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CONSISTENT ESTIMATORS IN NONLINEAR REGRESSION
FOR A NONCOMPACT PARAMETER SPACE

By G. D. RICHARDSON! AND B. B. BHATTACHARYYA

University of Central Florida and North Carolina State University

Sufficient conditions are given in order to ensure the existence of a
sequence of strongly consistent estimators of unknown parameters in a
nonlinear regression model. The primary difference between this and earlier
work is in the generality of the parameter space. Indeed, the parameter space
is assumed to be any separable, completely regular topological space; in
particular, this includes all separable metric spaces.

1. Introduction. Consider the nonlinear regression model of the form y, =
f.(6,) + e,, where each f; is a known bounded, continuous, real-valued function
defined on the parameter space. The errors are assumed to be independent and
identically distributed random variables each having mean zero and finite
variance o2. The main results concerning this model are given in-Section 3.
Section 4 is devoted to the study of a special case.

Jennrich [3] and Malinvaud [4] were the first to give consistency proofs for
estimating 6, in a nonlinear regression model when the parameter space is
assumed to be a compact subspace of R”. Compactness of the parameter space is
needed to ensure the existence of least squares estimators. Our purpose is to
modify the least squares procedure in order to establish the existence of a
tractable sequence of strongly consistent estimators of §, when the parameter
space is not necessarily compact.

The parameter space S is assumed to be any separable, completely regular
topological space. It is assumed that all topological spaces are Hausdorff. The
method used in developing a strong consistency result is to embed S as a dense
subspace of a compact topological space T such that each f, has a continu-
ous extension to T. Since a continuous real-valued function defined on a com-
pact topological space is bounded, then necessarily each f; must be bounded
on S. However, the sequence {f;} is not required to be uniformly bounded
on S, contrary to the case when the model is assumed to be of the form y;, =
f(x;,8,) + €, where f: X xS — R is continuous and X and S are compact
spaces.

The growth rate of X7( f,(a) — fi(B))? to + co is assumed to be order n. This
assumption is also made by Jennrich [3] and Malinvaud [4]. Wu [6] gives a
strong consistency result when this is not necessarily the case. He replaces the
assumption on the order of the growth rate by the requirement that the
sequence {f;} satisfy a certain type of Lipschitz condition ([6], page 506).
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However, Wu’s assumptions are not comparable to those made here when the
growth rate is of order n.

2. Preliminaries. It is assumed throughout this section that the model and
assumptions made in the introduction are satisfied. Since the parameter space S
is separable, there exists an increasing sequence {S,} of compact subsets of S
such that U%_,S, is dense in S. Indeed, each S, could be chosen to be a finite
subset of S. It is assumed throughout this work that {S,} is any conveniently
chosen increasing sequence of compact subsets of S such that U*_,S, is dense
in S.

Given an underlying probability space (2, A, P), let 67,,: - S with én(w) =
6, € S, be such that X{(y,(w) — f,(6))* assumes a minimum at 6 = f,(w) as 8
varies over S,, w € . This is meaningful since each S, is compact and each f, is
a continuous function. Note that this reduces to the least squares procedure
when S is compact and each S, is chosen to be S.

Since S is a completely regular topological space, it has a Stone—Cech
compactification BS. That is, S is a dense subspace of a compact space S
having the property that each bounded continuous function f: S > R has a
continuous extension g: BS — R. A proof of these results can be found in
Wilansky ([5], page 147).

Following Jennrich [3], the tail cross product of {f,} with itself is defined
when the sequence {1/nY}f(a)f(B)} converges uniformly in (a,B) €S X S.
Note that if the above holds, then the sequence {1/aX7(f(a)— f,(B))?} also
converges uniformly on S X S. Let us denote the limit function of the latter
sequence by ¢(a, 8). The function ¢: S X S — R is continuous.

It is assumed throughout this work that g;: BS — R denotes the continuous
extension of f to BS. Suppose that the tail cross product of {f;} with
itself exists. Since {g,} is a continuous extension of {f,} and the topology of
uniform convergence on BS X BS is complete, it is easy to verify that
the tail cross product of {g;} with itself also exists. Hence, the sequence
{1/nL{(g,(a) — g(B))?} also converges uniformly to ¥ (a, 8), a, 8 € BS with ¢
the continuous extension of ¢ to 8S X BS.

The proof given by Jennrich for Theorem 4 [3] may now be duplicated to
verify the next result.

LEMMA 2.1 [3]. Assume that the tail cross product of {f,} with itself exists.
Then 1/n¥ig (a)e, > 0 uniformly in a € BS, almost surely.

