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ASYMPTOTICALLY MINIMAX ESTIMATORS FOR
DISTRIBUTIONS WITH INCREASING FAILURE RATE!

By JANE-LING WANG

University of California, Davis, and University of Iowa

We construct nonparametric estimators of the distribution function F
and its hazard function in the class of all increasing failure rate (IFR)
distributions. Denoting the empirical distribution and empirical hazard func-
tion by F, and H,, respectively, let C, be the greatest convex minorant of
H,, and G,, the distribution with hazard function C,. The estimator G, is
itself IFR. We prove that under suitable restrictions on F, and for any fixed A
with F(A) < 1, sup, . \n'/?|C,(x) — H,(x)| and sup, . \n'/?|G,(x) — F,(x)|
both tend to zero in probability. This means that G, and F, are asymptoti-
cally n'/? equivalent. It follows from Millar (1979) that F, is asymptotically
minimax among the class of all IFR distributions for a large class of loss
functions. This property extends to our estimator G, under some restrictions.

1. Introduction. This paper deals with estimation of a cumulative distribu-
tion function and its hazard function. Given a set of observations X,,..., X,
from a common distribution function F, the most standard nonparametric
estimator of F is the empirical cumulative distribution function F,. This estima-
tor F, of F was proved by Dvoretzky, Kiefer, and Wolfowitz (1956) to be
asymptotically minimax among the collection of all (continuous) distribution
functions. Therefore, in the absence of additional information about the shape of
F (except possibly that F is continuous), the empirical distribution function (or a
continuous version of it) is the optimal estimator for the true distribution
function F in the asymptotically minimax sense.

However, this does not solve the problem of optimal estimation if one has
some information about the shape of the true distribution function. Kiefer and
Wolfowitz (1976), motivated by questions arising in reliability theory, reopened
the issue and proved that the empirical distribution function is still asymptoti-
cally minimax among the class of all concave distribution functions. Note that a
distribution function is called concave if it is concave on its interval of support.
However F,, not being concave itself, may be considered inappropriate for some
purposes. The problem then is to construct an asymptotically minimax estimator
which is concave. It follows immediately from Marshall’s lemma that the least
concave majorant (LCM) C, of F, satisfies

swiplcn(t) — F(t)|< Sltpan(t) — F(¢)].
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This indicates that the LCM C, of F, is a better estimator of F' than F,, when
one considers loss functions of the Kolmogorov—Smirnov type. It is also the
maximum likelihood estimator as mentioned in Grenander (1956). The case of
convex distribution functions can be dealt with similarly.

One interesting family of distribution functions occurring in reliability theory
is the family of distributions with increasing failure rate (IFR). Millar (1979)
proved that F, is asymptotically minimax among the class of all IFR distribution
functions. However, F, has the drawback that it does not have IFR. The
maximum likelihood estimate in this family was found by Grenander (1956).
Marshall and Proschan (1965) proved the strong consistency of the MLE and
Prakasa Rao (1970) obtained the asymptotic distribution of the MLE of the
density function. However, since no estimator of the distribution function in the
IFR family has previously been shown to achieve optimality of any kind, it is of
interest to look for optimal estimators which have IFR. The fact that F, is an
optimal estimator of F and its hazard function H, (defined in Section 2) is not
convex, leads us to consider modifying H, into a convex function and then to
compare the performance of H, to its modified version. Denote a((F') = inf{x:
F(x) > 0} and &,(F) = sup{x: F(x) < 1}. If one tries to measure the goodness of
fit of H, to H by sup, ., |H,(¢) — H(?)|, it is obvious that lim,_, , »H(t) = oo,
unless F has a jump at «;, and hence sup, _, ()|H,(¢) — H(t)| = co. Therefore,
goodness of fit of an estimator of H should only be measured on intervals
bounded away from «,(F). In this paper for any given number A < a,(F),
we shall consider the problem of estimating H only on [0, A]. Motivated by
the work of Kiefer and Wolfowitz (1976), we shall modify H, by its
greatest convex minorant (GCM) C, on [0, A], and under certain restrictions
sup, . \n'/%|H,(t) — C,(¢)| will tend to zero in probability.

