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NONPARAMETRIC ESTIMATION OF A BIVARIATE
SURVIVAL FUNCTION IN THE PRESENCE OF CENSORING!
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Hutchinson Cancer Research Center and University of Washington

A new family of estimators of a bivariate survival function based on
censored vectors is obtained from a decomposition of the bivariate survival
function. These estimators are uniformly consistent under bivariate censoring
and are self-consistent under univariate censoring.

1. Introduction. Methods for analyzing univariate censored data have been
studied by many people over the last few decades. Relatively little research has
been devoted to the analysis of bivariate observations in the presence of censor-
ing. In some studies, two times are observed because experimental units consist
of pairs of components, and the lifetime of each component is recorded. Censor-
ing occurs when the experimental unit is removed from the study before both
components have been observed to fail. Examples include twin studies and
matched pair studies. In other studies, two failure times are recorded for each
individual or piece of equipment. Thus, in studies of chronic diseases, both
recurrence times and death times are recorded, and their joint distribution needs
to be estimated.

In this paper, we discuss nonparametric estimation of the bivariate survival
function in the presence of censoring. In Section 3, we present a new class of
estimators of the bivariate survival function. These estimators are based on a
decomposition given in Section 2 of the bivariate survival function in terms of
estimable functions. Sections 3 and 4 discuss properties of the estimators. The
rest of this section summarizes previous work on this problem.

We first review estimation of a univariate survival distribution. In this case,
let T°, i = 1,..., n, be n independent and identically distributed (iid) lifetimes
with continuous survival function S%¢) = P(T\° > t). Let C;, i = 1,..., n, be an
independent sample of n censoring variables with survival function H(¢). It is
not possible to observe both T\° and C,. Let X A Y denote min(X,Y) and [A]
denote the indicator of the event A. We observe T, and D,, where T, = T° A C;
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and D, = [T)° < C,]. Kaplan and Meier (1958) suggested

Sot) = T1 (1 L)

| L[L>T]

as an estimator of S°. They showed that S° is a nonparametric maximum
likelihood estimator in the sense that S° formally maximizes an expression that
would be a likelihood function if a parameter were being estimated. Johansen
(1978) showed that S° is a generalized maximum likelihood estimator (GMLE)
as defined by Kiefer and Wolfowitz (1956). Efron (1967) showed that S° is the
unique self-consistent estimator.

Several extensions of the product-limit estimator to bivariate times have been
proposed. Before reviewing these, we extend the notation to bivariate times. The
true pair of survival times will be denoted by (7%, T). The bivariate survival
function of this vector is S%(¢,, ¢t,) = P(T? > t,, T, > t,). The pair of censoring
times is (C,, C,) and has bivariate survival function H. The observed vector
is (T, Ty, D,, D;), where T;=T° A C;, D,=[T"<C], j=1,2. When
P(C, = C,) = 1, the censoring will be referred to as univariate censoring. Other-
wise, the censoring will be called bivariate censoring. (For discussion of these
censoring mechanisms, see Leurgans, Tsai and Crowley (1982).)

Hanley and Parnes (1983) and Campbell (1981) studied maximum likelihood
estimators for discrete data and extended self-consistency to this situation.
Muiioz (1980) defined self-consistency for estimators of continuous bivariate
distributions in the presence of univariate censoring. Unfortunately, the GMLE
is not always unique. For example, if we observe one pair of uncensored times,
say (T}, Ty,), and a data pair with first coordinate censored, say (T),, Ty,), where
T,, > T,,, then any distribution that assigns probability ; to the point (T,,, T5,)
and probability § to the half-line from (T},, Tj,) to (o0, T},) is a GMLE and a
self-consistent estimator.

A related nonuniqueness problem occurs whenever any of the pairs are
censored in exactly one coordinate and the underlying bivariate distribution is
jointly continuous. The continuity condition implies that with probability 1,
none of the observed lifetimes is tied. The total mass given to a ray on which one
of the one-component censored observations can lie is determined by the GML or
the self-consistency conditions, but the distribution of that mass within such
rays is not determined. Of course, some of the values of the survival functions
will be changed if the distribution of probability measure within these rays is
changed. Leurgans, Tsai and Crowley (1982) pointed out that some sequences of
GMLE’s of the survival function, such as the sequence in which all mass on all
rays is concentrated at the finite endpoints of the ray and the sequence in which
all mass on all rays is put near the infinite end of the ray, do not converge to the
true survival function. A referee pointed out that GML does not require continu-
ity of the conditional distributions of one component given the other. This
freedom from assumptions was adequate in one dimension, but does not permit
consistent estimation in more dimensions.