3. Strong consistency. Let us refer to the nonlinear regression model
¥, = f(0,) + ¢, as model 1. This section is devoted to extending the following
result due to Jennrich [3] to the noncompact parameter space case.

THEOREM 3.1 (Jennrich [3]). Suppose that model 1 and the assumptions
made in the introduction are satisfied. Moreover, assume (1) the tail cross
product of {f} with itself exists, (2) ¢(8,,0) =0 iff § =6, and (3) S is a
compact subspace of R”. Then 0, — 8, almost surely.
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The sequence {f,} in Theorem 3.1 denotes the least squares estimators of 6.
The next theorem is an extension of Theorem 3.1.

THEOREM 3.2. Suppose that model 1 and the assumptions made in the
introduction are satisfied. Moreover, assume (1) the tail cross product of {f,}
with itself exists and (2) if a € BS, then Y(0,,a) =0 iff a = 6,. Then 8, — §,
almost surely.

PROOF. Let @ () = 1/nE"(y; — f,(8))% 0 € S, and let G (@) = 1/nE0(y, —
g.(a)% a € BS. Then

> (26,) + &~ &)
Zn:(gi(ao) - gi(“))2 + %Zn:(gi(oo) - gi(“))sz + %ief

1

G,(a) =

S|~ 3|+

Lemma 2.1 implies that 2/nX7?(g,(6,) — g.(a))e; = 0 uniformly in « € 8S, al-
most surely. Hence it follows that G,(a) = ¥(6,,a) + o2 uniformly in a € S,
almost surely.

Let V be any open neighborhood of 6, in 8S. Assumption (2) implies that
inf{y(0,, a)|a € V¢} = § > 0. However, since {/(f,, a) is continuous at 6, there
exists a neighborhood W of 6, in BS such that sup{y(6,, a)ja € W} < §/2.
Recall that {S,} is an increasing sequence of subsets of S such that UPS, is dense
in S; hence WN S, is nonempty for all n sufficiently large. It follows that,
eventually én belongs to V N S, almost surely. Thus 0:, — 6, almost surely. O

REMARK. A sufficient condition for 6, to converge to §, almost surely is the
existence of a § > 0 and a compact subset K of S such that ¢(§,,8) = 0 iff
0 =26, and ¢(6,,0) =38 when 8 € K. Now if we suppose that S is a locally
compact, but not a compact topological space, then one-point compactification of
S exists and let b denote this additional point. If ¢(f,, §) has a continuous
extension ¢,(f,, a) to this compactified space, then K = {6 € S|¢(§,,0) < 8} isa
compact subset of S if ¢,(6,, b) > 6 > 0. Clearly ¢(6,,0) > 8 when 8§ € K¢,
Hence, in this case 6, — §, almost surely.

The preceding remark is also related to the following result of Malinvaud [4].
The estimators ¢, in Theorem 3.3 are those obtained by using the least squares
procedure and are assumed to exist.

THEOREM 3.3 (Malinvaud [4]). Suppose that model 1 and assumptions made
in the introduction are satisfied. Assume (1) S is any subspace of R” and
suppose that the least squares estimators exist, (2) there exist a § > 0, an n,,
and a compact subset K of S such that 1/nYl(f(0) — f(6,))? > 40> + 8
for each 6 € K¢, n>n,, 3) {1/nX¥( f(a) — f{(B))?} converges uniformly in
(e, B) € K X K to ¢(a, B), and (4) ¢(8,,0) =0 for § € K only when 8 = §,.
Then 6, — 6, in probability.
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It should be mentioned that the Stone-Cech compactification BS of S was
used in the development of these results because (1) BS always exists and (2)
each bounded continuous f: S — R has a continuous extension to B8S. In
general, other compactifications of S do not always possess these two properties.
For example, if S is a totally bounded metric space and each f;: S — R is
uniformly continuous, then the completion of S is in fact a compactification and
may be used in place of 8S since each such f; has a continuous extension to the
completion space. Similarly, if S is a separable, locally compact topological space
such that each f: S — R has a continuous extension to the one-point com-
pactification space, then this compactification may be used in place of 8S.

The following is an example when the one-point compactification of S may
not be used.