Let G,(t) = 1 — e~ be the distribution with hazard function C,. This type
of estimator (G, and C,) will be used throughout Sections 3 and 4. Several other
estimators will also be discussed in Sections 3 and 5.

Section 2 gives some notation and the formal construction of the estimators C,
and G,. Using a series of lemmas, in Theorem 1 of Section 3 we show that under
suitable assumptions, sup, \n'/?|C(t) — H,(¢)] = 0 in probability. The proof
follows the same pattern as the proof of Theorem 1 in Kiefer and Wolfowitz
(1976). Later in Theorem 2 of Section 4, the assumptions of Theorem 1 are
relaxed to only that of uniform convexity of the true distribution F. The
asymptotic n'/? equivalence of G, and F, then follows immediately from the fact
that

fgl;lGn(t) - F(t) = fgl;)lexp[%n(t)] — exp[ —H,(2)]|

<sup|C,(t) — H,(t)|.
t<A

Notice that in the construction of our estimate C,, one does not need to know
ao( F). (See also Remark 3 of Section 4 for a more detailed discussion.) However,
a,(F) or at least a lower bound for it will have to be known in order to make an
arbitrary choice of A < a;(F). In the absence of such information, it would be
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much nicer if we just take the GCM of H,(x) over the entire real line. Let C}(x)
be the GCM of H, on the real line and G;*(x) the corresponding distribution
function. It will be shown in Section 5 that one can use C}(x) instead of C,(x)
(depending on X). This makes the estimator practically usable. Section 6 shows
the asymptotic minimaxity of the estimators. Section 7 summarizes the result of
this paper. Appendixes 1 to 4 provide the proofs of some of the lemmas and
theorems.

The main effort of this paper is devoted to the proof of Theorem 1 of Section
3, although it seems to be more appropriate to call Theorem 3 of Section 5 the
main theorem of the paper.

2. Construction of the estimators C,,G, and some notation. We shall
start this section with some definitions.

DEFINITION 1. Let F be a distribution function. The hazard function Hg(t)
of F(t)is defined to be Hy(¢) = —log[1 — F(¢)]. If, in addition, F' has a density
f, the failure rate function yp(t) of F(t) is defined to be yu(t) = f(¢)/[1 — F(¢)]
for F(t) < 1. Note that yg(t) is the derivative of the hazard function H(¢).

DEFINITION 2. A distribution function F is said to have increasing failure
rate if the support of F is an interval denoted by [ay(F’), a;(F')], and the hazard
function H(¢) is convex on the support of F.

Marshall and Proschan (1965) proved that an IFR distribution F is absolutely
continuous except for the possibility of a jump at «,(F'). Hence the failure rate
vr(t) exists (except possibly at «,(F')) and is a nondecreasing function of ¢.

For the rest of this paper, F will always be a distribution function with IFR.
The shape of F is unknown except that it is known to have IFR. F,, will be its
empirical distribution function from a sample of independent and identically
distributed observations. The notation H(t¢) will be used to denote H(¢), and
H,(t) will be used to denote the empirical hazard function Hy(t), that is,

H,(t) = —log[1 — F,(t)]. Also «, a; will be used instead of aO(F) and oy(F).
Since a, > 0 for most practical applications, we shall assume a, > 0, although all
we need is that a, > — oo, which will be implied by the uniform strict convexity
assumption (A) in Theorems 1 and 2 on H.

Since we shall estimate F through its hazard function H, for reasons men-
tioned in Section 1 we shall consider the problem of estimating F and H only on
[0, A], for any A < a;. Let C, be the GCM of H,, on [0, A]. This GCM C, is the
supremum of the convex functions that are smaller than or equal to H, on [0, A].
(For references on this subject, see the book by Barlow, Bartholomew, Bremner,
and Brunk (1972).) Leurgans (1982) and Groeneboom (1983) provide asymptotic
distributions of the slope of the GCM of some processes. Our estimate G, of F on
the restricted range is'then the distribution function that has C, for its hazard
function. Explicitly,

1-G,(t) =exp{—C,¢t)} fortin[0,A].
This type of estimator C, and G, will be used throughout Sections 3 and 4.
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Let us now define some notation and a linear interpolating function for any
function on [a,, A].

