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REGRESSION MODELS FOR NONSTATIONARY
CATEGORICAL TIME SERIES: ASYMPTOTIC
ESTIMATION THEORY

By HEINZ KAUFMANN

University of Regensburg

For the analysis of nonstationary categorical time series, a parsimonious
and flexible class of models is proposed. These models are generalizations of
regression models for stochastically independent categorical observations.
Consistency, asymptotic normality and efficiency of the maximum likelihood
estimator are shown under weak and easily verifiable requirements. Some
models for binary time series are discussed in detail. To demonstrate asymp-
totic properties, a theorem is given addressing maximum likelihood estima-
tion for general stochastic processes. Then it is shown that the assumptions
of this theorem are consequences of the requirements for categorical time
series. For this proof some lemmas are used which may be of interest in
similar cases.

1. Introduction. Until recently, categorical time series were mostly analyzed
as time homogeneous Markov chains, i.e., Markov chains with stationary transi-
tion probabilities. This holds, in particular, if only a single time series is
observed, or for panel data, if a model is fitted separately for each individual
time series. The asymptotic theory for inference for time homogeneous Markov
chains is given in Billingsley (1961). Assuming that the original time series { y,},
say, is a homogeneous chain of first order is very restrictive. By considering the
vectors {(¥,.--, ¥;—z+1)}, higher-order Markov chains can be reduced to first-
order Markov chains, but without further constraints the number of parameters
increases exponentially with the order of the Markov chain. Moreover, in many
applications, nonhomogeneous Markov chains are more appropriate, since exoge-
nous variables possibly give rise to nonstationary transition probabilities.

Generalizing regression models for independent categorical observations, we
obtain a model family admitting a flexible and parsimonious treatment of
higher-order dependence as well as a form of nonstationarity (Section 2). It is
assumed that the conditional distribution of y, given the whole past, is a
function A(-) of a linear combination Z;B8. The matrix Z, depends on exogenous
variables and past observations, and 8 is a vector of unknown parameters. Some
particular models for binary time series are given in Section 3.

Statistical inference is based on the asymptotic properties of the maximum
likelihood estimator (MLE) of B8. For the general model, conditions assuring
these properties are stated in Section 5. Checking of the conditions is illustrated
in Section 6 with some corollaries for the binary models of Section 3. A theorem
stating asymptotic properties of the MLE for general stochastic processes, not
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80 H. KAUFMANN

only for categorical time series, is given in Section 7. In Section 8, the assump-
tions of this theorem are verified from the assumptions made in Section 5, using
some lemmas which may be of interest in similar cases.

The model family of Section 2, especially possibilities for the choice of {Z,}, is
considered in more detail in Fahrmeir and Kaufmann (1987). Moreover, under
the assumptions of Section 5, a theorem on asymptotic xZ2-distributions of
familiar test statistics is given there, and some tests of special interest in the
time series situation are discussed.

In recent years, several other models for categorical, mainly binary, time series
have been proposed. In the development of D(iscrete) ARMA processes, Jacobs
and Lewis (1983) have been guided by the autocorrelation structure of ARMA
processes for continuous variables. Their AR(l)-processes form a subclass of
homogeneous Markov chains of higher order, parametrized in a particular way.
The models are designed for a parsimonious treatment of stationary time series
with discrete, interval-scaled observations. If the observations are categorical,
the models are meaningful only for binary observations. Binary AR(!) processes
fit into our setting with the identity mapping A = id.

In a different approach, the binary observable time series {y,} is assumed to
be generated by truncation of a latent series { y,*} [e.g., Gourieroux et al. (1983),
Grether and Maddala (1982) and Heckman (1981)]. In the most general model
considered by Heckman (1981), the latent variable y,* is a linear combination of
exogenous variables, past values of {y,} and {y*}, and an error term. Asymptotic
estimation theory is given only by Gourieroux et al. (1983) for the special
situation where past values of {y*} have no influence, and the error process is a
Gaussian ARMA process. If past values of {y,*} have no influence and the error
variables are i.i.d., not necessarily Gaussian, then the observable time series is of
the type discussed in Section 2, and the results of Section 5 become applicable.

A neurophysiological example is presented by Brillinger and Segundo (1979).
This example involves the firing of a neuron subject to presynaptic currents.
Recording by {y,} firing or not in successive time intervals, certain assumptions
lead to a binary probit model similar to (3.2). Finally, we mention Hauser and
Wisniewski (1982), who propose regression models for semi-Markov processes
with continuous time.

2. Regression models for categorical time series. Let {y, t=1,2,...}
be a time series with m possible categories for each observation. Suppose the ¢th
observation to be given as a vector y, = (¥, ..., )’ of length ¢ = m — 1, where
the component y,; is one, if the jth category is observed, and zero otherwise. Let
7, = (m,..., )" denote the corresponding vector of conditional probabilities
given the past observations, i.e., 7,; = P(y,; = 1|y,_y,-.., 1), J=1,...,9. The
probability of any event which is determined by a finite number of observations
can be computed from the conditional probabilities {,}. In most applications
however, these quantities are unknown and estimated from the first ¢ observa-
tions.

A family of models admitting a flexible treatment of higher-order dependence
as well as nonstationarity can be obtained by generalizing models for indepen-
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dent categorical responses {,}. In a regression model for categorical time series,
we assume that, after a certain time /, the conditional probabilities are of the
form

(2.1) m=h(ZB), t>L

Here B denotes a vector of unknown parameters, which lies in a p-dimensional
open set B. The link function h maps a subset D C R? bijectively onto
{(myy.e0ym), >0, j=1,...,q, X{m; < 1}. The inverse of the g-dimensional
logit function is an example for %, leading to the logit model logit =, = Z/B, ¢ > L.
The assumptions on A imply that all conditional probabilities are strictly
positive. In principle, it is possible to relax this assumption. However, this
requires a more refined theory, which shall not be studied in this paper.

