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THE TRIMMED MEAN IN THE LINEAR MODEL

By A. H. WELsH
University of Chicago

For the general linear model with independent errors, we propose and
examine the large sample properties of an estimator of the regression parame-
ter. In the location model, the estimator has the same properties as the
trimmed mean and the robustness and efficiency properties of the trimmed
mean carry over to the general model. The estimator depends on a pre-
liminary estimate of the regression parameter and the residuals based on it.
The properties of the adaptive estimator with data-determined trimming
proportions are also investigated.

1. Introduction. The trimmed mean has long been a popular estimator of
location; see Tukey and McLaughlin (1963), Bickel (1965) and Huber (1972) for
accounts of its history. The popularity of the trimmed mean seems attributable
to both theoretical and practical considerations. From a theoretical viewpoint,
the trimmed mean is efficient under a variety of circumstances (Bickel (1965),
Bickel and Lehmann (1975)) and robust for smooth distributions (Stigler (1973)).
The trimmed mean has a strong intuitive appeal —the mean/median tradeoff is
clear—and, being an explicit estimator, is both easy to compute and understand.
Finally and most importantly, the estimator (with 10% trimming) seems to work
very well on real data; see Stigler (1977), Spjetvoll and Aastreit (1980), Hill and
Dixon (1982) and Rocke, Downs and Rocke (1982). The generalisation of the
trimmed mean to the linear model has proven problematical. Our purpose in this
paper is to generalise the trimmed mean to the linear model in a direct,
computationally simple way.

For definiteness, suppose that we observe Y,,...,Y,, where

(1) Y, =x/0, + e, 1<j<n,

with {x} = (x;,...,x;,)} a sequence of known p vectors (p > 1), 6, € R? an
unknown parameter to be estimated and {e;} a sequence of independent and
identically distributed random variables with common distribution function F.
The regressors may depend on n but we suppress this dependence for simplicity.
We take x;; = 1,1 < j < n, and without loss of generality suppose that F(0) = .
For any § € R?, the residuals from 8 are

e(0)=Y,—x0=e,—x/(0-6,), 1<j<n,

and e;(6,) = e;, 1 <j < n. The location problem corresponds to the case p =1
and x;=1, 1 <j < n. In this context, the trimmed mean may be defined in
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terms of the order statistics Y,, < Y,, < --- <Y, as

[nB]
T,= ([n8] - [na])” X Y,, O<a<j<B<l,

J=[nal+1

where [-] is the greatest integer function. An alternative functional representa-
tion in terms of the empirical distribution function F(s) =n~'L?_ | I(Y; < s),
s € R, is also useful. For any distribution function G, put

2) 7(G) = (B—a)" /fG-l(t) dt,

where G~(¢) = inf{s: G(s) > t}. Then T, = T(F,). A simple approach to ex-
tending the definition of T,, to the full model (1) is to first extend the definition
of order statistics and quantiles to (1) and then average the central “order
statistics.”

Bickel (1973) and Ruppert and Carroll (1980) construct estimators based on a
preliminary estimate 6, of the regression parameter 6, and the resulting residu-
als {e;(6,),1 < j < n}. Although Bickel’s estimators have good asymptotic prop-
erties, the estimators are complicated, computationally complex and not in-
variant to reparametrisation. These problems are due to the componentwise
construction of the p-vector estimator which permits each component to be
trimmed differently. The estimator investigated by Ruppert and Carroll (p,
below) is essentially the least squares estimator calculated after removing the
observations whose residual is less than §,,(6,) or greater than ¢, 4(6,), where
£,,(0,) is the gth quantile of {ei(6,), 1 <j < n},0 <q <1. The asymptotic
properties of this estimator depend on those of 6,, so that in general the
estimator is neither robust nor efficient. It turns out that when F is symmetric, a
particular preliminary regression parameter estimate results in a robust and
efficient estimator. However, to some extent, this particular choice of pre-
liminary estimate increases the c0mp1ex1ty of the final estimator and also
decreases its intuitive appeal.