Let {&,, n < 1} be a sequence of positive integers satisfying &, — oo.

Partition the interval [a,, A] into %, equal length subintervals [a, a’,,],
J=0,..., &k, — 1, where

L )
aj"=k—+a0, J=0,...,k,,
and
L=X-a,.

For any function g on [«,, A], we define its linear interpolating function L, g
as

L,g(ar) =g(a?) forj=0,...,k,

and linear on [a}, a},] for j=0,..., k, — 1.

In particular, L,H, is the piecewise linear interpolating process of H,, and
L,H is the linear interpolating function of H.

Let |igll, = sup{|&(t)l; ao < t < A).

For simplicity, let us introduce the following notation: Let &, =1 — F(A).
Then ¢, > 0 and is fixed. Let S(t) = 1 — F(t) be the survival functions. Then
S(t) > g, for all ¢ in [ay, A]. Let S, (¢) =1 — F(t) be the empirical survival
function. Since A < a,, the failure rate yz(¢) of F has an upper bound on [a,, A].
Let M = ||vg||, denote this upper bound.

3. Asymptotic n'/? equivalence of C, and H,. We shall prove the
asymptotic n'/2 equivalence of C, and H,, in this section. Recall that as defined
in Section 2, C, is the GCM of H, on [0, A]. An important assumption in many of
our results is that there exist a ¢ > 0 such that
(A) H'(v) — H'(u) = c(v — u)
for any u < v, both in [a,, A], for which the derivatives exist. This assumption
can be described as requiring that H be uniformly convex. Later it will also be
necessary to assume there is a d < o such that

(B) H'(v) — H'(u) <d(v—u)

for any u < v, both in [, A], for which the derivatives exist.
The proof follows the same pattern as that of Theorem 1 of Kiefer and
Wolfowitz (1976), and will be accomplished in the following five steps.

STEP 1.

LEMMA 1. For any convex function C(x) on [ag, A],
IC. = Cllx < 1H, = Cliy.

ProoF. The proof of this lemma is similar to that of Marshall’'s Lemma B
(1970), except that Marshall assumes continuity, which is unnecessary. O
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StEP 2. Under some restrictions on F, for suitably chosen k, = o(n!/?),
L,H, (defined in Section 2) is convex with probability tending to 1. More
explicitly, let the event A, = {L,H, is convex on [«a,, A]}.

PRroPOSITION 1. If F has IFR and satisfies assumption (A), then for suffi-
ciently large n,
nL3[£Oc]2}

1-Pr(A,) < 2knexp[— T

PrROOF. The proof is given in Appendix 1.

REMARK. The same rate n!/? also appears in Lemma 4.1 of Prakasa Rao
(1970), and there is some connection between the two results.

STEP 3. Under A, using Lemma 1 with C(x) = L,H,(x), we have

”Cn - Hn”)\ < “Cn - Lan|I>\ + ”Lan - Hn”)x
< 2”Lan - Hn”)\

STEP 4.

ProposITION 2. If n'/?|H — L, H||, — 0 in probability, then
n*?|\H, — L,H,||\ — 0 in probability.

Proor. The proof is given in Appendix 2.

STEP 5. Under some restrictions on F, for suitably chosen %, such that
n'/*/k, = o(1), we have n'/?||H — L, H||, — 0 in probability. This follows from
Proposition 3.

ProposiTION 3. If F has IFR and satisfies assumption (B) then ||H —
L,H|, < 2dL?k;>

ProoF. The proof is similar to that of Lemma 6 in Kiefer and Wolfowitz
(1976), pages 79-80. O
THEOREM 1. If F has IFR and satisfies assumptions (A) and (B), then
n'?|H, — C,)l, > 0 in probability.