ExampLE 3.1. Let S =[0,1) U (1,2] be a subspace of R and define

a, 0<f<1
) = 1 j
fz(e) 0+_., 1<QS2 1 >1.
l

The model is y; = f;(6,) + ¢, where {¢;} are independent and identically distrib-
uted random variables with E(e;) = 0 and E(e?) = 02 < + 0. It is straightfor-
ward to show that 1/nY7f(a)f(B) = af and 1/nX7( f(@)f(B))? = ¢(a, B) =
(a = B)?, each uniformly in (&, 8) € S X S. Since ¢(8,, 8) = (6, — 6)2 > & when
8 is sufficiently close to 1, then it follows that y(f,, «) > 0 for each « € BS — S.
Hence, by Theorem 3.2, 0 — 6, almost surely. Note that the one-point com-
pactification cannot be used since each f, fails to have a continuous extension to
it.

4. Related model. Quite often in applications, each regression function
f(6) in model 1 can be written as f(x;,8), i > 1. This leads to the study of a
closely related model. Let 2 be any subspace of R™ and %,, be the set of Borel
subsets of Z. Model 2 is of the form y, = f(x, 6,) + ¢ with the following
assumptions: (1) {x;} is any sequence selected from Z such that the correspond-
ing sequence {u,} of empirical probability measures converges weakly to some
probability measure u on (%, %,,); (2) {¢;} are independent and identically
distributed random variables each having mean zero and finite variance o2; (3) S
is a separable, completely regular topological space; (4) f: XS > R is a
bounded, continuous function; and (5) a compactification T of S exists such that
f has a continuous extension g: X T — R.

Malinvaud [4] and Gallant [2] have given consistency results for these models
when (%, %#,,) and S are compact subspaces of finite-dimensional Euclidean
spaces. Theorem 3.2 is used to extend these results to the noncompact case.

THEOREM 4.1. Suppose that model 2 and assumptions previously made hold.
Moreover, assume that p(x € Z|g(x, 0,) # g(x, a)} > 0 whenevera € T, a # 6,.
Then 0 — 0, almost surely.
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PrOOF. Since g(x, a)g(x, B) is a bounded, continuous function defined on
ZX T X T, where T is compact, then {g(-, a)g(:, B)|a, 8 € T} is an equicon-
tinuous family on Z. It follows, by a result of Rango Rao (e.g., see problem 2.8 of
Billingsley [1]), that

L S e, a)e(x, B) = [alx, (e, B) du(x) ~ [e(x, (. B) du(x)

uniformly in («, 8) € T X T. Hence, condition (1) of Theorem 3.2 holds. This
also implies that

;ll-i(g(xi’a) —g(xb B))2 - /(g(x’a) —g(x’ :8))2 d;.L(x) = \b(a’ :8)

uniformly in (a, 8) € T X T. The hypothesis implies that if « € T, then
Y(6y, @) = 0 iff a = 6,. Hence, condition (2) of Theorem 3.2 holds and thus

f, — 6, aimost surely. O

Let us conclude with an extension to the noncompact case of the example
given by Jennrich ([3], page 642).

ExaMPLE 4.1. Let b be a fixed positive real number and let the parameter
space S = {(8,,6,)|0 <8, < b,8,> 0} be a subspace of R®. Suppose that Z'=
(0, o) and {x;} is a sequence selected in £ such that p, - p weakly on (%', 4,),
where p is nondegenerate.

Consider the model y, = f(x,,6,) + &;, where 6, € S and f(x, ) = 6,e™%,
0’ = (6,,0,) € S. Assume that {¢;} are independent and identically distributed
random variables each having mean zero and finite variance. Let

T={(a,a,)0<e; <b,0<a,< + o0}

be equipped with the product topology; then T is a compactification of S. Note
that g(x, a) = a,e”** is a continuous extension of f(x, ) to Z X T. Hence, the
conditions of model 2 are satisfied. The argument used by Jennrich ([3], page
642) shows that, since p is not degenerate, p{x € Z|g(x, a) # g(x, 6,)} > 0 when
a € T and a # 6,. It follows from Theorem 4.1 that g, — 6, almost surely.

REMARK. In the present paper under suitable regularity conditions, the
sequence of least squares estimators over an increasing sequence of compact sets
whose union is dense in the noncompact parameter space has been shown to be
strongly consistent. This process ensures the existence and the measurability of
the sequence of estimators. However, present study does not address the problem
of selection of these compact sets. One possible way is to choose monotonically
increasing sets of grid points in closed balls of increasingly large radii with a
convenient center a, using the metric ¢'/? or some variable metric like p, where

1/2

ol B) = [ L (@) = £(B)°
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Now p,,, even though variable, will become stable with increasing sample size as
it converges uniformly to ¢'/2. Of course, in any particular situation with a given
value of n, we would like to choose as large a compact subset of S as possible.
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