Instead of viewing the usual quantile estimation problem as a problem of
ordering observations, Koenker and Bassett (1978) viewed it as an appropriate
minimisation problem. In generalising this approach, Koenker and Bassett
introduced the vector regression quantiles 7,(q) € R?, 0 < ¢ < 1. They pro-
posed the trimmed mean to be the least squares estimator calculated after
discarding those observations whose residual from the ath regression quantile is
negative (i.e., e;(1,(@)) < 0) or whose residual from the Bth regression quantile is
positive (i.e., e;(1,(B)) > 0). Ruppert and Carroll (1980) noted that the regres-
sion quantiles are M-estimates (see Huber (1981), page 43 for general definitions)
and showed that the Koenker—Bassett estimator has the requisite asymptotic
properties. Although the regression quantiles can be computed by standard
linear programming techniques, the computation of the estimator is still com-
plicated. Moreover, it is not possible to trim any arbitrary number, r say, of
observations; the construction of the estimator permits r to take on only certain
values.
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Our approach is to examine the structure of the estimator T, = T(F),) defined
in (2) from the von Mises functional viewpoint. Under appropriate regularity
conditions (de Wet and Venter (1974)), the distribution of n'/*(T, — T(F)) is
asymptotically equivalent to that of n='/2 £7_,y(e;), where y(+) is the influence
curve of the trimmed mean. Put £, = F'(q), 0 < ¢ < 1. Then

(3) Y(x) = o(x) — Eo(ey),

where
¢(x) = {EJ(x < £,) + xl(§, < x < &) + ,1(x > &)} /(B — a).

Notice that we can write
¥(x) = [&{I(x < &) — o} +2I(§, < x < &)
+&{I(x > &) — (1 - B)}] /(B - ) = T(F).

The influence curve term is a sum of independent random variables and as such
is easier to generalise than T,. The exact representation for the trimmed mean
given by Stigler (1973) indicates the error inherent in using the asymptotic
approximation. We are led to the following estimator. Let 6, be a preliminary
regression parameter estimator such as, but not necessarily, the least squares
estimator. Let e, (0,) < e,(8,) < -+ <e,,(0,) denote the ordered residuals
from 4, and for 0 < g <1 put

_ €, ng(0.), if nq is an integer,
$nal0n) = €, (ng1+1(0,), otherwise.
Then put
e]j = I{ej(on) =< é‘noz(en)}’
Kj = I{gna(on) < ej(on) < gnﬂ(en)}’
L;=I{e;(6,) > £.(6,)}
and define
Tn = Ar: Z xj[£na(0n){']j - a} + YJKJ + gnﬁ(on){Lj - (1 - B)}]1
j=1

where A,, is any generalised inverse of A, = X"_,x;x/K ;. Under mild conditions,
A, is asymptotically nonsingular (see Lemma A.4 of Ruppert and Carroll (1980)).
If 8, is regression and scale equivariant and invariant to reparameterisation then
so is 7,. Notice that apart from premultiplication by the random matrix
A, X \xx/, 7, is the least squares estimator calculated after replacing each
observed Y; by

5na(0n){Jj -a} + YK+ gnﬁ(an){Lj -(1- ,3)},

which resembles a Winsorising observation. However, 7, is not a generalisation
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of the Winsorised mean. It is convenient to denote the middle term of 7, by
n
pn=A, LYK,
j=1

Then p, is essentially the estimator investigated by Ruppert and Carroll (1980),
who showed that p, is not a generalisation of the trimmed mean.
Let

i(q) = ng, if nq is an integer,
ne)r= [ng] +1, otherwise,
and define (D(1),..., D(n)) by
en,j(an) = eD(j)(on)) 1 S]’S n.
Then we can write
iB)

Pn=A, Z X p( j)YD( )
J=i(a)+1

and

Tn = éna( an)A;L.

i(a) n
qu(j) —a ij) + P,
J=1 Jj=1

n n

ret0)az| £ mg--m )
J=upy+1 Jj=1

The above expression resembles a vector version of the “interesting variation”
proposed by Bickel ((1973), page 601). However, the observations to be trimmed
are selected differently here and the estimator is not constructed componentwise
so that 7, is not one of the estimators considered by Bickel. Notice that r
observations will be trimmed in each tail if and only if (» — 1)/n < @ < r/n and
(n—r—1)/n < B <(n—r)/n,so that if we require 8 = 1 — a, r observations
will be trimmed in each tail if and only if & = r/n. Moreover, in the location
problem

7= {i(B) — i(a)} ' |£nal( ) {i( @) = nar)