. - L32c?n |3
" 1300Mlogn|

By Proposition 1, for n large enough, 1 — P(A,) < n~2 Since n'/*/k, = o(1),
the results in Steps 3, 4, and 5 now imply the theorem. O

Proor. Let
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REMARK 1. As mentioned in the beginning of this section, the proof of
Theorem 1 follows the same pattern as that of Theorem 1 of Kiefer and
Wolfowitz (1976). The essential step is Proposition 1 which is similar to Lemma 4
of their paper. The definition of the linear interpolating function in Kiefer and
Wolfowitz (1976) is a little bit different, but the idea is the same. The conditions
in our Theorem 1 are weaker than theirs, but their asymptotic n'/? equivalence
holds almost surely while ours holds in probability (which is enough for our
purposes). A similar weakening of conditions is possible for their results to hold in
probability.

REMARK 2. The assumption of existence of the constant d in Theorem 1 can
be deleted by using a certain transformation. This will be done in Theorem 2 of
the next section. The existence of the constant c¢ will be guaranteed if
inf, _,_\H"(t) > 0, which essentially means that H is uniformly convex on
[ay, A]. This is also assumed in Kiefer and Wolfowitz (1976) as the condition
B(F) > 0 of (3.2).

REMARK 3. Under the assumption of Theorem 1, Steps 4 and 5 imply that
for k,, properly chosen (e.g., as in the proof of Theorem 1), n'/?||H,, — L,H,||, = 0
in probability. Step 2 then implies that the probability that L,H, is convex on
[«y, A] approaches 1. Hence, instead of using C, (which involves n points), we
can use L, H, (which only involves %, points) as the estimator. The advantage of
using L,H, is that it is much easier to compute than C,, and by Proposition 1,
with probability tending to 1, L,H, will be convex. If not, we can then take the
GCM of L,H,, which is still asymptotically n!/? equivalent to H, and easier to
compute than C, itself.

It should be noted that although the construction of L,H, depends on «,
(while C, does not), in the case when «, is unknown, one can modify it by the
linear interpolating process of H, on [ X;), A], where X|,, is the smallest among
the X;’s. This will be clear from the proof of Theorem 1.

4. Extension of Theorem 1 by a convex transformation. We shall show
in this section that the assumption of existence of the constant d in Theorem 1
can be deleted by use of the convex transformation ¢!, where ¢ is defined as in
Lemma 2.

LEMMA 2. If F has IFR and satisfies assumption (A) then there is a convex
increasing function K defined on some interval [a,, N] with the following
properties:

(1) K is twice differentiable with bounded second derivative and inf{K "(x):
a,<x <X} >0.
(2) ¢(x) = H (K(x)) is a concave function from [ay, N'] to [ay, A].

Proor. The proof will be given in Appendix 3.
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THEOREM 2. If F has IFR and satisfies assumption (A), then
n'2|H, — C,||l, = 0 in probability.

ProorF. By Lemma 2, there is a convex function K on [a,, X’] with properties
(1) and (2) in Lemma 2. Let ¢(x) = H }(K(x)) as in Lemma 2. If X is a random
variable with distribution function F and hazard function H, and if Y = ¢~} X),
then P(Y > y) = e HO) = o= KO,

Hence Y has K as its hazard function and K satisfies all the assumptions in
Theorem 1.

Let X,,..., X, be independent identically distributed samples from F, and let
H, be their empirical hazard function. Let ¥, = ¢ "(X,), 1 <i < n, and K ,(y)
be the corresponding empirical hazard function from Y. Then H,(x) =

K, (67 '(x)).
Let D, be the GCM of K, on [0, N']. Applying Theorem 1, we have
(4.1) n'?|D, — K,||y = 0 in probability.

Let C*(x) = D, (¢ *(x)) on [ay, A]. From Lemma 2, C* is a convex function.
Using the fact that H,(x) = K, (¢ '(x)) and D, is a minorant of K,, we have
C* is a minorant of H,. Moreover, C*(x) — H,(x) = D (¢ }(x)) — K, (¢~ (x))
for all x. Hence ||C* — H ||, < ||D, — K,||- Since C, is the GCM of H, and C*
is a convex minorant of H,, we have

“Cn - Hn”/\ < ”C* - Hn”/\ < ”Dn - Kn”)\“
From (4.1), the theorem follows. O

REMARK 1. Theorem 2 implies that the only condition needed to guarantee
the asymptotic n!/? equivalence of C, and H, is the uniform convexity of H
(assumption (A)). This is much weaker than the conditions required in Kiefer and
Wolfowitz (1976). A similar weakening of conditions is also possible for their
other results by using a similar transformation to that in Theorem 2.

