691 0.589 0.574 0.572
1.0 0.841 0.771 0.750 0.746
1.5 0.933 0.896 0.879 0.874
2.0 0.979 0.962 0.952 0.949
V2a =2986,0=16,c=0
0.1 0.540 0.399 0.392 0.431
0.5 0.691 0.567 0.537 0.594
1.0 0.841 0.756 0.713 0.773
1.5 0.933 0.887 0.855 0.892
2.0 0.977 0.958 0.940 0.968

approximation is the first 7 term on the right-hand side of (3.5) (i = 1, 2 and 3).
On the whole, the second and third order approximations give us substantially
better estimates for the simulated values than the first order approximation. For
large a and small 8 (V2a = 3.45, 8 = 0.6, ¢ = 0), the third order approximation
is better than the second order, but the relation is reversed for small a and large
0 (V2a = 2.986, § = 1.6, ¢ = 0). This may be caused by the diffusion approxima-
tion of ¢(@, r) and the approximation formula for (4, r), which we do not
know yet.

To close this section, we refer the reader to Woodroofe and Keener ([16],
Section 4) for a new method of calculating @, i = 1,2.

4. Confidence intervals. Let X, = s,/t and construct confidence intervals
of # after the sequential test. If z is fixed, then it follows from (3.7) that for all
0 > 0 such that K/ (a, 8, c) is a positive integer,

2 1 2
Y — — — ——(* . _0* — -1
(@) B0>%,- 7 - ==Q1(0) = 7 QO] = 8(2) + oa™)
as a — oo. If we solve the inequality inside the probability sign with respect to
0, then we find 0*(z, X,) = 0*(z, X,, a, c¢), for which [0*(z, X,), ) is a third
order one-sided confidence interval of § with the coverage probability ®(z) up to
the terms involving a~! as a — 0. Hence, a third order two-sided (1 — «)100%
confidence interval of § would be given by

(4~2) [0*(‘2’“/2,3—5,),0*(—20‘/2,.7,)],

where 1 — ®(z, ;) = ;a. By approximating @() by QX(0), i = 1,2, we have
the approximations §*(+z, s2: %) for 0*(+z, 5, X,), which are amenable for
numerical calculations. (The careful reader will have observed that (4.1) holds
only these 6’s such that K/ are positive integers. Mathematically the interval
(4.2) contains only these 8’s. We keep this comment in our mind all the way.)
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Remember that 7 = inf{n > 1: |s,| > y2a(n + ¢) }, and the repeated signifi-
cance test for a normal mean rejects the null hypothesis 8 = 0 in favor of the
alternative 6 # 0 if and only if 7 < N, = [2a/6%], for some 6§, > 0. Clearly, 7 < ¢
holds a.e. Moreover, if 6 > 6,, then
(4.3) B{r <t} =P{s, <0} =0(a"!) asa— oo.

Treating the case when 6 < —6, in a similar fashion, we can construct a
(1 — a)100% confidence interval for 6 based on x,,..., xp, T = min{r, N,}. Let

g* = {0*(_%/2,5‘})[(.9720} - 0*(24:/2, |ff|)I(s,30}}I(fsNo}

(4.4a) )
+ {xNo + 20/2/\/I_V;}I{1>No}
and
(4.4b) Q* = {0*(za/2’ ‘ET)I(STZO} - 0*(_241/2) lifl)[{s-,ﬁo}}I(TSNo}

+ {xNo - z“/2/\/F0}I(">No}'

For all 8 > 6,, Py{s, < 0} + Py{r > Ny} = o(a™!) as a@ = o0, it follows that the
third order confidence interval (8*, *) has a desired coverage probability up to
the terms involving a~! as a — oo for all |0] # 6,.