B
+ X Y+ 4,400,){nB-i(B)} |,

J=i(a)+1

where Y, < Y,, < -+ <Y,,. Thus, in the location problem 7, = T,, if and only
if na and nB are integers. The above properties are useful when « and B are
chosen after looking at the sample because then it is natural for na and nf to be
chosen to be integers. However, if a and B are specified without any knowledge
of the data and 8 = 1 — a, then it is unlikely that na will be an integer and
hence that the desired symmetric trimming will occur. In this case it is better to
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define a new estimator 7.*, which is of the same form as 7, but with i(a) replaced
by i(a) — 1 and p, correspondingly modified. For 7.*, exactly r observations will
be trimmed in each tailif and only if r/n <a < (r+1)/nand (n —r—1)/n <
B < (n —r)/n, so that with B8 = 1 — a, r observations will be trimmed in each
tail if and only if na is not an integer. Note that like Bickel’s “interesting
variation,” 7.* does not reduce to T, for finite samples in the location problem.
Since the difference between 7, and 7.* is really only a difference between
inequalities and strict inequalities, 7, and 7,* have the same asymptotic proper-
ties under the smoothness conditions we impose on the underlying distribution.
However, in finite samples, the estimator should be selected when the decision is
made on how to select « and B.
Bickel (1975) defined a one-step M-estimator (type 1) as

n - n
B, = 0n + { E xjle' l(e](an)/sn(an))} Z xjsn(on)‘P(ej(on)/sn(on))’
J=1 J=1
where s,(0,) is a robust estimator of the scale of the residuals e;(6,), 1 <j < n,
such as the median absolute deviation from the median and ¢ is some real
function. The Huber M-estimator uses '

Y(x) = —MI(x < —M) +xI(-M <x < M) + MI(x > M),
for some M < oo. With
J* = I{e,(8,) < —Ms,(6,)},
Kj =I{~Ms,(6,) < e,(6,) < Ms,(6,)}

and
L¥ = I{e,(6,) > Ms,(6,)},

the one-step (type 1) Huber M-estimator can be written as

n n
B = { Y xjx;Kj*} Y x{—Ms,(0,)J* + ;K + Ms,(6,)L*}.
Jj=1 J=1

While p, is of roughly the same form as 7.*, there is an important fundamental
difference between them; whether or not an observation is “trimmed” in p,
depends strictly on the relative magnitude of its residual from 6,, while whether
or not an observation is trimmed in 7, or 7.* depends solely on the position of its
residual in the sample of ordered residuals from 6,. If we alter the definition of
p, by replacing —Ms,(6,) by £,,60,) and Ms,(6,) by £,4(6,), the resulting
estimator is not strictly an M-estimator. Moreover, this estimator weights the
trimmed observations differently from 7.* and does not have the same asymp-
totic distribution as 7.}*.

In the location problem, Jaeckel (1971) and Shorack (1974) have investigated
the properties of the trimmed mean with data-determined trimming proportions.
Asymptotically, these estimators have better efficiency properties over a class of
distributions than the trimmed mean with fixed trimming proportions. We will
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develop analogous results for the estimator 7, and consider a simple method of
determining the trimming proportions. To prevent the proliferation of sub-
scripts, we adopt the convention that a caret (") means that a quantity is
calculated at the data-determined trimming proportions (&, §).

The results of this paper are presented and discussed in Section 2 and proved
in Section 4. We apply 7, to two sets of data in Section 3. All probability
statements are made at the true parameter value 6, and all limits, unless
otherwise state, are taken as n — oo.

2. Results. To derive asymptotic results for 7,, we impose the following
conditions, which we denote C:

(C1) n'/%(6, — 6,) is bounded in probability;
(C2) x;, =1 for all j, X7 x; =0, k=2,...,p, for each n, and there exists a
positive definite matrix I' such that

n
lim n™' ) xx;=T;

n— oo L j=1

(C3) F has a continuous density f that is positive on the support of F.
We denote by C’ the same set of conditions with (C3) strengthened to

(C3’) F has a uniformly continuous, positive and bounded density.

Note that the usual least squares estimator satisfies (C1) if (C2) holds and
if Var(e,) < oo. The first two conditions in (C2) simplify the calculation
of the asymptotic bias when F is asymmetric. Otherwise, the second condition
of (C2) is not needed. Finally, the last part of (C2) ensures that
lim, _, ,max, _;_,n 'x/x; = 0. The conditions C are the same as those imposed
by Ruppert and Carroll (1980) and the conditions C’ are essentially the same as
those imposed by Bickel (1973).