REMARK 2. So far A has been kept fixed so that the survival function is
strictly greater than zero at A. From the proofs of Propositions 1-3, one can see
that it is sometimes not necessary to restrict A to be fixed. For example, if F' has
a jump at a, and satisfies the assumption of Theorem 2, on [0, «,] the estimator
C,(x) can be taken to be the GCM of H,(x) on [0,«;], and we have
SUPy < , < 2"/ ?|H, (%) — C,(x)| = 0 in probability. Also under the assumption of
Theorem 2, the estimator C, can be taken to be the GCM of H, on [0, A ], where
A, < a; and A, tends to a, at a suitably slow rate (depending on F'). Then we
have n'/?||H,, — C,||,, — 0 in probability.

REMARK 3. We have assumed a, >0 so far. If a; <0 and F satisfies
assumption (A), it is clear that a, > — oo. Under such circumstances, C, can be
constructed as the GCM of H, on [— o0, a] and the result of Theorem 2 still
holds. Therefore, in constructing C,, one needs to know a, but not a,. In the next
section, we shall show that even «, need not be known.
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5. A practical way of constructing the estimators. The construction of
C, in the previous three sections depends on the knowledge of «;, so as to make
an arbitrary choice of A which is less than «;. In most real life examples, one does
not know «a;. A practical way of constructing the estimator is to take the GCM of
H (x) over the entire real line. Let us call this GCM C*(x). Let C}(x) denote the
GCM of H,(x) on [0,A], A < a,; that is, C} is the estimator constructed in
Section 2 and used in Sections 3 and 4. The conclusion of Proposition 4 is that for
any fixed a <A,

Pr{C}x) = C¥(x)forall x < a} — 1.
That is, with high probability, the GCM of H,(x) on the entire support will
coincide with the GCM of H,(x) on [0, A] for x in [0, a].

This suggests that instead of taking our estimator C(x) as in Sections 24, we
can simply take the GCM C*(x) of H,(x) on the entire support and C}*(x) will
behave just as well as CNx). In order to formally state Proposition 4, let us
introduce the following definition.

DEFINITION 3. A function ¢ on [a, b] is called strictly convex if for any
0 <e <1 and any x, y in [a, b], the following is true:

$((1 —e)x +ey) < (1 = e)o(x) + ed(y).

Note. (1) If F has IFR and satisfies the assumption of Theorem 2, then H is
strictly convex.
(2) For a strictly convex function ¢ on [a, ] and any three points x <y < z
in [a, b], we have
2() —o(x) _¢(2) —o(x) _o(2) — ¢(y)

y—x z—x z—y

PROPOSITION 4. If F has IFR and H is strictly convex, then for any A < a,
and any a < A,

Pr{C)x) = C¥(x) forallx < a} — 1.

Proor. The proof is given in Appendix 4.
Theorem 2 and Proposition 4 now imply the main theorem of the paper.
THEOREM 3. If F has IFR and there exists a positive constant ¢ > 0 such

that H'(v) — H'(u) = c¢(v — u) forallu < vin [a,, a;] for which the derivative
exists, then n'/%||H, — C*||, — 0 in probability for all \ < a,.

REMARK. Note that the assumption is slightly different from assumption
(A).

6. Asymptotic minimaxity of the estimator. Let %, = {F: F has IFR
with «,(F) > A}. The asymptotic minimaxity of H, as an estimator of the true
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hazard function H restricted on [ — oo, A] among the class %, follows along the
same line as in Millar (1979). Lemma 1 then implies that this optimality property
also extends to the estimator C for loss functions which satisfy the assumptions
of Millar (1979) and is of the type I(n'/?|C} — H||,) where [ is a bounded
continuous nondecreasing function. Thus we have

THEOREM 4. C) is the asymptotically minimax estimator of the hazard
function H among the class %,.