The p X g-matrix Z, is a known function of past observations and exogenous
variables, which are assumed to be nonstochastic and known at time ¢ Thus, the
matrix Z, is predetermined in that its value is fixed before y, is observed. If Z, is
a function of exogenous variables and the last / observations only, then {y,} is a
Markov chain of order /. In general, this Markov chain is nonhomogeneous. It is
homogeneous, if Z, does not depend on exogenous time varying regressors. In
particular, this means that the time ¢ must not enter explicitly but only through
Ys_1r+++» Ye—sr 1f Z, depends only on exogenous variables, we obtain the well-
known categorical regression model with independent observations.

3. Some models for binary time series. For observations with only two
possible categories, the vector y, is one dimensional, with y, = 1 if the first and
¥, = 0 if the second category is observed. The matrix Z, is a vector, for instance
Z!=(, ¥i_1y---5 Ys_1), leading to

(8.1) 7= h(Bo+ BiYsr + - +B1Y-1)s

a homogeneous Markov chain of order /. A nonhomogeneous Markov chain of
order /, with exogenous variables x,,, ..., x,;, is given by

(3.2) T =h(By+ BrY—r +  FBY st xg + o Fapxy,).

For these autoregressive processes, the number of parameters increases only
linearly with I. Quadratic terms y,_; - ¥_3,..., Y,—1 * X4, €tc., or higher-order
interaction terms can also be included. If the model is homogeneous and all
interactions up to y,_, - - -+ -y,_, are included, then the model contains as many
parameters as the general binary homogeneous Markov chain of order I, and
within this class, the model is saturated. The only remaining restriction is that
all transition probabilities are strictly positive, due to the assumptions
on h.
To illustrate these features, consider the model

Ty = h(.Bo + B1Yi—1 + BaYi—o t Bsxy + BuYi—1Yi—2 + BsYeo1%,
+BsYi—o%s + BrYr1Yi—2%:),

with a nonrandom scalar sequence {x,} assuming at least two values. In general,
this is a nonhomogeneous Markov chain of order two, including quadratic and

(3.3)
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cubic interaction terms. Setting some of the parameters equal to zero, various
submodels are obtained. For further reference, we mention

(34) 7, = h(By + Br1Ys—1 + Bsx, + BsYi—1%,)s
nonhomogeneous Markov chain of order one, and
(3.5) m,=h(By + B1Ys—y + BoYy—o + BiYi-1Y-2),

the saturated homogeneous Markov chain of order two.

4. Maximum likelihood estimation. This section and the next one refer to
the general model of Section 2. From the first ¢ observations, the parameter 8
can be estimated by the maximum likelihood method. With y,,, =1 — 7y, .,
Tom = 1 — L7 'm, ;, the log-likelihood of the observations y;,,,..., ¥ is

sj?

t m
lt(B) = Z Z ysjlnﬂsj? s h(Zs’B)
s=Il+1 j=1

Strictly speaking, this is the conditional log-likelihood, given the starting values
Y15+ -5 ¥ If the starting distribution does not depend on B, then maximization
of the unconditional likelihood would lead to the same estimates. If it does
depend on B in a known way, then the unconditional likelihood can be used for
estimation. In any case, the loss of information on B, due to maximizing the
conditional likelihood only, vanishes asymptotically, under the conditions of
Section 5.
The first derivative of the log-likelihood, the score function, is

t
(4’1) st(B) = ZZSUS(B)(ys - Ws(ﬁ)))
I+1
using u = logito A instead of A for convenience, and defining U/(B) =
[du(y)/dy])’, evaluated at y = Z/B. This matrix has dimension ¢ X ¢q. Set
a,(B) =s,B) — s,_(B) for the increments of the score function. The condi-
tional information,

t
G(B) = X covg(ay(B)Ys-1,---» 31),
1+1
plays an impbrtant role in the asymptotic considerations. In our context, it is
given by

t
(4.2) G(B) = L ZV(B)Z;,
I+1
with Vi(B) = U(B)ZLBU/(B), E,(B) = coVi(%ls—1,---» 7). Integrating out
the observations y,,,,..., ¥, we get E(B) = covg(s,(B)y}, ..., ¥), the informa-
tion for given starting values. By further integration, we obtain the uncondi-
tional information F(B) = covgs,(B). Since the starting distribution and the
matrices {Z,} as functions of past observations and exogenous regressors are
unspecified, we do not give explicit expressions for E,(B), F,(B). Finally, the
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second derivative of the log-likelihood, multiplied by —1, is H,(8) = G(B) —
R ,(B), with the remainder term

t q
s=1l+1 j=1
where W, (B) = 82uj(Z;,B)/ayay’. For the logit model, A = logit™?!, these ex-
pressions simplify considerably:

s(B) = ¥ 25— m(B)),  H{B)=Gi(B) = lilzszs(mz;.

I+1

Without concavity assumptions, the assertions of the following sections refer
to local maxima. Hence we consider as MLE any measurable function g, of

Y15+ -+, ¥, Mmaximizing the log-likelihood locally on B. Since B is open, we may
equivalently solve
(4.4) s:(B) =0, H(B,) npositive semidefinite.

A MLE exists if and only if (4.4) has a solution ,l?t inside of B. If H,( ,lft) is
positive definite, then the MLE is locally unique. Outside of the (measurable) set
where local maxima exist, /?t may be defined as an arbitrary constant, to obtain a
random variable defined throughout the sample space.