The first theorem establishes that 7, is indeed a generalisation of the trimmed
mean and, moreover, that 7, is asymptotically equivalent to the estimator
proposed by Koenker and Bassett (1978). The proof is similar to that of Theorem
1 of Ruppert and Carroll (1980) and is outlined in Section 4.

THEOREM 1. Suppose that the conditions C hold. Then with
7 =0, + (T(F),0,...,0) € R?,
n
n/?(r, — 1) — n*?r"1 ) x¥(e;) =pO0.
j=1
It follows that
n'*(1, — 1) =p N(0, 0*(e, B)T ),
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where

o*(a,8) = (8| [*(e 1P aF0)

+axl + (1 - B)kg — {(1 — B)rg + ana}2 ,
with k, = §,— T(F), ¢ = a, B.

To carry out statistical inference, we need to be able to estimate the asymp-
totic variance 6%(a, 8)I' . The second theorem, which may be proved by a
similar argument to that used to prove Theorem 5 of Ruppert and Carroll (1980),
shows how to construct a consistent estimator.

THEOREM 2. Suppose that the conditions C hold. Let

e = (n(B- )} L (6K,

Jj=1
K’nq(on) = énq(on) - ek, 0<g<l,

and define
S2(a,B) = (B - a)‘z[(n -p)~" z: (e/(8,) — ek} K, + ax2,(8,)
+(1 = B)x24(6,) = {anal(B,) + (1 = B)r,p(6,) )]
Then

n

-1
S,f(oz,ﬁ)(n‘1 Yy xjxf) -Po2(a, B)T L

J=1

Of course, for 7.*, the quantities &, and S? should be appropriately modified.
In the location problem, these results reduce to the analogous results for the
trimmed mean. Indeed, Theorem 1 implies that asymptotically 7, has the same
robustness and efficiency properties in the linear model context as the trimmed
mean has in the location problem. This is also true of the estimators of Bickel
(1973) and Koenker and Bassett (1978). The estimator constructed in Theorem 2
depends only on the preliminary estimator 6, and not on 7,. This simplifies
computation, but of course the efficacy of the estimator depends on §,. It is easy
to construct estimators depending on 7, too. The quantity T(F') represents the
asymptotic bias of the estimator. As in the case of M-estimators (Carroll (1979)),
the bias involves the intercept but not the slopes. If F' is symmetric then T(F') is
the center of symmetry, which, without loss of generality we have taken to be
zero. In this case it is usual to take $ =1 — &, 0 < & < 3, in the definition of T,.
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We now consider the properties of 7, with (a, 8) replaced by the data-
determined quantity (&, £). We show (Theorem 3) that under conditions C’, if
(&, B) - p (ag, By), then 7, calculated with (&, 8) (which we denote 7,) has the
same asymptotic distribution as T, calculated with (a,, ;).

The proof of Theorem 3 depends on uniform convergence arguments. In
particular, we require the following result, which can be extrated from the proof
of Theorem A.4 of Koul (1969). Bickel (1973) noted that Koul’s conditions can be
weakened slightly; we adopt the conditions imposed by Bickel (1973).

LemMA 1 (Koul (1969); Bickel (1973)). Let {c;,} be any sequence of con-
stants such that im,, _,, n™'Y7_, ¢% < o0 and lim,, , , max, _;_,n"?|c;,| =0
hold. Then if C’ holds,

n
sup sup [n7V2 Y ¢, {I(e;<s+t'x;) — F(s + t'x;)
j=1

T <s<oo |f<n VM
~I(e; < s) + F(s)}| =50
for any M < oo.

We also require a slight modification of this result. The proof of the following
lemma, which extends Theorems A.3 and A.4 of Koul (1969), is given in Sec-
tion 4.

: LEMMA 2. Let g be a real, continuous, nonnegative function defined on R™.
Suppose that the conditions C’ hold. Then

n
sup sup |n"2 Y x{g(e)I(0<e <s+tx;)
$1<8<S; |t|<n~ VM J=1

—Eg(e)I(0<e, <s+ t'xj)
-g(e)I(0 < e; <s)

+Eg(e)I(0<e, <s)}|-p0,

forany M < 00,0 < s, <8, < 0.
The above results lead to the following theorem for the adaptive estimator.

