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of the original error terms, e,. The procedure suggested in Section 7 is an
attempt to ensure that the error terms associated with x; in the bootstrap
samples capture some of the possible dependence on x;. This approach leads to
the “bootstrap” estimator for the covariance of P being V;ay, and so this
resampling method is as effective as the weighted jackknife in this regard. The
potential advantage the bootstrap procedure has over the jackknife in general is
in approximating the distribution of (B — B). In the case where the e;’s are
independent and identically distributed the procedure suggested in Section 7
forces some arbitrary distribution on y* through ¢*, and the actual distribution
of the e;’s is lost. Thus, the usefulness of this approach in generating confidence
intervals by approximating the distribution of (B — B) is in question. Perhaps
the jackknife-bootstrap hybrid is the answer to this problem and this model
certainly deserves more investigation.

The bootstrap percentile method for calculating confidence intervals in regres-
sion has been investigated by Robinson (1985). He compared the bootstrap
approach to the exact confidence intervals obtained by inverting permutation
tests and suggested an adjustment to the bootstrap percentile method to improve
its coverage probability. '

The use of t-confidence intervals in the simulation study for the parameter
0 = —B,/2B, should give moderate results with normal errors and B, away from
0. Weber and Welsh (1983) found that the standardised distribution of the
jackknife statistic for # can be very skewed and so one would not expect the
symmetric #-confidence interval to give reasonable coverage in general. The
adjusted percentile methods appear to be the appropriate way of obtaining
nonparametric confidence intervals for 6.
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Along with commenting on this authoritative paper, we wish to make a plea
for an approach to the computational problems of resampling and simulation
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more generally. Our work divides into two parts: (1) accelerated simulation and
(2) the use of “cheap” methods of inference based on a method closer in spirit to
the inversion of permutation tests in rerandomization.

In simulation, and discrete simulation in particular, a basic approach is to
sample from a set S of possible configurations, which may be termed the
reference set. Thus, in the simple bootstrap S consists of all n” possible with

replacement samples obtained from a data sample x = (x,,..., x,,). In a permu-
tation test problem S would consist of all n! permutations of x. In a sign test
problem we may consider all 2” configurations (+x,,..., +x,).

An idea mentioned, for example in Tukey et al. (1978), is to do complete
enumeration over a restricted reference set S’ C S, which has two important
properties:

(1) S’ has very much smaller cardinality than S.
(2) S’ fills out S in a dense and uniform way so that any inference based on S’
is close to that based on S.

We refer to S’ as a simulation code or resampling code by analogy with coding
theory. We may consider that a task of the simulation is to get close to the
“true” value of the average of some statistic #:

== Z t(x(w)),
weS
where N = #(S). In approximating g by 5, = 1/N'Y,, o o t(x(w)), where N’ =
#(S’), we are led to a problem of numerical integration. There is a large
literature on quadrature methods based on low discrepancy sequences:
Halton-Hammersley sequences and so forth.

We can measure the discrepancy for the simple bootstrap as follows. First
identify a bootstrap sample by the selected indices of the with-replacement
sample: If, say, n = 5 and the sample chosen were (x,, x,, x,, X5, X5), we would
refer to this as (1,1,2,2,5). Each sample is thus in one-to-one correspondence
with a point in the n” hypercube grid of side n. If we suppress the data points
we can consider the integration as being over this grid. Now S’ will be a subset
of this grid. The L? normed discrepancy of S’ would be

= — L g%w),

wES

where g(w), the local discrepancy, is

g(w) = Fg(w) — Fs(w),
the difference between the “empirical” n-dimensional c.d.f. of S’ and S. The

latter is that for a uniform distribution on the grid. The expected value of 72 for
the simple bootstrap sample with N’ configurations 1ndependently uniformly

chosen from S is
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This can be used as a benchmark to compare the discrepancy of other determin-
istically chosen sets S’, which can, incidentally, be explicitly computed also.

The “balanced bootstrap” independently discussed by Davison, Hinkley and
Schechtman (1986) always has lower expected discrepancy. The balanced
bootstrap is simple resampling with the added restriction that each data point x;
occurs equally often in the full set S’. In our notation this says that the
one-dimensional discrepancies, considering the marginal distributions on each
axis of the n” grid, are zero.

The deterministic codes obtained in various ways by direct minimization of
discrepancy or by judicious “space-filling” together with balance do even better.
Using a version of Koksma’s inequality, a bound, depending on discrepancy and
the variation of ¢, can be placed on the deterministic error

el = [tg = g/l
(See Niederreiter (1978) for a discussion of these bounds.) First-order balance
decreases the bound.

Armed, hopefully, with a catalogue of, or easily complemented algorithm to
find, the simulation codes S’, we can do very large numbers of simulations in
situations such as bootstrap inference or inversion of permutation tests. We
should also mention the applications to more general numerical experimentation
in areas such as computer aided design. But now to a cheap method of inference.

We believe that the key to methods of inference when simulation becomes
easy is to let the configuration set S (or S’) depend on the parameters 8 of a
model as follows. Let us consider a parameter dependent transformation of the
data y,(x). For example, in a two-sample problem we may have

which tends to

Yo = (xl,...,xnl,xnlﬂ—0,...,xn-—0).

Let T(y) be some statistic of interest. In the two-sample problem it could be

1 1

T(y) = n—(y1 o) . (Ppysr + o ).

If we now compute all values T( y;*) for all y}* derived from our reference set S
(or S’) we will have an empirical c.d.f. for T say FT( t|0). Smoothing the T( y;*)
values will produce a density fT(t|0) that depends on 6. Then putting ¢ = ¢, = Yo
the “observed” value, will yield a likelihood L(8). This likelihood is close in
spirit to that used in deriving an inverted sign test or permutation test. The
likelihood L(8) can be used to do * ‘ordinary statistics”; for example, it can be
combined with a prior 7(8) to obtain posterior confidence intervals.

The standard approach to simulation, and that adopted in Professor Wu'’s
paper, is to obtain first an estimator § and then place confidence regions around
this using variance estimation. Our approach, we repeat, is to simulate the values
of a statistic for a range of selected 6 values. Of course the choice of statistic is
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critical, but so it is in nonparametric methods in which statisticians are quite
happy to consider parameter dependent reference sets. Here is our recipe for
straight line regression, referring to Professor Wu’s paper.

First set (on the computer) the value of B8. Then evaluate the

2i=li— szB

Bootstrap the z; values (keeping the x; values fixed). Regress each bootstrap z*
set back on the x; values to obtain a ﬁ* value for each bootstrap. Smooth the
set of £* to obtam fl ,8|/3) Note that f depends on the set value 8. Put 8 = ,80
the value obtained from the original (unbootstrapped) z; values and we have our
generated likelihood L(B). Here § plays the role of the statistic T.
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The overwhelming response to the paper reflects great interest and perhaps
confusion in the bootstrap and the jackknife. The contributions of the discus-
sants make the discussion informative, valuable and diverse. Their comments,
even though I do not always agree with them, help clarify certain points, suggest
new ideas and results, and in some cases prompt me to study the issues more
carefully. Most of these comments can be grouped into five broad categories. My
reply will concentrate on the major points of interest in each category.

Among the new ideas and results to which my response will not be directed,
let me mention: robustification of resampled values (Beran), two interesting
applications from genetics (Felsenstein and Mitchell-Olds), examples of incon-
sistency of bootstrap estimators (Olshen and Srivastava), use of weighted
jackknife in variance components model (Rao and Prasad), results on the