If the admissible set B is open and convex and the log-likelihood is (weakly)
concave, more distinct assertions can be obtained. This is due to the fact that in
this case the zeros of the score function form a convex set maximizing the
log-likelihood globally. Hence, a random vector /ft is a (global) MLE if and only if
it is a function of y,,..., 3, and s,(8,) = 0 on the set where s, has a zero at all.
(Global) uniqueness of B, is equivalent to full rank of H( /?t). In fact, concavity of
the log-likelihood holds for most of the common link functions, see Section 6 of
this paper and Wedderburn (1976) for dichotomous, and Kaufmann (1987) for
polytomous observations. Both papers also give uniqueness conditions which can
be checked without computing a MLE; Wedderburn (1976) also discusses its
existence for a finite sample.

5. Asymptotic estimation theory. At first, we note the following simple

remark. Varying y,_,,..., y; and keeping the exogenous variables fixed, we
obtain for any ¢ > / a finite number n(¢) of possible values of Z,,
(5.1) Zirseeos Ly neys ‘

where each Z, ; is nonrandom. This list is used in formulating the following
conditions assuring asymptotic properties of the MLE. For any symmetric
matrix A, its smallest (largest) eigenvalue is denoted by A, ;.(A) [A.(A)].

AssuMPTION A. (i) The time series {y,} is a Markov chain of order /, for all
parameter vectors 8 out of the admissible set B.

(i) The possible values {Z, ;} lie in a compact set C such that Z’B lies within
the domain D of A, forall Z € C, 8 € B.
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(iii) )\mm(22=1+1>:;!(=sl)zs, 724, ;) = .
(iv) The link function A is two times continuously differentiable,

det(dh(y)/dy) # 0.

Assumption A(i) holds if and only if the matrix Z,, ¢t > [, does not depend on
observations more than [ lags back. Apart from Z’3 € D forall Z€ C, B € B,
assuring that the argument of A is always well defined, A(ii) and (iii) depend
only on the asymptotic behaviour of the possible values {Z, ;} of the prede-
termined matrices. In the classical linear regression model with i.i.d. errors and
the sequence {z,} of regressors, A; (X2,2!) — oo is necessary and sufficient for
weak [Drygas (1976)] and strong [Lai, Robbins and Wei (1979)] consistency. In
A(iii), one has additionally to sum over the possible values of Z, at each s.

As norming quantities we use square roots of positive definite matrices. By
AY/?(AT/2) we denote a left (the corresponding right) square root of a positive
definite matrix A, ie, AY247/2= A. In addition, we set A~Y2 = (AY/?)7}
A~T/2 = (AT/2)~1, Left (right) square roots are unique up to an orthogonal
transformation from the right (from the left). If A is nonrandom or measurable
with respect to some o-field, then A2 is assumed to share this property.
Unique, continuous “versions” of the square root are the symmetric, positive
definite square root and the Cholesky square root. The left Cholesky square root
is defined by the condition to be a lower triangular matrix with positive diagonal
entries.

THEOREM 1. Under assumption A, the probability that a locally unique
MLE exists converges to one. Moreover, there exists a sequence { ﬁt} of MLE’s
which is consistent and asymptotically normal,

(5.2) G*(B)(B,— B) »4 N(0, I),

with an appropriate square root GI/*(B), for instance the Cholesky square root.

REMARK 1. Appropriate square roots, in particular the Cholesky square
roots, of G( ,lft), H,(B) or H( ﬁt) can also be used as norming quantities. This
holds also for arbitrary square roots of E,(B) or F,(B), provided they do not
depend on observations y,, s > [, resp. are nonrandom, according to our conven-
tions on square roots.

Concavity of the log-likelihood is implied by concavity of log 2, (y), j =
1,..., m, where h(y) is the jth component of the link function, j=1,...,q,
and h,(y) =1 — X9_,h,(y). Following the discussion at the end of Section 4, we
have the following corollary.

COROLLARY 1. If condition A holds with a convex admissible set B, and if
log hi(y) is concave, j=1,...,m, then the probability that a unique MLE
exists converges to one. Any sequence {B,} of MLE’s is consistent and asymp-
totically normal as in Theorem 1.
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In conjunction with Theorem 1, several efficiency results can be derived from
the LAN (locally asymptotically normal) condition, see Ibragimov and
Has’minskii (1981, Chapter 2), Jeganathan (1982) or Basawa and Scott (1983,
Chapter 2). Recall that, due to our conventions on square roots, E!/%(f8) denotes
a square root of the conditional information nonrandom for given starting
values.

LEMMA 1. Under assumption A, the LAN condition is satisfied for any
B € B and any norming sequence {E; T/%(B)}, for given starting values.

Theorem 2 below picks out two examples of the possible efficiency results. The
MLE [?t is compared with estimators ﬁt, which are functions of y,,..., y, and, for
some sequence { E7/?%(B)}, regular in the following sense: for A € R?, set B(¢) =
B + E;T/%(B)A. The estimator B, t> I, is regular, if {ET/%(B) B, — B(t))}
converges, under {FPy,(-|yy,--., ¥}, in distribution to some random variable
Z(B), for any fixed A.

THEOREM 2. Under assumption A, the following statements hold for any
norming sequence (ET/%(B)}: the MLE {B,} of Theorem 1 is regular. Within the
class of regular estimators {B,}, the asymptotic probability of concentration,

lim P(E{*(B)(B, - B) € C),

attains its maximum if {B,) = { 8.}, for any symmetric convex set C. Within the
class of regular estimators {B,} with a normally distributed limit vector Z(B) ~
N(0, Zp) say, the covariance matrix I of { B}} is minimal in that the difference
2 — I is always positive semidefinite.

REMARKS. (i) Under the assumptions of Corollary 1, Theorem 2 holds for
any sequence of MLE’s.