THEOREM 3. Suppose that (&, ) —p (g, By), 0 < ay < 3 < B, < 1, and that
the conditions C’ hold. Then with %, =0, + (T(F),0,...,0)’ € R?, where
T(F) = (B — &) Y#tdF(t), and ¢ evaluated at (a,, By),

n
n'*(%,— %) —n"V2T72 ¥ x0(e;) =5 0.
Jj=1
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It follows that
nl/2(""\n - 'FO) D N(O’ 02(0‘0, Bo)rAl)'

Of course, we can also extend Theorem 2 to show that we can consistently
estimate 02%(a,, By). In particular, we have the following theorem.

THEOREM 4. Suppose that the conditions C’ hold. Then with S2(a, )
defined in Theorem 2,

sup |Si(e, B) — 0*(a, B)| =50

o <a<ay

B <B=<B,
for any 0 < a; <a, <3}, $< B, < By <1 If in addition (& B) —p (ag, By),
0 <a,< i< B, <1, then SX&, B) —p 6%(ay, By)-

The above theorems are analogous to those obtained for the location problem
by Jaeckel (1971) and Shorack (1974). If F is symmetric, the bias term is zero if
B=1-aforeach nand B,=1 — a,.

Theorems 3 and 4 hold very generally in that the only requlrement of the
random sequences {&} and {,B} isthat @ »pa,and 8 —p, B, 0 < ay < % 3< B <
1. In the special case that F is symmetric, we can show that, under mild
regularity conditions, the sequence of minima of S%(a,1 — a) satisfies the re-
quirement that & —, a,. The proof depends on the uniform convergence result
of Theorem 4 and, being standard, is omitted.

THEOREM 5. Suppose that F is symmetric and ¢%*(a,1 — a) has a unique
minimum at a, in the interval [a,, a,], where 0 < a; < ay < 3. Then if & =
{q: S,f(q,l -q)= inf«xlsas%syf(ayl - a)},

a —pay.

The result remains true if we replace S2(a,1 — @) by any estimator of
0%(a,1 — a) that satisfies Theorem 4. In particular, an analogue of the variance
estimator proposed by Jaeckel (1971) is given by

R2(a) = (1 - 20) "|(n = p) " ¥ {e,(6,) - &)’k

J=1
+a'€na(0n) + axn,l‘a(an)

and the value of a that minimises R2(a) converges in probability to a,. As with
Jaeckel’s estimator in the location problem, calculating the minimising « in-
volves evaluating the variance estimator at each « satisfying a, < a < a, and na
is an integer. (With R2 appropriately modified for 7.*, the minimum on a; <
a < a, occurs at na+ , where na is an integer, whlch is much less convenient.)
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Together with Theorems 3 and 4, Theorem 5 yields an analogue of Theorem 1
of Jaeckel (1971). If the underlying distribution is normal, a, = 0, which is
precluded in our results. (This is also true in the location problem.) If 6%(a,1 — a)
has several isolated minima, then we can define &, to be the smallest minimum
of 6%(a,1 — a) to obtain a slight variation of Theorem 5. Finally, the advantage
of having the variance estimator defined only in terms of the initial estimator
and not in terms of 7, becomes clear when & is chosen to minimise the variance
estimator; the calculation of & involves calculating the variance estimator on a
finite grid of points, but we do not have to calculate 7, at each point on the grid.
Thus & is obtained before we calculate 7, rather than simultaneously and this
greatly reduces the calculations. An alternative is to use 7, at a fixed a
(B=1- a) instead of 6, to determine & This approach is useful if the
preliminary estimate 6, is poor.

3. Examples. In this section, we consider the application of the trimmed
mean proposed in this paper to two sets of data, namely, the stackloss data given
by Brownlee (1965) and the water salinity data given by Ruppert and Carroll
(1980). Both sets of data are analysed in Ruppert and Carroll (1980) and their
results provide a basis for comparison.

For simplicity, we will adopt the least squares estimate as the initial estimate
and we will restrict attention to symmetric trimming. We will consider three
estimates; 7* with a = 0.1, ¥, with & estimated by minimising R,(«) on
[0.05,0.35] and %, with & determined by examining a residual plot of the
residuals from the least squares fit and making a subjective decision on the
number of observations to trim. Notice that if we decide to trim r observations
in each tail, we take a = r/n (if we want to trim r in the lower tail and m in the
upper tail we would take a = r/n and B8 = (n — m)/n). Following Ruppert and
Carroll (1980), we quote the interquartile range (IQR) of the residuals as a crude
means of assessing fit. The calculations were carried out using the MINITAB
package in conjunction with a separate FORTRAN program to evaluate R%(«)
on the Decsystem-20 computer of the University of Chicago. The results are
tabulated in Table 1.