Campbell and Foldes (1982) proposed two other estimators. One is based on
the equation S° = (¢, t,) = S°%t,,0)P(TY > t,|T? > t,). Each term in this prod-
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uct is estimated separately. The other is based on an estimator R(,, ¢,) of the
cumulative hazard function R = —In S°, which is a line integral of the gradient

of —In S° The survival function is then estimated by exp — R(tl, t,). They
show the estimator R is path dependent and point out another serious weakness:
both of their estimators of S°(t,, ¢,) may fail to be survival functions. Campbell
(1982) showed the weak convergence of these estimators. Because of these
weaknesses, we propose a family of closed form estimators that is always survival
functions, based on a decomposition formula presented in Section 2 and some
smoothing techniques. Although the estimators we propose are kernel and
bandwidth dependent, this arbitrariness does not seem to matter as much as the
path dependence.

2. Decomposition of bivariate survival functions. Peterson (1977) intro-
duced a decomposition of a univariate survival function in terms of identifiable
survival and subsurvival functions. Theorem 2.1 below is a bivariate analogue of
Peterson’s decomposition. In Section 3 we present estimators of a bivariate
survival function based on this decomposition.

Throughout the rest of this paper, we give formulas for ¢, > ¢,. Deﬁmtlons for
t, < t, are obtained by reversing the coordinates.

We use two assumptions, (A1) and (A2), to derive the decomposition.

(A1) The vectors (T, T,’) and (C,, C,) are mutually independent.
(A2) The functions S° and H are absolutely continuous with respect to
Lebesgue measure on R2.

Without some assumptions about the relationship between (T, T,?) and
(C,, Cy), S° is not identifiable. The assumption (A2) can be weakened, but is
convenient for exposition.

The decomposition is expressed in terms of the following functions and sets:

S(x, y) = P(T, > x,T, > y),
S3(y) = 8%y, »),
Sy(x,y) =P(T,>x,T,>y,D,=1),
(2.1) Si(x, y) = P(T, > x,T, > y, D1 =0, D, =1),
S°(xy) = P(T{ > 2|T, = y),
R(s,t) = {(x, y)lx >s =y > t},
A(s, t) = {(x,y)ls>x=y>t}.

That is, S, S, and S, are the observable bivariate (sub)survival functions,
S°(-| - ) is the conditional survival function and S, is the probability that neither
event has occurred.

Lemma 2.1 is a preliminary decomposition of S°(s, t). It is not a complete
decomposition in terms of identifiable functions, because S{(y) and S°(x|y)
cannot be estimated directly. However, since S{ and S°(:|y) are univariate
survival functions, the univariate decomposition given in Lemma 2.2 below
applies.
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LEMMA 2.1.  Assume conditions (A1) and (A2) hold and let s > t > 0 be such
that S(s, s) > 0. Then

S%s,8) = 8(s) + [ SH(3)/S(5, 7)D8(x, 7)
(2.2)

S3(y) S%(sly)
+—/—/A(s,t)s(y, y) 8°x)y)

where 0/0 = 0, the integrals are Riemann—Stieltjes integrals, well defined since
both S, and S,, have bounded variation, and D is the differential operator.

DSI2(x’ y),

Lemma 2.1 is easier to appreciate if Figure 1 is examined. The probability S°
assigned to the rectangle R(s, t) can be split according to whether the first
coordinate is censored before s and written as the sum of P{(T?, TY) €
R(s,t), D, =0, T, < s} and P{(T?, Ty) € R(s, t); T, > s)}. The first probability
is absolutely continuous with respect to the identifiable subdistribution S,, on
the triangle A(s, ), and is displayed as an integral against that measure in
Lemma 2.1. Similarly, the second probability is written as an integral over
R(s, t) with respect to the identifiable subdistribution S,. The factor
S2(¥)/S(y, y) is the reciprocal of the probability that C, A C, is greater than
y; the factor S°(s|y)/S%x|y) in the former integral is the conditional probabil-
ity that T° is in the rectangle given that the second coordinate is y, which forces
(TP, T,) to bein A(s, t) U R(s, t).