(ii) For certain loss functions, { ,ét} asymptotically has minimum expected loss
within the class of regular estimators. If the MLE is compared with estimators
where convergence in distribution is required for A = 0, 8(¢) = B only, then the
assertions above continue to hold for almost all points of the parameter space B.
See the references above for these and further results.

For many Markov models of order [, e.g., (3.1), (3.2) or (3.5) and its submodels,
there is no interaction between the past observations and the exogenous vari-
ables. Equivalently, after proper reparameterization, the matrix Z, can be
partitioned into two parts, Z; = (Y(¥Y,_1,.-+» Y—;1)» X;)’. The first matrix has
dimension p, X ¢. It must always be the same function of y,_,,..., ¥,_;, inde-
pendent of ¢ The (p — p,) X ¢g-matrix X, is the matrix of exogenous variables.
In terms of the list (5.1), the matrices Z, ; can be partitioned,

(5.3) z;,=(Y/,X/), J=1,...,n,t>1,

and n(¢) = n is independent of ¢. The matrices Y;,..., Y, are the images of the
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mapping Y. If such a partitioning is possible, we can always achieve, by proper
reparameterization, that there are no constants left in the Y-part. Equivalently,
the system p = Y/A, j =1,..., n, only has solutions with p = 0.

If there is no interaction between the past observations and the exogenous
variables, we can split the divergence condition A(iii) into two parts. For the
Y-part, we need only require full rank. For the X-part, a simpler divergence
condition can be given.

COROLLARY 2. Assume that, for a Markov chain of order I, the matrices
Z, ; can be partitioned as in (5.3). Let the system p = Y/\, j=1,...,n, only
have solutions with p. = 0. Then a necessary and sufficient condition for A(iii) is

™M=

t
(54) >\mm( YJY;,) > O’ >‘mm( Z XsXs,) - .

1 s=Il+1

J
Hence, the conclusions of Theorems 1 and 2 hold under assumption A, with
A(iii) replaced by (5.4).

6. Some corollaries for binary time series. To give some discussion of
the assumptions assuring asymptotic properties, we will see how they reduce for
the binary models introduced in Section 3.

The conditions on the link functions A simplify to the following

AssumpPTION H. The link function £ maps an open interval (d,, d,), with
possibly infinite endpoints, onto (0, 1). It is two times continuously differentiable
with a strictly positive derivative.

This assumption holds, e.g., for logit and probit models, where # is the logistic
resp. normal distribution function, (d;, d,) = (— o0, +0), for the identity
link A(y) =7, (d;,d,) = (0,1) and for the angular transform h(y) = sin’y,
(d,, dy) = (0, 7/2). Moreover, for these link functions the inequalities

(6.1) (h—1)""<hh2<h!

hold, where A (%) denotes the first (second) derivative. Under assumption H,
(6.1) is equivalent to concavity of log & and log(1 — &) and implies concavity of
the log-likelihood.

For the homogeneous autoregressive process (3.1), there are n = 2! possible
values of Z,, which are actually independent of ¢, namely

Z, = (1,0,...,0,0),
Zg = (1,0,...,0,1),
(6.2) :

Z,, =(1,1,...,1,1).

The compact set C may be defined as the convex hull of these points. Then,



CATEGORICAL TIME SERIES 87

under assumption H, condition A(ii) reduces to

d, <Z/;B < dj, Jj=1,...,n, B € B,
and even further to a system of two inequalities,
(63) d,—s,+5,<By<dy— s, — 8y, B=(By,By,...,8,) €B,

where s, = }X!B;, s, = 3X%|B. These inequalities can be solved for B choosing
B, - .-, B, subject to 2s, < d, — d; and then computing the bounds for 8, given
in (6.3). If d; = — o0 or d, = + o0, then the corresponding inequality does not
restrict the admissible set B. In the logit or probit model, for instance, condition
A(ii) can be dropped under (3.1). Further, we have

t n)
(64) }\mm( E Z Zs st{j = (t_ Z)Amln( Z J) (J))
s=Il+1 j=1

It is well known that X7_,Z ,,Z/; is of full rank, whence A(iii) follows from (6.4).

Collecting together, we have the following corollary.

COROLLARY 3. For the homogeneous autoregressive process (3.1), condition
A holds if and only if the link function h fulfills condition H and the parameter
set B fulfills (6.3).

The more general autoregressive model (3.2) allows for exogenous variables
x,= (%,,..., %), without interaction between x, and y,_,,..., y,_;, however.
The possible values of Z, are now obtained by appending x, to any vector
of (6.2). They depend on ¢, if x, assumes at least two values. With some addi-
tional arguments, A(ii) can be reduced again. For simplicity, we consider only
(d,, dy) = (— o0, +0). Then A(ii) holds if and only if {x,, £ > [} is bounded.

Regarding A(iii), we can apply Corollary 2. Defining Y; = Z, j), Z asin (6.2),
yields p=1, A =(1,0,...,0), to be a solution of p=Y/A, j=1,...,n, in
conflict with the assumptions of Corollary 2. Hence we must drop the constant in
Y, )= , n, and consider (1, x;)’ as exogenous vector. Then, due to full rank
of Y1Z 2 iy the matrix 1YY/ is also of full rank, and p = 0, A = 0 is the only
solutlon of p=Y/A, j=1,..., n. In the divergence condition for the exogenous
variables, utilizing the inversion formula for partitioned matrices and bounded-
ness of {x,}, we can eliminate the constant by centering the vectors x,. Then
A(iii) reduces to the assumption that these vectors are sufficiently scattered.
This holds, for instance, if its empirical covariance matrix converges to a positive
definite matrix.