In order to simplify the calculations involved in (4.4), we may consider the
second order confidence interval. Note that P){|X, — 6| > a /*loga} = o(a™')
as a - 0. It follows that as a — oo,

1 .
(4.5) Pa{ﬁ > X, - T/ZZ— - —2‘/7—tQ1*(£,)} = ®(2) + o(a"2).
It follows that

(4.6) [:ET — 2,/VT , %7 + za/z/ﬁ] — sgn(s,)QF(1X. ) I, < n,

is a second order (1 — a)100% confidence interval for § with the remainder of the
type o(a~'/?) as a — oo, where sgn(x) = —1,0,1 if x S 0 and I, denotes the
indicator function of the set A.

5. Numerical examples. In this section we shall compare the numerical
accuracy of naive confidence interval (1.4), Siegmund’s interval, and our second
order (4.6) and third order (cf. (4.4)) intervals. In this study the average of 32,000
independent replications of s, for several values of § and 7 are used, where the
values of 7 are selected to correspond roughly to Ey{7}. The first example is to
construct 90% confidence intervals after the repeated significance test of Armitage
(see Table 3). The test parameters are V2a = 3.45, N, = 148 and ¢ = 0, which
gives a significance level a = 0.01 and type II error probability v,(8) = 0.05 at
0 = 0.4. The row (4.6") is the second order confidence interval from s, = y2ar.
Siegmund’s intervals were obtained from Equations (13) and (14) of Siegmund
[10]. We have used the approximation formulae of Nabeya [7] and its modifica-
tion [8] to calculate the infinite series in (14) of [10]. Table 4 shows the 90%
confidence intervals after Pocock’s group sequential test [9]. Here the test
parameters are y2a = 2.986, N, = 5 and ¢ = 0, which also gives us a significance
level a = 0.01.
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TABLE 3
90% confidence intervals (Armitage test), y2a = 3.45, N, = 148

Center of the Width of the
Confidence interval interval interval

0 =04, 7 =69, s, = 29.28

(1.4) 0.226-0.622 0.424 0.396
Siegmund 0.173-0.596 0.385 0.423
4.6) 0.191-0.588 0.390 0.396
(4.6") 0.182-0.583 0.380 0.396
Third order 0.183-0.596 0.390 0.413
0=06,1=232s, =2017
1.4) 0.339-0.921 0.630 0.582
Siegmund 0.261-0.887 0574 ° 0.626
4.6) 0.288-0.870 0.579 0.582
(4.6") 0.268-0.849 0.559 0.582
Third order 0.276-0.883 0.580 0.607
=08, 7r=19,s =1574
1.4) 0.451-1.206 0.829 0.755
Siegmund 0.348-1.169 0.759 0.821
(4.6) 0.384-1.139 ‘ 0.762 0.755
(4.6") 0.347-1.102 0.725 0.755
Third order 0.369-1.159 0.764 0.791

In Armitage’s test, where 7 is large and @ is small, Siegmund’s intervals are
6 ~ 8% wider than that of (4.6). Note that in each of the cases in Table 3, third
order looks slightly better than (4.6) in bias correction, but the width of the
interval of third order is wider than that of (4.6). Compared with Siegmund’s
interval, third order performs better both in bias correction and the width of the
intervals. Although we have pointed out some differences, the performance of

TABLE 4
90% confidence intervals (Pocock test), y2a = 2.986, Ny = 5

Center of the Width of the
Confidence interval interval interval
0 =1.895, r = 3, s, = 6.052
(1.4) 1.068-2.967 2,017 1.899
Siegmund 0.682-3.240 1.916 2.5568
(4.6) 0.853-2.752 1.803 1.899
4.6%) 0.567-2.466 1.517 1.899
Third order 0.814-2.991 1.903 2.177
0=1382,7=4,5 =6713
1.4) 0.856-2.501 1.678 1.645
Siegmund 0.549-2.633 1.591 2.084
(4.6) 0.677-2.322 1.500 1.645
(4.6%) 0.495-2.140 1.318 1.645

Third order 0.639-2.480 1.560 1.841
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third order, (4.6) and Siegmund’s are about the same in the practical point of
view. On the other hand, the differences are bigger in Pocock’s test. Table 4
indicates that Siegmund’s interval and third order are about 30% and 10 ~ 20%
wider than (4.6), respectively. The bias correction of third order and (4.6) are not
as good as in Armitage’s test, but they are in the right direction. Moreover, (4.6)
may be obtained easily from Table 1; we would say that (4.6) outperforms the
others.