(s,s)

R (s,t)
Als,t)

(t,1)
(s,t)

Fic. 1.
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Proor. We prove this lemma by rewriting each of the double integrals as
integrals with respect to DS%(x, y). For the first integral, we interchange limits
to show that this integral is equal to

_f‘ S3(y)
S(y, )
Since the definitions and (A1) imply that S(y, y) = S{(y)H(y, y) and that
D, Sy(s, y) = H(s, y)D, S9(s, y), this integral reduces to
sH(s y) H(s, y)
(2.3) - D,S° = DS°(x, y).
f (s ) UR( pHGy, 5 )

Similarly, the fact that DS ,(x, y) = D H(x, y)D,S%x, y) and S°x|y) =
D,S%x, y)/D,S°(— o, y) implies that the second integral of (2.2) is

D,S,(s, y)-

s s 1 DS%s,y)
[ ;

DxH X,y DSO X, ,
y=t/x=yH(y, y) D,S%(x, y) (%, ¥)D,S%x, y)

(2.4) D,S°(s, y)

-r H(y, y) - H(s, y)
y=t H(y, y)

H(s,y) | __,
_ f/RM[ ,y)]Dsu,y),

where the last integral follows from the fact that —D S O(s, y) is the integral of
DS°(x, y) over x € [s, o).
Therefore, the sum of the two integrals is the sum of (2.3) and (2.4) or

ffR(s t)DSO(x’ y) =8%s, t) — 8%s,s) =S°s, t) — S5(s).

The lemma follows. O

Lemma 2.2 is Beran’s (1981) extension of Peterson’s (1977) decomposition to
allow simultaneous discontinuities in death and censoring times. The statement
of the decomposition in terms of the product integral emphasizes the similarity
of the theoretical decomposition and the estimators of Section 3.

The product integral of a function g is defined by

o= dim T~ (2(w) - (),

where0 =y, <u, < --- <u,=t.

For continuous functions g, [v(g)](¢) = exp(—g(¢)). If g is an empirical
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cumulative hazard, [ y(g)](¢) is the corresponding product-limit or Kaplan—Meier
estimator.

LemMa 2.2. If Syt)=P(T°>t), S(¢)=P(T°AC>t¢t), and S/t)=
P(C > T° > t), where T° and C are independent random variables, then

si(0) - [ -1 (x))]m.

The function S) is the survival function of T = T A T. Define the
corresponding censoring time C; = C; A C,, the observed time Ty = T A C,,
and the indicator D, = [Ty < C,]. The survival function Sy can be decomposed
in terms of Sy(¢) = P(T >t)and S;,(¢) = P(T; > t,D;=1).Since Ty = T, A T,
and D; = [T, > T,1D, + [T, < T,1D,, (T}, D,) is a functlon of (Tl, T, Dl, D,)
and S; and S;, can be estimated empirically.

We now state the decomposition.

THEOREM 2.1. If the conditions (Al) and (A2) are met, then
DS3u(z)
So(s’t)=[( [ st )] (s)
“f [v(— I DSS(() e —)} / [S(y— , » )] DSy(x, )
25 *ffw{[( I <y—>}/ls<y-,y—>1
wt D,S,(2]y7)
) W)')()}/

where S(t|y)=PT,>t, D, =1T,=y, D,=1) and S(t|y) = P(T, > t|T, =
y7 = 1)

PrOOF. From the assumption (A1), C, is independent of T, we observe
S%(tly) = P(TY > t|T = y)
= P(Tlo > T = y,Cy > y)
=P(T?> t|T,=y, D, =1).
The theorem follows from applying Lemma 2.2 to S; and to P(T? > |T, =
D, = 1) and substituting the resulting representations in Lemma 2.1. O

REMARK 2.1. Under the continuity assumptions of (A2), (2.5) reduces to
(2.2). We prefer (2.5) because (A2) is not required for Lemma 2.1 or Theorem 2.1



ESTIMATION OF A BIVARIATE SURVIVAL FUNCTION 1357

and because (2.5) can be applied to empirical subsurvival functions to obtain
estimators.

3. Estimators of S° Suppose the iid random vectors {(T;, Ty;, Dy;, Dy;),
i = 1,..., n) have the same distribution as the random vector (T, Ty, D;, D,). In
this section we develop an estimator of S° and establish its consistency.