The stackloss data involve the regression of stackloss on air flow, temperature
and acid. The 10% trimmed mean trims observations 21 and 9 in the lower tail
and observations 4 and 8 from the upper tail. The function R%(a) is minimised
at a = 2/21 for which R2(2/21) = 8.643, and the same four observations as for
7* are trimmed. The residual plot of the least squares residuals suggests that
observations 4 and 21 and possibly also observations 3 and 9 should be trimmed
(if we were not restricting attention to symmetric trimming, we might trim
observations 3, 4 and 21). The result of trimming four observations is of course
the same as 7, above. It is interesting to note that using a different initial
estimator Ruppert and Carroll (1980) trimmed observations 1, 3, 9 and 21 and
achieved a slightly better fit. The 15% Koenker and Bassett (1978) trimmed
mean trims observations 4, 9 and 21.

For the water salinity data, Ruppert and Carroll (1980) regressed salinity on
salinity lagged by two weeks, river discharge and a linear time trend. The 10%
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TABLE 1
Results for the stackloss and salinity data.

Stackloss Data
Estimate Intercept Air flow Temperature Acid Asympt. variance IQR

[ —39.92 0.716 1.295 —0.152 10.519 3.124

n
7.*(0.1) —40.90 0.852 0.865 —0.128 8.869 2.856
7,(2/21) —40.79 0.851 0.869 -0.129 8.643 2.875
Salinity Data
Estimate Intercept Lagged salinity Timetrend Flow Asympt. variance IQR
9, 9.590 0.777 —0.026 -0.295 1.770 1.377
7.%(0.1) 12.353 0.765 —0.088 —0.401 1.852 1.172
7,(3/28) 13.738 0.749 —0.095 —0.452 1.367 1.013
7,(2/28) 12.424 0.751 —0.047 —0.402 1.788 1.115

trimmed mean trims observations 17 and 15 from the lower tail and observations
16 and 9 from the upper tail. In this example, R%(a) is minimized at a = 3/28
for which R%(3/28) = 1.367. In addition to the observations trimmed by X,
observations 11 and 13 are trimmed. Finally, the residual plot of the least
squares residuals shows that such outliers as may be present are not too extreme
but the conservative statistician would probably trim two observations in each
tail as was done by 7*. In this case with a = 2/28, R%(2/28) = 1.788. Ruppert
and Carroll (1980) trimmed observations 1, 11, 13, 15, 16 and 17 with their
estimator and observations 1, 13, 15 and 17 with the 15% Koenker and Bassett
(1978) trimmed mean. The fit for 7, with « = 3/28 is slightly better than that
achieved by either of the above estimators.

Of course, it is difficult to assess the performance of the estimators based on
their application to two real data sets. Nonetheless, the performance of 7.* and
7, is certainly comparable to that of the estimators studied by Ruppert and
Carroll (1980). Since we are particularly interested in protecting against devia-
tions from the normal assumptions, trimming based on the least squares residu-
als has a strong intuitive appeal, and makes the calculation of 7* and 7,
extremely simple. However, in small samples one-step estimators are sensitive to
the initial estimator and (since in general the least squares estimate is not a good
preliminary estimate), at the expense of computational simplicity, a more robust
preliminary estimate, such as for example the least absolute deviations estimate,
should be used. An alternative is to iterate on the trimmed mean, but this seems
less attractive since the effect of a bad initial estimate may persist. The
estimator 7, is not robust against outliers in the design space. The adaptive
estimator 7, permits a flexible approach to the analysis of data that is useful in
practice.

4. Proofs. For any r X ¢ matrix D, let |D| denote the Euclidean norm of D,
ie.,
|D| = trace(D’D).
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To simplify notation, let
T,,=0,— 6+ (£,4(6,) — £,,0,...,0)",  0<g<1,
and define
I(Toa) = I{ef(6,) < £,a(6,)) = I{e; < &, + x/T,.},
K(The» Top) = I{£,a(6,) <¢; (0 ) < £,4(6,)}
= I{ga + xj na < €= ‘EB + ijnB}
and
A(Tup) = I{e[(6,) > £,4(8,)} = I{e;> &+ x/T,5}, 1<j<n.