It is interesting to compare Siegmund’s interval and (4.6’). Since both disre-
gard the overshoots, we can compare Siegmund’s and our method more directly.
On the whole, Siegmund’s method performs better in bias correction, but usually
it suffers from the wider intervals.

Finally we note that both Siegmund’s and third order fail to give us the upper
bound when 7 = 1. Siegmund’s method fails conceptually, whereas third order
fails numerically (it may be conceptual also).

6. Concluding remarks. Let v,(0) denote the type II error probability of
the repeated significance test defined in Section 1. For || > 6,, Takahashi and
Woodroofe [13] considered the asymptotic expansion of y,(8) for ¢ = 0 with
remainder o(a~%%xp{ —ka)}) as a — oo for some constant k£ > 0. Their expan-
sion is valid for these 6 such that (|0| — 00)\/ﬁ0—> o0 as @ = oco. When || is in
the neighborhood of 6, i.e., (/0] — 0)\/7\70_ is bounded above by some constant as
a — oo, we may apply Theorem 2.2 to derive the asymptotic expansion of y,(6).
As before, we shall let ¢ be the one-sided version of 7 and we shall suppose
0 > 6,. Let v;(8) = P{t > N,}; then it is not difficult to see that

(6.1) v,(0) =y (8)(1 + o(a!)) asa—>
(cf. [13], Corollary 1). Now
(62) v2(8) = B{t* > 16(N, - N) /N,

and x = ;0(N, — N)/ ‘/TV_; is bounded by the assumption. It follows that the
asymptotic expansion of v,(6) is given by 1 minus the right-hand side of (2.11)
with x as previously defined.

The method of this paper (cf. Remark 2.2) may be used to obtain the
asymptotic expansion of E,{X,} up to the terms involving a? as a > .
Another problem of interest is to calculate the coverage probabilities of the
second and third order confidence intervals for these # in the neighborhood of
40, with width O(a~'/2) as @ = oo. These problems are now under investiga-
tion and will be published elsewhere.
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APPENDIX

The proof of Theorem 2.1. is outlined. We shall start with some technical

results. Let [U] denote the largest integer less than or equal to U. For fixed
9>0 welet N,=[N— N*%], N=[2a/6%] and z,,= V2a — 6Vn, n> 1.

LEmMMA A.l. For all x € (— o, ) such that K, = N+ (2x/0)/N is a
positive integer,

K1 _2 116 x?

n=N
110+x2 1/6. =x2\%2 @2 )
*wlalzt 28] "2l T 2] toee e

96

K,-1

> zn¢(zn)—‘/‘1;‘ = ’2‘{‘#(:’6) + —‘/-lﬁ—[g + ;—o]xtb(x)} + o( N~%)

n=N;

and
K,—1 9
nZN, 23(2, )f = 7 {®(x) —x6(x)} +0(1)
as a — co.
PROOF. Let 2, =12a - 0\/7_1_—_{ . Then by Taylor’s theorem
K,-1 _,

Y [ e(x)dx=1-a(z,) +5(a)

n=N; %n+1
1 (60 «
=(x) - = [Z + %]¢(x)

11/ «x2 1/ «x2)\2
—|=l=+=|-=|= +o(1
+N[0(4+20) 2( 20)]“’(’“)(1 o)
+a(a=>).
On the other hand, expanding ¢(x) about x = z, for each x € (2, 2}),
K,—-1 2

y f (x)dx= - E qb(z )1/_{ 9ZN(Z -1) +o(a” 1)]

n=N, “Zn+1
The first assertion follows easily, and the rest of the lemma is proved in a similar
fashion. O
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LEmMA A2. IfN,<n<K,—1, then
[cn+ r—

0n] ( 1 L1 1
o| 2 = 0t - 7+ 3ot et
111 1 2
— | = + — 2 _
+N[2(r 2c0) (22-1)
r
(e ;)zﬁ]«»(zn)(l +0(1))
as a - oo, uniformly in 0 < r <d,, d, = O(log*a) for some k> 1 as a — .
The proof of Lemma A.2 is accomplished by straightforward application of
Taylor’s theorem. We shall thus omit the proof.