COROLLARY 4. For the nonhomogeneous autoregressive process (3.2), as-
sume that the link function h fulfills assumption H with d, = — o0, dy = + c0.
Then assumption A holds if and only if the exogenous variables x,=
(X45--+5 %), t> 1, are bounded, and the smallest eigenvalue of their scatter
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matrix diverges:

Y (v - E)(xr, —F) | e, F=(t-1)' T,

s=Il+1 ) I+1

For the model (3.3) and its submodels, we assume again d; = — o0, d, = + 00.
For the homogeneous model (3.5), condition A(iii) holds without further assump-
tions, with similar arguments as those preceding Corollary 3. Next we consider
the nonhomogeneous submodels of (3.3) without an interaction term between x,
and y,_, or y,_,. Again, A(ii) holds if and only if {x,, ¢ > [} is bounded. Under
this assumption, applying Corollary 2, it follows that

t t
(6'5) Z (xs_-’?t)z_’ 00, x,= (t_ l)*l sz»
s=Il+1 I+1

is necessary and sufficient for A(iii). It turns out that the same statement holds
for (3.3) and (3.4), although there are interaction terms x,y,_, or x,y,_,: for the
simpler model (3.4), the possible values of Z, are

Z,,=(@1,x,,0,0), Z,o=(1,%,1,%,),
after interchanging coordinates two and three. With

t
t—1 ) x,

I+1
Ct= t t ’
Yx, Yl
I+1 I+1
we have
¢ 2C, C,
Y (2,125, + 2,52, )=[ ' ]
+1 el 22 Ct Ct
Since

C, C d
& &) fra

is positive semidefinite, we can apply Lemma 4 of Section 8 with a« = } and

obtain that A(iii) is equivalent to A,; (C,) = oo, which is in turn equivalent to
(6.5), if {x,, t > I} is bounded. By repeated application of Lemma 4, this can also
be shown for (3.3).

COROLLARY 5. For each submodel of (3.3), assume that the link function h
fulfills assumption H with d, = — 0, d, = + . For the homogeneous model
(3.5) and its submodels, this implies condition A. For the nonhomogeneous
models, A is valid if and only if {x,, t > l} is bounded and (6.5) holds.

7. A general theorem on maximum likelihood estimation. The follow-
ing theorem addresses maximum likelihood estimation for general stochastic



CATEGORICAL TIME SERIES 89

processes with discrete time. Let {y, ¢t=1,2,...} be such a process on a
probability space (£, %, P). The o-field generated by the first ¢ observations
Y1r---» Y, is denoted by %,, %, = {F, 2}. The probability measure P is assumed
to belong to a parametric family {F;, 8 € B}, where the parameter space B is an
open subset of R?, p € N. For fixed ¢, let the projections {P, 4, 8 € B} on the
first ¢ observations be mutually absolutely continuous. Then the corresponding
likelihood exists. If the likelihood is continuous, it is nonzero for all 8 € B and
unique up to a factor which does not depend on B, a.s. Beyond continuity, the
likelihood is assumed to be two times continuously differentiable. Let I,(B),
s,(B), —H/(B) denote the log-likelihood and its first and second derivatives,
respectively; in addition, define a,(8) = s,(8) — s,_(B)-

Theorem 3 below parallels Theorem 1 and refers also to local maxima. Hence
the same definition of a MLE as in Section 4 applies. Asymptotic properties can
be obtained under the following condition N. This condition refers to the true
probability measure P = P,. Usually, the assumptions have to be checked for all
B € B; the constants involved may depend on B. To simplify notation, depen-
dence on the true parameter vector 8 is mostly suppressed.

AssuMmpPTION N. (i) The score function {s,}, evaluated at B, is a square
integrable zero mean martingale with respect to {2 ,}.

(ii) With some nonrandom nonsingular norming sequence {A}/?}, the condi-
tional information G,(8) = Zicovg(a(B)|¥,_,) converges to a random a.s. posi-
tive definite matrix,

A;VPG(B)ATT2 -, V(B).

(iii) The Lindeberg condition holds, i.e., for any ¢ > 0,

t
ZE(a;At_lasIts(a)Ials—l) _)p O;
1

where I,(¢) is the indicator of {a/A; 'a, > ¢%}.
(iv) The continuity condition
sup [A;V2(H(B) - G)A; ™| =, 0,
BeN,(®)
with N,(8) = {8: ||AT% B — B)|| < 8}, holds for any § > 0.
THEOREM 3. Under assumption N, the probability that a locally unique

MLE exists converges to one. Moreover, there exists a sequence { B} of MLE’s
which is consistent and asymptotically normal,

(7.1) G*(B,~ B) > N(0, I),

with an appropriate square root GI/2.

REMARKS. (i) The limit law (7.1) holds, for instance, if GI/?A;7/? is
the right Cholesky square root of A;'/2G,A;7/2. Condition N(ii) implies
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nonsingularity of A;/2G,A;7/? in the probability limit, hence such a version of
GI/? exists, with probability converging to one.

(ii) The situation where the limiting matrix V(8) is truly random is referred
to as nonergodic, whereas V(8) a.s. constant is referred to as ergodic [e.g.,
Basawa and Scott (1983)]. In the latter case, one can renorm to obtain V(8) = I.
Then N(ii) holds for any version of A'/2, if it holds at all, and in (7.1) one can
choose the Cholesky square root G/2.

(iii) In the limit law (7.1), the matrix G, can be replaced by G( B, if,
additionally, the continuity condition N(iv) holds with G B) instead of H,(B).
Concerning appropriate square roots, Remarks (i) and (ii) remain valid, with

G, B,) instead of G,.