ProoF oF THEOREM 1. We have

n" A (7, — 6)) — (B— a)n™'/? Z i{9(e;) — Eo(e)) + T(F)}‘

Jj=

w0 % 5[0 (Ton) - o~ £(50) ~ ]

—n

(41) +

w2 % (KT Tos) = K/0,0)

+ 12T Ty b f(£2) — Tusbsf (£5))

1/22 [Enﬁ(g) ) (1—B)}—£B{L(O) (1—3)}]

+n'/?IT, Bgﬁf(gﬁ) ,

and the result follows since each term on the right-hand side of (4.1) converges in
probability to zero by arguments similar to those given in the proof of Theorem
1 of Ruppert and Carroll (1980). O

Let 8,,(t) = n~"?xjt, 1 <j < n, t € R”, and then define

Vi(t,s) =n""? ¥ xg(e,)I{0 <e;<s+8,(t)},

W, (t,s) = Vn(t’s):_ EV,(¢,s)
and .
H(s) = Eg(e)I{0 < e, <5} = [ g(0)f(¢) .
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Notice that EV,(t,s)=n"'?L7_ x;H(s + 8,,(¢)) and that h(s)= H'(s) =
8(s)f(s), which is continuous on a set containing [0, s,].

ProOF OF LEMMA 2. Arguing as in the proof of Theorem A.3 of Koul (1969),
it follows that for each fixed ¢, € R”,

n
n 2y xj[g(ej)I{O <e <s+ n"l/zt(,xj}
(4.2) J=1
—Eg(el)I{O <e <s+ n_l/zt{)xj}]

converges weakly in D[s,, s,] to a Gaussian process. (D’[s,, s,] is the space of
p-dimensional vector functions such that each component function is an element
of D[s,, s,].) The conclusion of the lemma is that for any M < oo,
(4.3) sup  sup |W(t, 5) — W,(0,5)| =5 0.

$)<s<8, |t|<M
It follows that Lemma A.4 of Ruppert and Carroll (1980) that for each fixed
s € [sy, 821, sup < MW, (¢, 8) — W,(0, s)| = p 0. Hence, (4.3) will obtain if we can
show that

(4.4) sup sup |W, (¢, r) — W,(¢t,s) — W,(0,7) + W,(0,s)| =50,
\r—s|<d8 |t|<M

as n = oo, § | 0. It follows from (4.2) that for each fixed ¢, € R?,
(4'5) Sup ,Wn(tO’ r) - Wn(t07 S) - Wn(o’ r) + Wn(O’ S)l —_)P O’
\r—s|<é
as n — oo, 8 |0, so it remains to show that, given ¢ > 0, we can find an ¢ > 0
such that

;im lim P{ sup sup |W,(t,r)— Wyt s)
—»0n—>w

(4.6) Ir—s|<8 [t—to|<g
=W (to, r) + W,(to, 5)| = e} =0

for then, given ¢ > 0, we can choose ¢, such that (4.6) holds and then choose a
grid of points {¢;: 1 <i < k} such that for any [¢| < M, |t — t]| < ¢, for some
1 <i <k, so that

P sup sup [W(t,r) = Wi(t,s) = W,(0,7) + W,(0,5)| > ¢}
|r—s|<é |t|<M

k

< X

i=1

P{ sup sup |W,(¢t,r)— W,(t,s)— W(t,r)

|r—s|<8 |t—t|<¢g
+W(t,,8)| > e/2}

+ L2 sup (Wt r) = Wt 5) = W(0,r) + W,(0,5)] 2 e/2)

i=1 |r—s|<é

converges to zero, yielding (4.4).
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Now, notice that for each fixed ¢,
W.(t, 1) = W, (¢, s) = W (2o, 1) + W, (£, )
= {Vi(t,r) = Vi(t,s) = Vo(to, 1) + Vi(t, 5)}
—E(V(t, 1) = Vilt, s) = Viltas 1) + Vilto, 9))
and
lim lim sup sup |E{V,(¢,r)— V¢t s)— V(o r)+ V(ty s)}

510 n—>00 |p_s)<8 |t—t|<M

n
< lim im sup sup n V%Y, ]xj||H(r +8;,(¢)) — H(r + 8,,(¢,))
810 00 |r—g51<8 |t—ty|<M j=1

+H(s + 8,,(t)) + H(s + 8,,(¢,))|
<Mlim n™' ) |xi*lim sup |h(r)— h(s)]
n—oo j=1 810 |r—g<8

- 0,
as h is uniformly continuous on [s,, s,], so it remains to show that given & > 0,
we can choose ¢ > 0 such that for each fixed ¢,

lim lim P{ sup sup |V (t,r)—V,(t,s)— V,(ty,r)
8l0n—00 \|r_g<8 |t—ty|<g

(4.7)
+V(t, 8] 28} =o.