Natural unbiased estimators of the (sub)survival functions in (2.5) are defined
below in terms of T, Ty;, D;;, Dy, Ts; = Ty, A Ty, and Dy, = [TY; > Ty,1D,, +
[Ty; < Ty]1Dy;:

1
Se(x, y) = ;Z[Tli> xyT2i >y]:
i
1
Sle2(x’ y) = ;;Z[Tll > X, T2i >y, Dli =0, ‘D2i = 1],
i
1
S5(x, ) = = LTy > %, T > y, Dy = 1],

1
Sg(x) = ;Z[Tai >x],
and
1
Sg(x) = ;Z[T:ii >x, Dy =1].

Substituting S§ and S5, into Lemma 2.2, we have the Kaplan—-Meier estimator
for S(¢):

(3.1) S2(t) =[ ( f 58‘3(3;(x;)}(t).

The functions S(x|y) and S,(x|y) are the conditional probabilities given
T,; = y and D,, = 1. Since the assumption of absolute continuity implies that
there is (a.s.) at most one 7}, that is equal to y with D,; = 1, S(x|y) and S, (x|y)
cannot be estimated stably without smoothing. To estimate a conditional survival
function given y, we apply the nonnegative weight W, (y) to (Ty;, T5;). The
weight W, ,(y) depends on the data through the distance between y and T,; and
through the second components {(T5;, D, ), j = 1,..., n}. With the assumption
that ¥, W,;(y)D,; = 1, the following estimators are discrete subsurvival func-
tions:

g(xly) = ZWni(y)[Tli >x, Dy, = 1]’
(3.2) '

D, =1].

l

gu(x|y) = ZVVni(y)[Tu‘ >x, Dy,

This class of estimators has several attractive features. One feature is that the
use of Theorem 3.1 to construct the estimators makes it a natural extension of
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the product-limit estimator to two dimensions. In Section 4 we show that these
estimators are self-consistent under univariate censoring. Another advantage is
that, once the weights have been computed, no iteration is required.

Substituting the estimators .§A(x| ¥) and §u(x| y) into the equation yields the
following natural estimator for S°(x|y):

R +D,S,(ty)
S%x = Sy il 44 .
(1) = [ - [ 2G50
If S(x|y) > 0, and if the jump points of gu(-|y) are x,,..., X, then
4 S\u(xi_ly) - gu(ley) ]
SO%x|y) = [1 - p—— .
(=11 S 1)

Substituting S?, Sg, S5, S¢ and Sx|y) into (2.2), we obtain the following
estimator of S

S%s,6) = 8(s) + [, S>7)/8°(37, y7) DSi(x, )

(3.3) ‘
+ [ SXyS(sly ) /(S(y ™, y)Sx "1y 7)) DS, ).
A(s, t)

If we rewrite the double integral in the above equation as a double sum, we
can easily see that the estimator is a step function. Furthermore, S%c0, 00) = 0,
S°(0,0) = 1 and the probability mass at the point (s, ¢) is

S%s,t) + S%s,t7) — §%s~, t) — §%s, t7)

1| S(7) &

= ;[W Y DDy [Ty =5, Ty = t]

i=1

L S20) Lo i wor o
;[W][S (s71t7) — S%s|t )]
<3 - D”)Dw[t <T,<s,Ty=t]

i1 SUTy;1t7)
> 0.
Therefore, S° corresponds to a genuine probability measure.

We devote the rest of this section to a discussion of the consistency of this
class of estimators. First we discuss the conditions on the weight functions that
imply consistent estimation of the conditional survival functions. Lemma 3.1
asserts that these conditions imply consistent estimation of S°(-|y). Theorem 3.1
gives conditions for the consistency of S°.

Choice of an estimator within this class requires the specification of the
weight functions W,;(y). We confine our investigation to a demonstration that
the weight functions can be chosen to provide a consistent sequence of estima-
tors. Of course, important issues remain in the selection of weight functions for
use with specific sample sizes.