(iv) Similar results have been given by Sweeting (1980) and Basawa and Scott
(1983). In the theorem presented here a martingale approach is used instead of
requiring uniformity or continuity of convergence in N(ii) and N(iv), which may
sometimes be difficult to check. A similar martingale approach is also used by
Jeganathan (1982), for an asymptotically centering sequence of estimators.
However, he does not provide conditions under which the MLE is asymptotically
centering. In contrast to the papers mentioned, asymptotic normality of the
MLE is stated here with random norming. This is facilitated by considering
versions of the square root which are different from the symmetric positive
definite square root.

8. Proofs. In establishing limiting properties of nonstationary Markov
chains, the §-coefficient of Dobrushin (1956) plays an important role. For a
stochastic m X m-matrix @ = (g,;), it is defined by

m
8(Q) = jmax Y |g;; — 9l
LI k=1

From Isaacson and Madsen (1976, Lemmas V.2.2 and V.2.3) it follows easily that
(@) <1,

(8.1) gﬁzlqjk >c=8Q)<1-me,

(8.2) 3(Q:Q:) < 8(Q,)3(Qs),
for a product of stochastic matrices Q,, @,. With the 8-coefficient, the following

mixing inequality can be obtained.

LEMMA 2. Let y,, y, be random variables with the same finite state space
{1,..., m} and transition matrix @ = (q,;), q;, = P(y, = k|y, =j). If the ran-
dom variable x; is a function of y;, i = 1,2, then

|cov(x,, x,)| < 28(Q) Elx, |max|x,|.
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PROOF. Setting (p;,),(p.;) for the marginal distributions of y, resp. y,, we
have

cov(x,, xz) = le(j)pj+ sz(k)(ij —p+k),
J k
|cov(x,, x,) | < E|x1|mkax|x2(k)lm}'a_lx Z|ij — Pl
k

;Nith Tulgjn = Parl SEipiiXilqjr — quxl < max;Xylq , — qul, the assertion fol-
ows. O

REMARK. The restriction to a finite state space is made for simplicity only.
It could be removed similarly as in the proof of Thegrem A6 in Hall and Heyde
(1980).

To prove Theorem 1, we will verify the assumptions of Theorem 3 for given
starting values, since f is estimated from the conditional likelihood. Hence the
conclusions of Theorem 3 at first hold conditionally. Since there are only a finite
number of possible starting values, the unconditional statements follow easily by
integration. Time ¢ — [ of Section 7 is to be identified with time ¢ of the earlier
sections; indices always refer to the latter one. For instance, %, denotes the
o-field generated by y,,..., ». As in Section 7, the argument B is dropped
whenever possible.

More specifically, we will verify condition N with A, ;= E(B), V(B8) = I. An
important intermediate step is made in the following lemma, which states in
particular N(ii).

LEMMA 3. Condition A implies

(8'3) >‘mm(Ft) - 0, Amin(Et) - o0,
the latter for any starting values. Moreover, under assumption A,
(84) FAGE ™ -, I,  E;VGE Y-, 1

both hold unconditionally, the latter also for given starting values, for arbitrary
square roots {F;'/?}, (E}/*}.

PrROOF. From (4.1), it is easily seen that {s,, ¢ > [} is a square integrable zero
mean martingale, under P as well as under P(-|%,). Hence {s,} has orthogonal
increments {a,}, and G, (= LZ,V,Z!) = LE(a,a,|%,_,). By integration,

(8.5) F,=EG, and E,=E(G,¥%),).

In the sequel, we assume I > 0 without loss of generality. Consider w,=
(Y -++» Yy_1+1), t= 1 This process forms a Markov chain of first order, with
state space W, say. Since Z, € C compact, it holds that inf,. , ;P(y,; = 1|%,_;)
> 0. By induction and summation, it follows that

(8.6) inf P(w,,,=w|¥%,) >0,

t,s,w
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subject to ¢t > I, t > s and w € W. In particular, we have
(8.7) inf P(w, = w) >0, infP(w,=w|¥,) >0,

where the infimum is over w € W, t > 2l. The compactness condition A(ii),
together with det dh(y)/dy # O resp. det du(y)/dy # 0, also implies that

(8.8) inf A,y (V;) > 0.
t>

Since F, = YEZV,Z! [see (8.5)], the inequalities (8.7) and (8.8) yield, with some
constant ¢ > 0,

t n(t)
Amin(F't) = c>\min Z Z Zs,jZ.s{,j .
s=2I+1 j=1

Hence A, (F,) = oo follows from A(iii). In particular, F; is nonsingular for all
t > t,, say. The second inequality of (8.7) gives A ;.(E,) = oo, with analogous
arguments.

To show F, '/2G,F; 7/? - I, consider the triangular array

Vst = >\/'Ft_1/2st'sZs,F‘t_T/2}\r l<s =< ta > th
where A is fixed, A = 1. We have
¢ t
Y o, = NF,V2GF TN, 2 Ev, =1.

