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points than is the trimmed least-squares estimator and it is inherently insensi-
tive to a preliminary estimator, which is a potentially serious problem with
Welsh’s estimator. Even when p, the number of parameters being estimated, is
large relative to n, TRQ adheres fairly closely to the behavior predicted by its
asymptotic theory. Like Welsh’s estimator and trimmed least squares, it is scale-
and reparameterization-of-design equivariant and therefore offers most of the
attractions of the Huber M estimator without the difficulties created by the
necessity of joint estimation of a scale parameter. This is also an advantage with
respect to the estimators proposed by Bickel (1973).

As Welsh notes, L estimation plays an extremely useful role in the analysis of
the one-sample problem; I believe that it could play a similarly constructive role
in analyzing linear models. I hope others, like Welsh, will help to build a theory
that would justify this belief.
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The discussants have provided valuable insights into the nature of the
one-step trimmed mean in the regression problem and made original proposals of
their own. Their empirical results are both helpful and encouraging.

The choice of initial estimator for one-step estimators is important as both
discussants note. In addition to the technical requirement that the initial
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estimator be n'/2 consistent, it is desirable for it to have the right invariance
properties, to be robust and to be relatively simple to calculate, preferably
without requiring the simultaneous estimation of scale to achieve scale invari-
ance. The L, estimator or “regression median” is philosophically appealing,
meets the above criteria and, from the empirical results provided by the discus-
sants, seems to perform well. The increase in the complexity of the calculation of
the L, estimator over that of the least squares estimator is clearly more than
compensated for by its superior quality in a wide range of circumstances.
Koenker and D’Orey (1985) give references to and a discussion of some recent
algorithms.

Koenker’s investigation of the relationship between the one-step trimmed
mean and Huber’s M-estimator is interesting—his_comment that the trimmed
mean essentially trims the intercept and “ Winsorises” the slope is particularly
nice. While the adoption of a symmetric model here yields useful insights, the
results of Ruppert and Carroll (1980) for the naively trimmed mean indicate the
extent of the simplication this affords; the symmetric model should not be
pursued too far. A major difference between L- and M-estimation is that
L-estimators do not require concomitant scale estimates for their calculation. For
the trimmed mean, this reflects the fact that specifying a proportion of observa-
tions to trim is different from specifying a scale on which to trim. This difference
is likely to be important both in inference problems and in the application of
analogues of more general L-estimators such as those with redescending in-
fluence curves.

The approach of the present paper generalizes to the construction of general
L-estimators for regression. Koenker’s interesting new proposal TRQ opens the
possibility of parallel extensions based on the regression quantiles. The algorithm
in Koenker and D’Orey (1985) will make the regression quantiles more easily
attainable and thus facilitate their use in constructing estimators and as an
exploratory /diagnostic tool. Even in very large samples, the computation of
selected regression quantiles could prove useful.

de Jongh and de Wet have proposed a bounded influence version of the
trimmed mean and suggested the use of a modified L, estimator as the initial
estimator. Their construction exploits the close link between the trimmed mean
and ‘its influence curve. The application they provide is most encouraging and
suggests that further study could be valuable.

I would like to thank the discussants for their detailed and stimulating
contributions. I am also grateful to an Associate Editor and the Editor for
organizing the discussion.

REFERENCE

KOENKER, R. W. and D’OREY, V. (1985). Computing regression quantiles. To appear in Appl.
Statist.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CHICAGO
5734 UNIVERSITY AVENUE
CHIcAGO, ILLINOIS 60637