Here we focus on kernel weights. These weights are constructed by selecting a
nonnegative function %(-) of bounded variation on the real line and a sequence
of positive bandwidths {h(n), n > 1} converging to zero. The probability weights
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are then
B4 W) =M(To=)/M)D [ EH(T; =m0, )

That is, we give positive weight only to those observations with an observed
failure in the second component near y. Theorem A.1 of the Appendix (also see
Theorem 4.3 of Tsai (1982)) shows that if the true conditional survival functions
S(x|y) are uniformly continuous in x and in y and if bandwidths converge
slowly enough that Y%_,exp(—rh%(n)) < oo for every positive r, then

sup |S(x|y) — S(x|y)| = 0, as.and
O<x,y<M
(3.5) ="
sup |S,(x|y) — S,(x|y)|—> 0, as.asn— oo,
O0<x,y<M
where M is such'that —H(t, y)[dS*(t, y)/dy] > O for every max(t, y) < M.
In our proofs, we do not assume that kernel weights have been used. Nearest
neighbor weights can also be used. Beran (1981), in related work on nonparamet-
ric regression in the presence of censoring, discusses these possibilities.

LemMA 3.1.  If (Al) holds, then

86)  S°a1y) = 1)~ [T DS forxzy =0,
where

Sdxy) = S(xly) = S(x1y) = P(T, > ¢, D, = 0T, = y, D, = 1).
ProoF. Assumption (Al) implies
SO%x|y) = E([Tl0 > x]|T2° = y)
E(E([T¢ > x]|T = 5, T, D,)IT = »)
—f ([0 > 2|1 = 5, T, = 2, D, = 1)

X D,P(T,>z",D, = 1T = y)

f ([0 > %]|T = 5, T, = 2, D, = 0)

X D,P(T,>2",D, =0|TY = y)
=P(T,>x,D,=1Ty=y,D,=1)

{f f} (10> 2]|TP = 5,7, = 2, D, = 0)

XD,P(T,>z2",D, =0Ty =y, D, = 1)

= S,(x1y) + S(x|y) - / SOEZ:y;

The following assumption is required by Lemma 3.2 below.

D,S(z7|y). m
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(A3) The probability weights have been chosen so that (3.5) holds.
LEMMA 3.2. Assume (Al), (A2) and (A3) hold. If the constant M satisfies

S(x, y) > 0 forx, y < M, then

sup  |S%(x|y) — S°(x|y)| >0 a.s.asn— oo.
O<x<y<M

Proor. Consider the functional equation
[7(S°C1-), SC1-), 8u(-1)](x, 7)
= §%xly) = S(x1y) - [ SOE 2 b(s(21) - 8.0 1),

where for any fixed y, S°(-|y) and S(-|y) are survival functions and S,(-|y) is a
conditional subsurvival function. Theorem 2.4 of Tsai (1986) shows that the
unique solution of

[T(¥(SC1), Su(1)), SC1-), SN (x, ¥) = 0

for any fixed y =y, is

[(S(-1+), S,(:1 D=, %) = [Y fo g(f (t:yz; ](x) if S(x|y,) > 0.
Therefore, for x, y < M,
S, 01 M) = o[22 o) = 1)

is the unique solution of T(S°(-| - )S(+| - ), S,(-| - )) = 0. Similarly, Sx|y) is the
unique solution of T(S°(-|-), S(:| - ), S,(:| - )) = 0 by Lemma 3.1. For any condi-
tional survival function S*(x|y) satisfying

sup |S*(x|y) — S%x|y)| >,
O<x,y<M

we have T(S*(:| ), S(+| - ), S,(:| - )) # 0. The assumption (A3) implies that
sup  [[T(S*(-1-), SC:I-), -1 )](=, ¥)

O<x,y<M

- [T(S*(l ')’ S(l )’Su(l ))](x’ y)' -0 as.asn— oo.
Therefore, for almost all realizations, there exists an m such that for all
n>m, [T(S*( 1), 8¢| ), S( |- ))](x y) # 0, for some (x, y). Thus the unique
solution So(xly) of [T(S°: [ ), S¢1-), S (] N)(x, ¥y) = 0 must satisfy

SUPg < . y < m|S(x]¥) — S°(x|y)| < e Letting & decrease to zero, we see that
sup  |S%x|y) — S%x|y)| > 0 as.asn — co. O