I+1 I+1
For F,'2G,F; "% -, I, it is sufficient that

t
(8.9) var Y, v, = 0,

I+1

for any fixed A with A = 1. This can be shown by an application of Lemma 2.
Since v,, is a nonnegative random variable depending only on w,_,, we obtain

(8.10)  |cov(v,, 0,)| < 2E0, M8(Q,- -+ *Q,_,), I<r<s<t,

where M, = max, _ _,0,,, and @, denotes the transition matrix w,_, - w,. From
(8.8), it can be inferred that for products @, - - - -Q,,;_, of length /, all entries
are bounded away from zero, uniformly for all ¢ > I. In view of (8.1), there exists
ay<1lwithd(@, -+ Q,.; ;) <7, forall ¢£> I From (8.2), we obtain

(8.11) 8Q, - Q,_,)<y*, nl<s-r<(n+1)L
Inserting (8.11) into (8.10) and summing up yields

21 21
Z Z'COV(DN’ vst)' = 1—-v ZEUHM: - 1- 'YMr
r s "

In view of

Varzost = 22 Z |COV( Drt’ Dst) |’
r s
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it follows that, with ¢ = 41/(1 — vy),

t
var ). v, <cM, < c( supkmastVsZ;)/)\mFt.
s=Il+1 s>1
The numerator of the right side is finite, from Z, € C compact. The denominator
diverges, hence (8.9) holds.
The second part of (8.4) can be shown with analogous arguments, for given
starting values. The unconditional result follows by integration. O

ProoF OF THEOREM 1. It is easy to see that any model of Section 2 fits into
the general setting of Section 7, provided the link function is two times continu-
ously differentiable. Hence we concentrate on condition N, for given starting
values. Assumption N(i) follows immediately from (4.1) and has already been
used in the proof of Lemma 3, which contains N(ii) with A4,_, = E(B8), V(8) = L.

Next we demonstrate the Lindeberg condition N(iii). The increment of the
score function is a,= Z,U(y, — =,). Since Z,€ C compact, it follows that
sup, jlla;|| < co. This implies a’E; 'a, < ¢/A ;. (E,), with some constant c.
From A, (E,) = oo, it follows that I,(¢) = 0, [ < s < ¢, if ¢ is sufficiently large,
¢ > 0 fixed. Hence N(iii) holds.

Equivalently to the continuity condition N(iv), it can be shown that, for any
§ > 0 and any fixed but arbitrary A,

(8.12) sup NE;V*(H,(B) — G,)E;7/?\ -, 0.
BeN,®)

To verify (8.12), we decompose H ( B) [compare Fahrmeir and Kaufmann (1985,
proof of Theorem 4)]. Since H,(B) = G(B) — R B),

(8.13) 8= sup NE;'*(G(B) - G,)E; 7\ -, 0,
Ny(8)
(8.14) sup NE; 'R (B)E;T/*A -, 0
Ni(3)

together are sufficient for (8.12). Let ¢, be such that E,, ¢ > ¢, is nonsingular.
With the vectors w, = NE;/?Z,, I < s < t,and w, = L} _,, w/w,,, we have

g = sup Lw,(Vi(B) — V,)w,,
Ny(8) s

g=<w, sw |V(B)-V] t=t,.
BEN,(8), s>1

Using A(ii), sup, . ,|IV( B - V.|| can be estimated from above by a continuous
function of B with a zero at B = B. Since {N(d)} shrinks to 8, we obtain

Csup [Vi(B) - V|~ 0.
BeN,(d), s>1

On the other hand, using (8.8), it can be shown that Ew, is bounded, uniformly
in ¢. By an application of the Markov inequality, (8.13) follows.
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By further decomposition, we obtain that

(8.15) sup Y w (W, (B) = W,;)w,( 3, — 7,;) =, 0,
(816) :l:};) Zw;thj(E)wst(ﬂsj - '”sj(ﬁ)) _)p 0’
(817) ZwsIthjwst(ysj - Wsj) -—)p 01

for any j, I <j < q, jointly are sufficient for (8.14). Statements (8.15) and
(8.16) can be shown similarly as (8.13). For the increments of (8.17), v, =
w,W, ;w,(¥,; — 7,;), it holds that :
(818) E(v,0%,_,) =0, var(v, ¥, ;) < c(ww,,)’, I<s<t,

where ¢ < oo is an upper bound on ||W, || var(y,; — 7, |%,_;), s > I From A(ii)
and (iv) and the boundedness of {y,;}, such a bound exists. In particular, (8.18)
states that, for any ¢ > ¢,, {v,,, [ < s < t} are the (orthogonal) increments of a

square integrable zero mean martingale. Integrating out y,.,,..., y,_; and
summing up yields

s=Il+1

E( i vstlg’[l)=07
(8.19)

¢
var| Y, o,|%,| < cw, sup w.w,,.
s=Il+1 l<s<t

Using A(ii) again, .
sup wjw,, < sup [|Z||*/A i, ( E) = 0.
ZeC

Since Ew, is bounded, uniformly in ¢, (8.17) holds for any j with 1 <j < g, and
the remaining condition N(iv) is established under assumption A.

Finally, the Cholesky square root GI/%(B) can indeed be used as norming
quantity in (5.2), since Remark (ii) after Theorem 3 applies. O

ProOF OF REMARK 1. For the moment, assume that GI/? denotes the
Cholesky square root. Applying the continuity theorem, we can replace GI/? in
(5.2) by any p X p-matrix M, with

(8.20) MG;™? -, I.

If M, is the right Cholesky square root of F, or E,, then (8.4), the arguments of
Fahrmeir and Kaufmann [1985, page 350, Remark (iii)] and repeated application
of the continuity theorem imply first G/?M,; ' -, I and then (8.20). The more
general statements on F, and E, follow from Remark (i) on page 349 of the same
reference. Formulas (8.12), (8.13) together with (8.26) imply that (8.20) holds with
the Cholesky square roots M, = GI/%(8,), HT/?, HI/*(8,). O

Proor oF LEMMA 1. Keeping the starting values fixed, it is possible to apply
to the conditional likelihood the definition of local asymptotic normality
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as given, e.g.,, in Ibragimov and Has’'minskii (1981, page 120). Conditions
N()-(iii), hence condition A, are sufficient for the application of a central limit
theorem for martingales [e.g., Hall and Heyde (1980, Corollary 3.1)]. We obtain
E;'2s, -, N(, I). By Taylor expansion, using (8.4) and (8.12), the LAN
condition follows. O

Proor oF THEOREM 2. Conditionally on the starting values, it follows from
the LAN condition and part (iii) of the proof of Theorem 3 that {ﬁt} is an
asymptotically centering sequence of estimators; see Definition 2 of Jeganathan
(1982). The restriction to symmetric positive definite square roots made by that
author can be dropped. Applying his Theorem 2 it follows that the MLE is
regular. The optimality result is obtained utilizing Corollary 1 of the same
reference, and Anderson’s lemma [e.g., Basawa and Scott (1983), page 51)]. O

Corollary 2 can be shown with the following lemma.

