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(Felsenstein (1985)). A phylogeny is a tree showing the genealogy of a set of
species. It has a shape and in some cases branch lengths as well. If we draw a
subset of the characters that are used to estimate the tree and come up with a
tree with (say) a shorter length of one of the branches, it may be the case that
extrapolation using the factor in (4.4) will make the branch length negative,
which is impossible. This indicates that a change in tree topology is called for,
but there is no easy way of knowing what change. The problem is even more
severe when the resampled estimate shows a change in topology—how is one to
extrapolate it?

In the absence of any ability to extrapolate, one cannot use the ordinary
jackknife or most of the variants Wu describes, but one can use the jackknife
with subset size (n + k& — 1) /2, or the bootstrap. In my 1985 paper, I mentioned
the possibility that one could drop half the observations chosen at random
instead of doing the bootstrap, but could not see what advantage this might
have over the bootstrap. It would be nice to have some simulations comparing
these two approaches. For now they both appear to be tenable approaches. In
biology we have so little confidence in the independence of our data points and
the validity of our assumptions that any method that comes within a factor of
two of indicating a confidence set is probably good enough. The obsession
statisticians have with correcting for biases of order 1/n must seem somewhat
comical to most biologists, who only wish their problems were that small.
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I comment first on that part of Wu'’s paper relating to the bootstrap. It seems
worthwhile to restate the bootstrap idea in brief. Consider data X drawn from a
stochastic model M, and a statistical functional F(X, M) whose distribution is
to be estimated. Let M be an estimator of M, computed from the data X. Let
X * be drawn from the model M. The bootstrap consists in approximating the
M-law of F(X, M) by the M-law of F(X*, M). In particular, if M is silly, the
bootstrap cannot work: Like any statistical procedure, the bootstrap is model-
dependent. (This is the statistics version of the no free lunch principle.)

If I understand it correctly, Wu observes that in a heteroscedastic regression
model M, a bootstrap procedure based on a homoscedastic estimator M will be
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1306 DISCUSSION

inconsistent. Furthermore, a procedure based on a heteroscedastic estimator is in
error by O(1/n). I am sure both points are right, but do not quite see their force
as arguments against the bootstrap. Probably Wu did not intend them as such.

For some discussion of the role of the model in the bootstrap, see Peters and
Freedman (1984). For a mathematical demonstration that, in certain classes of
heteroscedastic models, the bootstrap is asymptotically correct, see Freedman
((1981), Section 3; (1984), Section 3). For some simulation results in the same
direction, see Daggett and Freedman (1985) and Freedman and Peters (1984a, b).

I turn now to the jackknife and consider only the simplest model, Y; = a + §,.
In this case, the “delete-one” jackknife estimate for o« is the mean, and the
jackknife standard error is just the familiar standard error for the mean. Since
the regression model is balanced, there seems to be no difference between
weighted and unweighted procedures.

I will construct independent §,’s with expected value 0, but not identically
distributed; their variances will approach 1, so the conditions (C) of Section 5 are
satisfied. Still, the jackknife will not be such a good guide to the asymptotic
distribution of the estimator. (Whether this example can be handled by the
bootstrap depends on what information about the error structure is made
available to the statistician: iid resampling would be a mistake.)

Suppose

8, =1/i with probability 1 — 1/i2,
8, =1/i — i with probability 1/i2.
Asymptotically,
0+ +8,=logn+ U,

82+ .- 4+82=1,

where U and V are random variables with a proper joint distribution. The
sample mean is asymptotic to

(logn + U)/n,
while the jackknife standard error is

VV/n

In particular, the jackknife misses the dominant bias term, (logn)/n; and
provides only erratic scaling for the U/n term.

Wu’s Theorem 5 is not contradicted. The variance of the sample mean is
1/n + O(1/n?), as is the expected value of the jackknife variance. However, the
sample mean and jackknife variance have longish tails, so their asymptotic
behavior is not well described by moments. (The formulas are a bit confusing,
because it is standard deviation rather than variance that indicates scale.)

In this example, the sample mean is “super-efficient,” but that is not essential,
as I will now show. In essence, the jackknife estimates the scale of S by VV,
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where
S=(8,+--+48,)/V/n,
V=(82+-- +82)/n.

Suppose the §,;’s are independent, with mean 0 and variance 1, but not identi-
cally distributed. Then E(S) = 0 and
VarS = E(V) =1,
the last display being the essence of Wu’s theorem in our special case.

I will now sketch a construction to show that along some subsequences, S and
V will converge, but S/ VV will be very large and positive, with probability
about 1/e; along other subsequences, S/VV will be very large and negative, with
the same probability; along still other subsequences, S/VV tends to N(0,1), only
the last being desired by jackknife proponents.

Of course, S and V depend on n; the sequence of joint distributions is tight,
and includes as limits all pairs of random variables S* and V* that can be
represented in the following way. Let X, be a process with stationary, indepen-
dent increments, such that E(X,) = 0 and Var(X,) = ¢. Then S* = X, while V*
is the quadratic variation of X over the unit interval [0, 1].

In particular, the limits include all pairs S* and V* that can be represented
in the form

S* =W, + .- + Wy,
VE=W2+ - + W3,
where N is Poisson with parameter A, the W,’s are independent and identi-
cally distributed with mean 0 and finite variance, independent of N, with
AVar(W)) = 1.
Now choose & > 0 but small. Let
W, = ¢ with probability 1 — &,
W.= —(1 —¢) with probability e.

So E(W,) = 0 and Var(W,) = &1 — ¢). Choose A so AVar(W,) = 1. Let N*

and N~ be the number of positive and negative W,’s, respectively. These are

independent Poisson variables, with parameters A(1 —¢) = 1/¢ and Ae = 1,
respectively. Now

S*=N*e— N"(1-¢),
V*=N*e2+ N (1 —¢)’.
If N~ = 0, which has probability about 1 /e,
S*/\/V* = 0.

Otherwise,
S*/fV = (1-N-)//N-.

Of course, the signs are easily reversed; the normal limit is the common one, and
interweaving the three cases presents only the usual difficulties.
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A finite-sample version of this disaster is even easier to arrange. For example,
ifl<i<mn,let

8, = 0 with probability 1 — A /n,
8,=Vn W, with probability A/n.

The moral seems clear: Second-order moment conditions or no, with skew
long-tailed errors that change from observation to observation, the jackknife
cannot be relied upon. On the other hand, preliminary calculations suggest that
in our special case, with independence, in the presence of Lindeberg’s condition
both the jackknife and the bootstrap will perform adequately. Wu admits
dependent errors, and this introduces further complications.
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Professor Wu is to be complimented for bringing out several important issues
on jackknife, bootstrap and other resampling methods in regression analysis.
Using a representation of the full-data least-squares estimator as a weighted
average of corresponding least-squares estimators for appropriately chosen sub-
sets, he has been able to motivate very successfully general-weighted jackknife in
regression. I agree with the author that a jackknife that allows for the deletion
of an arbitrary number of observations at a time is more flexible than the
delete-one jackknife. However, I will be surprised if, for estimating nonsmooth
functions such as the median, a delete-d jackknife estimator will necessarily
rectify the deficiency of a delete-one jackknife estimator.

Although v, enjoys the same robustness property of vy, when the errors
are independent, but not identically distributed, and the design matrix satisfies
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