O<x,ys<M

The uniform consistency of S3 , which is needed to derive the consistency of

S°, is the one-dimensional result for the Kaplan—Meier estimator of Foldes and
Rejto (1981).
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THEOREM 3.1. Assume (Al) through (A3) hold. If the constant M is such
that S(x|y) > 0, for x, y < M and Sy(M) > 0, then

sup  |S%x, y) — S%=x,¥)| >0 a.s.asn - .
O<x<y<M

Proor. The uniform consistency of the empirical survival function and of
product limit estimator and Lemma 3.1 imply that SJ(y)/S%(y, y), Ss(x, ¥),
SP(7)S°(x|y)/(S%(y, )S%x|y)), and Sfy(x, y) converge uniformly to
S3(9)/S(3, ¥), Syx, ¥), S3()S°(x|¥)/(S(y, ¥)S(x|y)) and S,y(x, y), respec-
tively. The theorem follows from the bivariate generalization of Lemma 6 of
Aalen (1976). O

4. Self-consistency of S° under univariate censoring. Self-consistency
was defined for estimators of survival functions for univariate observations by
Efron (1967) and extended to bivariate observations by Hanley and Parnes
(1983), Campbell and Foldes (1982) and Muiioz (1980). An estimator.S° of S° is
said to be self-consistent if

n

nSAO(tl, t)= X {[Tu > ty, Ty > ty]

i=1

+[Dy;=0,Dy,=1,T; < t, Ty, > t,]
go(tl’ T2i_) - go(tl’ T2i)

SAO(TIL" T2¢_) - go(Tli: Tzz)

+[Dlt = 17 D2i = O, Tlt > t, T2l < t2]

SAO(TIi_’ t2) - go(Tli’ t2)
SAO(Tu_, Ty,) — STy, Ty:)

+[Dy;=Dy;=0,T; < tyor Ty, < t,]

§°(max( t,, T,;), max(t,, T2i))
go(Tli’ T2i)

|

Proposition 4.1 from Mufioz (1980) characterizes self-consistency under uni-
variate censoring in terms of m(¢) = S2(¢ ) — S2(¢), the probability mass func-
tion of the product-limit estimator of the univariate censoring distribution. We
state Mufioz’s characterization and use it to show that S° is self-consistent.

PROPOSITION 4.1. Under univariate censoring, if the 2n observed times
{T}:;1 < i < n, k=1,2) are distinct, then S° is a self-consistent estimator of S°
if and only if condition (iv) holds and, for each i, the appropriate condition of
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(i) through (iii) holds:
(i) STy, Ty) + STy, Toy) = S°Tii', Ty) — STy, Toy)
=m(T;ANTy;), if D= D, =1,
(ii) S°( i o) — SO(TI, ,Ty;) =m(Ty;) ifD,;=0, D, =1,
(i)  S%Ty,Ty) - Sf"(Tw Ty;) =m(Ty) if D=1, D, =0,
(iv) S°(¢, t) Z[ =1,T; A Ty; 2 t|m(Ty,; A Ty,).

THEOREM 4.1. Under univariate censoring, if the 2n observed times
{Tpi, 1<i<n, k=1,2} are distinct, then S° is a self-consistent estimator
of S°.

PrRooOF. The theorem will be proved by showing that SO satisfies the four
characterizing equations of Propositions 4.1. Since SJ(-) is the product limit
estimator of Sy, Efron’s (1967) equation (7.9) implies that

m(T3i) = D3i§??(T3i_)/(nSe(T3i_ ’ T3i_))'

For cases (i) to (iii), Dy, =

(i) In the absence of t1es the mass at a point (T);, Ty;) with T}, > T, reduces
to DuDzng(Tzl )/(nse(Tm ’ T2l )) m(T3z)

(ii) In the absence of ties, no mass on the ray form (7;, Ty;) to (T};, ) is
contributed by the integral over A(s, t). Since D,; = 0 implies m(T};) = 0, the
mass on the ray comes only from the integral over R(s, t), and is
D2tSZ?(T2z )/(nse(T2t ’ T2t ) = m(T2L)

(iii) This case follows from (ii) by symmetry. .

(iv) Since STy;, Tyy) — STy, Ty) = m(Ty)Dy;, therefore, S°(¢, t) =

X2 [Ty, = t, Dy; = 11m(Ty;). O

Although the S° is a self-consistent estimator of S° under univariate censor-
ing, S° is not self-consistent under bivariate censoring. For example, suppose we
have four data points (5.,5.,1,1) (4.,4.,1,1), (3.,5.,0, 1) and (5.,3.,1,0). The self
consistent estlmator of S° will put probablllty mass ; at the point (4., 4) and
probability mass 2 at the point (5.,5.), but S 5° will put probability mass 1 3 at the
points (4.,4.) and (5 5.).