Now to prove Theorem 2.1, we let ¢, = y2a/n and ey = ¢, + (2r/n). It
follows from the method of Woodroofe [14], [15] that

Py{t* <x,R > ry}

Z f P{t=n, R e dr)

(A1) 'c +r—6n
={ £ U%,}f 1) oo |
=1+1I, say.

To estimate I, we let m = m(a) = [@®**]. Then for all n < m, there is a
constant C* > 0 such that for sufficiently large a,

(A.2) ¢[(cn +r- 0n)/,/;7] < C*e% em=0),

For all m < n < N, — 1, it is easily seen that

Yu(n, r)sd)[ ‘/_]

and hence, for these n,

(A3) i foo¢a(n, r)dr=0(n) asn - .

Moreover, it is not difficult to see that
1 —6n
(A4) Y ‘/_¢ ‘/_ ] =o(a"®) asa - oo.

n<MN

If n < N, then ¢[(c, + r—0n)/ Vn1< ¢l(c, — 8n)/Vn] for all r > 0. It fol-
lows from (A.2)-(A.4) that

(A.5) I=06(a">) asa— .
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To analyse II, we write
c,+r— 0n]
—— | dr

K1 1
U= £ [Tlulnr) - et )l o 2

n=N, 7o

(A.6) K-l o 1 [e,+r—06n
+ *, J— -
nzLlero V(er, r)=4| == ] r
=1II, + II,, say.
Now, by Lemma 2.1,
Kol w1 1 c,+r—6n
II, = - — ,r)—0¢| ——————|dr
' ,,;lero n 1 r)\/ﬁd)[ Vn ]
(A.7) Kx_l 00

1 1 Je,+ r—6n
A e
=1II,, + II,,, say.
Since r/Vn —> 0, ¢/n— 0,and ¢, > 0 as @ > oo for all N, < n < K, — 1, the
dominated convergence theorem and Lemma A.1 yield

f - j;ooyc(ﬁ, r)dr®(x) +o(a™?)

(A.8) EH“ =N

as a = 0. To control II,,, we divide the range of integration into three
subintervals ry<r <A, Ay<r<AXA, and r>A\,, where Ay >r, and A, =
o(expylog n). Then by Lemmas 2.1 and A.2, we have

(A9 II,,=0(a™') asa— o,

See Woodroofe and Takahashi [17] for related calculations.

It remains to evaluate II,. We shall divide the range of integration into
ro<r<d,and r > d, = O(log*a), k > 1. The contribution of the latter inter-
val is easily seen to be of the order o(a™!) as a > w. For roy<r<d,,
we expand (e}, r) into Taylor series about & = 6. Note that & =60 +
2,/ VN + (22/6 + 2r)/N + o(a™") uniformly in r < d, and all N, < n < K,.
By Lemma A.2, it follows that

1, - j:Z_Njf:[\p(e,r) ; %{—(r+ ‘;—0)¢(o,r) + (8, r)}z,,
+——1A7{—(r+ —c2—0)\[/(0,r)z,2,
(A.10) +{%(r+ —c;)z - (c+ g)}\p((), r)z?

2
_ i(, + ?”) $(0,7)+ 79(0,r)2 + 209/(0,7)

2
+ %\p"(ﬂ, r)zﬁ}] dr(b‘(/;") +o(a™?t)
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as @ — oo. By Lemma A.1, the main part of the theorem follows from (A.8) and
(A.10), and the theorem follows easily from substitution.
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