However, (4.7) may be proved by the argument of Lemma A.3 of Koul (1969). O

Proor or THEOREM 3. It follows from Lemma 4.6 of Bickel (1973) and
Theorem A.3 of Koul (1969) that
[n=4, — (By — a)T| =5 0.

Now

w7 L 60 (I(e8) < £0l0) ~ )

—&:{I(e; < §4) — 8} — nV/ T T84 (4,

= Ign&(en)l

P Y (1, 5 60a(6) + 2106, — )
—F(£,4(6,) + x/(6, — 6,))

“1(e; < £04(68,)) + F(22a(6))] |
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+ Ién&(an)l

(4.8) =2 g‘flxj{F(‘f& +x/T4) = F(ga)}

— n1/2FTn& f(gao)

+1£,4(6,)

n-12 éx,{z(e,. < £,4(0,)) - F(£,4(6,))

~I(e; < ¢;) + &}

+1£a(6,) — &l

n~1/2 Zn: x;{I(e; < &) — &)
j=1

+n1/2rTn& f(éozo)

I

which converges in probability to zero by Lemma 1, Theorem 4.6 of Bickel (1973)
and the weak convergence properties of the process

E(s)=n"12 Xn_: x{I(e;<s) - F(s)}
J=1
with the construction of Skorokhod (1956). Similarly,
w7 % e [T{Ea(h) < 60, < £,4(6,))
P
(4.9) —I{g, < ¢; < )]

+n 2T Tt f(€,) — Tuabaf(4s,))

-, 0.

Let ¢ be Y (defined in (3)) but evaluated at (&, 8) and let Y, be Y evaluated
at (ay, B;). Then as in the proof of Theorem 1,

n~?4,(%, - 8,) — (B - &)n"12 Zn‘, xj{tﬁ(ej) + T(F)}l -p0
j=1
by (4.8) and (4.9). The result will follow if we can show that
w5 5 {(A= )i(e) - (B, a0)le)) =10,
Let j

n,(r) =n"12 élxj[r{l(ej <r)-F(r)} - (-e)I{0< —e;< —r} + H(r)],
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and

ny(s) = n~ 12 glxj[s{l(ej >s)—(1-F(s))} +eI{0<e <s}— H(s)],

—0<r<r<r<0,0<s <s<s, <oo0.

Since
n~? 2 xj(B - “)‘P(ej) =n(¢) + "12(55),
j=1
the proof may be completed by the Skorokhod (1956) construction argument. O

PROOF OF THEOREM 4. By Lemma 4.6 of Bickel (1973),

sup 'E,,q(B,,) - §ql —-p0 forany0<gq, < 3.
g,29<1-q

Let A =[a,,a,] and B = [B,, B,]. Then to show that
sup |ex — T(F)| -p0,

a€A,BEB
we write
sup n_l Z ejI{gna(an) < ej(gn) =< gnﬂ(on)} - T(F)‘
a€A,BEB j=1
< sup n_l 2 (_ej)I{O < _ej < _Ena(an) - x_],'(an - 00)} - H(ga)
a€EA Jj=1

n

n ' Y eI{0 <e; < £,4(6,) +x/(6,— 6,)) — H(&)

j=1

+ sup
BeB

and apply Lemma 2. Similarly

sup -p0,

a€A,BEB

i ¢
nt L (0, {£nul0) < €(8,) < £,(8,)} — [ dF(2)
j=1 .
and the result obtains. O
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DISCUSSION
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This paper proposes a new way of defining trimmed means in the linear
model, which differs from earlier proposals by Bickel (1973), Koenker and
Bassett (1978) and Ruppert and Carroll (1980). We find the idea of the proposal
very interesting. It has the “right” equivariance and asymptotic properties and
is thus an attractive (large sample) extension of the trimmed mean in the
location case. These properties also hold for the Koenker—Bassett (1978) estima-
tor, but the Welsh estimator has the potential advantage of computational
simplicity (if least squares is used as a preliminary estimator). Our remarks will
concern the small sample behaviour of the proposed estimator. We wish to