Acknowledgment. We thank the referees for their constructive comments.
APPENDIX

LEmMMA A.l. Let {h(n) = n > 1} be a sequence of positive real numbers such
that h(n) - 0 and YI%_,exp(ynh%(n)) < wo for every y <0. Let k(u) be a
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density function of bounded variation on the real line. Set

Gy(x, y) = fxwfxwfwaO(t, )h(u, v) dodudt,

Gy(x, ) = fxwftwfwa"(t, y)h(u,v) dodudt,

Gi(x, 7) = (nh(n)) ™ Lr((Ty = y)/R(m) Ty > 2, Dy = 1],
Gy(x, y) = (nh(n))™’ ;k((TZi ~¥)/h(n))[Ty; > x, Dy; = D, =1],

9°8°(x, y) 9°H(x, y)
0 = ————— and h = —
If G(x, y), i = 1,2, are uniformly continuous for 0 < x, y < oo, then
sup |Gi(x,y) — Gi(x,y)| >0 a.s.asn— oo fori=1,2.

0<x,y<o0

PrROOF. The proof is similar to that of Theorem 1 of Nadaraja (1965) where
uniform consistency is established for univariate kernel density estimators.

We abbreviate sup, ., , <., by sup. Integrating the double integral by parts,
we find

A, = sup|Gy(x, y) — E(Gy(x, y))|
1 t—y .
h(n) //k(h(n) )[s > x] DS5(s, t)

= sup
h(n)f-/ (h( ))[s>x]D82(s t)
= sup| - f/(Sf(s t) — Sy(s, t))Dk(h( ))D[s>x]
suph( )ffS2(s t) — Sy(s,t) Dk(h( )) D,[s>x]

< sup|S5(x, ¥) — Sy(x, y)|»/Rh(n),

where » = [|Dk| is the variation of k. Theorem 1 of Kiefer and Wolfowitz (1956)
implies that for any ¢,

P(A, > ¢) < P{sup|S5(x, y) — Sy(x, )| > eh(n)/v}
< Cexp — ¢,nh%(n),

where &, = (¢/r)? and 0 < C < co. The Borel-Cantelli lemma and the assump-
tion that %(-) has bounded variation imply that A, — 0 as. as n — co. It
remains to show that

sup| E(G,(x, y)) — Gy(x,¥)| > 0 as.asn - .
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Let g(x, y) = (8%Sy(x, ))/9x dy. Since G(x, y) = (—dSy(x, y))/dy, and
G (o0, y) = 0, we have

Gi(x, y) = [[s>x]e(s, y)ds = fﬁ)k(h—(t;g)/[s > x]g(s, y) dsat.

Therefore, for § > 0,
Sup|Eé1(x1 y) - Gl(x1 y)|

cwof £, e )

X‘f[s >x]{g(s,y—¢t) — &(s, y)}dS‘dt

(A1)
< sup sup Jls>x1{a(s, y— 1) - &(s, ) d?‘
It)<
+2M k(t) dt.
181> 8/h(n)
=supsup |G(x, y — t) — G(x, y)| + 2Mf k(t) dt,
1t <8 |t}>8/h(n)

where M = sup G,(x, y) < 0. Let ¢ be an arbitrarily small positive number.
Because G, is uniformly continuous, we can make the first term of the right-hand
side of (A.1) less than &/2 by choosing & sufficiently small. Having so chosen §,
we can then choose n so large that §/h(n) is large enough so that

f k(t)dt < e/2M.
1#]>8/h(n)

Thus (A.1) implies that sup| EG,(x, y) — G,(x, ) | < e. Therefore,
|G\(x, ¥) — G (=, ¥))| >0 as.asn— oo.
The uniform consistency of @2 can be established similarly. O

THEOREM A.1. Assume the conditions of Lemma A.1 hold. If the constant
M satisfies G0, ¥) > 0 for y < M, then

(a) sup  |S(x|y) — S(x|y)| =0 a.s.asn - oo,
O<x,y<M
(b) sup  |S,(x]y) — Sy(x]y)| > 0 a.s.asn - o,
O0<x,y<M

where §(x| y) and §u(x| y) are defined in (3.2) and W, (y) is defined in (3.4).

Proor. The proof is based on Lemma A.1 and the fact
Gy(x, y) Gy(x, y)

3.0y and S (x|y) = 4,00, ) .

S(x|y) =
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