LEMMA 4. Let the positive semidefinite matrix A, be partitioned as
A, = [B‘ Dt] t>1.
“looa) '
Divergence of the smallest eigenvalue, A, (A,) = oo, implies
(8.21) Ain(B;) = 0,  Anin(C,) » .

If , with some constant a < 1, the matrices
B, D, ‘
(8.22) [Dt’ aCt]’ t>1,
are positive semidefinite, then conversely (8.21) implies A ; (A,) = oo.

ProOF. Due to the inversion formula for partitioned matrices and positive
semidefiniteness of A,, A ; (A,) = oo is equivalent to

}\min(Bt - Dtct_lDt/) - o, }\min(Ct - Dt'Bt_lDt) - .
This is apparently stronger than (8.21). For the converse, we note that (8.21) and
positive semidefiniteness of (8.22) imply that aC, — D/B; 'D, is positive semide-
finite. Hence, in view of
Amin(C, — D/B;'D,) = (1 — @)A1 C,) + Min(@C, — D/B;'D,),

A in(C, — D/B;'D,) = oo follows from A ; (C,) = 0. In (8.22), we can assume
a > 0, since with some value of a, (8.22) is positive semidefinite also for all
greater values of a. Rescaling (8.22) from both sides with the matrix
diag(a'/?,..., a2, a"V2,...,a"/?), A(B, = D, 'D}) > oo follows analo-
gously. O

PROOF OF COROLLARY 2. Applying Lemma 4 with B, = (¢t — )L1YY/, C, =
n¥i X, X/, D,=YYY] X/, it follows immediately that A(iii) implies (5.4).
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The converse can be established by showing that (5.4) implies (8.22), with some
a <1.

With the vector (X, p’) partitioned corresponding to Z, ;, the increment of the
quadratic form (8.22) is

n

(8.23) T (VY + wX) (YA + Xiu) - n(l - WX, Xia.

J=1

For fixed p, unconstrained minimization of (8.23) over A is an ordinary least-
squares problem. With M; = I — Y/, Y, Yy ) 2.Y,, J=1,..., n, we obtain the
minimum

n
M’Xt(Z%’%)X{u —n(l - )X X/p.
1

From the assumption that the system p = Y/A, j = 1,..., n, has only solutions
with p =0, it follows that the matrix (M{,..., M) has full rank. This is
equivalent to A, = A ;(EM/M;) > 0. Choosing a =1 — A,/n, (8.23) will be
nonnegative for any A, u. By summation, (8.22) follows. O

PrOOF OF THEOREM 3. (i) Asymptotic distribution of the score function:
Conditions N(i)-(iii) are sufficient for the application of a central limit theorem
for martingales [e.g., Hall and Heyde (1980, Corollary 3.1)]. We obtain

(A7 Vs, A7 VGAL ) =, (VV/22,V),

where z is a standard normal vector independent of V'/2. Choosing V'/2 as the
Cholesky square root and G}/? such that A, /2G}/? is the Cholesky square root
of A;Y%G,A; /2, it follows from continuity of this square root that

(8:24) (A, ADVGY?) =y (VV22, V1),

z as above.
(i) Asymptotic existence and consistency: With the common argument, the
Lindeberg condition N(ii) implies the Feller condition
max E(x[A;7 )%, ,)—,0.
¢

s=1,...,
Together with N(ii), this implies
(8.25) Ain(A4,) = o0.

By Taylor expansion, using N(ii) and N(iv) and noting that (8.24) implies that
{IlA;'/%s,||} is bounded in probability, it follows that for any n > 0, there exist
8 >0, t, with

P(L(B) <l(B)forall € IN,(8)) =1 —n, t>t,

similar to the proof of Theorem 1 of Fahrmeir and Kaufmann (1985). This
includes asymptotic existence of a MLE as well as consistency, in view of (8.25).
More precisely, there exists a sequence { Bt} of MLE’s such that for any n > 0,
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there exist § > 0, £, with
(8.26) P(B,eN(8))=1-1n, t=t,.

Since N(ii) and N(iv) imply that H,(B) is positive definite throughout N,(8),
with probability converging to one, for any § > 0, the MLE [? is also locally
unique.

(iii) Asymptotic normality: By Taylor expansion, we obtain

- ﬁt(:ét -B ) ’
with H JoH, (B + u( ,ét — B)) du. Somewhat more generally than in Fahrmeir

and Kaufmann (1985, proof of Theorem 3), it can be shown that N(ii) and N(iv)
and (8.26) imply that (8.24) can be enlarged by

ATVH AT S, V.
Applying the continuity theorem to
A7 Vs, = (A7VPHA;™?)(AT2(B, - B)),
it follows that
(AT/2(B ,3) —1/2G1/2) _)d(V—T/2z’ V1/2),

z as above. Premultiplying AT/2(8, — B) by GI/?2A;7/2, (7.1) follows with the
square root G2 given in Remark (i) after Theorem 3, see part (i) of this proof.
If AT/2 and GI/?A;7/? are Cholesky square roots, then GI/? shares this
property. This proves in, particular, Remark (ii). Remark (iii) can be demon-
strated similarly as Remark 1. O
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