As for the estimator C}*, Theorem 4 does not apply to C} directly because
Lemma 1 fails for C*. Although Theorem 3 implies

(6.1) n'?|C* — H,||, = 0 in probability,

the convergence in (6.1) is not uniform over distributions satisfying the assump-
tion of Theorem 3, and there does not seem to be a natural way to restrict the
family of distributions in order to obtain uniform convergence of (6.1).

Let G}, G* be the distribution functions with hazard functions C} and C},
respectively. It follows from Theorems 1, 2, and 3 that:

COROLLARY 1. (a) n'/%||G} — F,||, — 0 in probability under the assumptions

of Theorem 2.
(b) n'/?||G¥ — F,||, = 0 in probability under the assumption of Theorem 3.

To obtain the asymptotic minimaxity of G* or G) as an estimator of the true
distribution F' we encounter the same difficulty for G} as for C*. Therefore we
shall only focus on the behavior of G,. Since uniform convergence is hard to
grasp by Theorem 2, we shall restrict ourselves only to distributions which satisfy
the assumption of Theorem 1. Checking the proof of Theorem 1, we find that in
order to get the uniform convergence of n'/?||G} — F,||, — 0, it suffices to show
that both Proposition 1 and n'/?|H — L,H||, — 0 hold uniformly in F, which is
equivalent to the requirement that both M[eC] ? and dL? are uniformly
bounded from above by some constants. Consider now the restricted family %, of
IFR distributions which satisfies the assumption of Theorem 1 with M[e,C]~2
and dL? both uniformly bounded from above by some constants. We then have
supp e 1'% H, — C}||, — 0 in probability, which implies

(6.2) sup n'/?||F, — G}, = 0 in probability.

Fes,
Using again the technique of Proposition 6.2 of Millar (1979) it can be checked
without difficulty that F, is still asymptotically minimax among the restricted
class %,. The asymptotic minimaxity of G} now follows from (6.2) for a loss
function which satisfies the assumptions of Millar (1979) and is of the type
I(n'/?||G} — F||,), where [ is a bounded continuous nondecreasing function.

THEOREM 5. G is the asymptotically minimax estimator of the true distri-
bution function F among the class %).
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7. Summary. We have discussed several possible estimators for the hazard
function H. A summary of these estimators is given below. All the following
results require that H be uniformly convex.

1. If a, is known, then for any A < a;, the estimator C_ can be taken to be the
GCM of H,, on [0, A\] and C? is asymptotically n'/? equivalent to H, on [0, A]
by Theorem 2.

2. If a, is unknown, the estimator C* can be taken to be the GCM of H, on the
entire support of F,, and C* is asymptotically n'/? equivalent to H, on [0, A],
for any A < a, by Theorem 3. In particular, if F has a jump at «, then C} is
asymptotically n'/2? equivalent to H, on [0, ;] and the corresponding estima-
tor G, for the distribution function is asymptotically n’/? equivalent to F, on
the whole real line.

3. Under the additional assumption of (B), if we want to save time in computing
the estimator for H, then for &, properly chosen (for example, as in the proof
of Theorem 1), one can take L, H, to be the estimator if it is convex and
otherwise, take the GCM of L, H, to be the estimator. In either case, Theorem
1 implies that the adopted estimator will be asymptotically n!/? equivalent to
H, on [0, A] for any A < a,.

4. Tt is clear that

sup |C*(x) — H,(x)| = c, if F is continuous.
Ax<o

Thus, C* will not be close to H, near the right-hand tail. However, this does
not prevent G¥ from being close to F,, near the right-hand tail. The question
is, under what conditions will sup_, ., ...n"%|G*(x) — F,(x)| — 0 in prob-
ability. This remains an open problem.

A final remark is that the technique in this paper can also be applied to
distributions with decreasing failure rate by taking the estimator C, to be the
least concave majorant of H,.

APPENDIX 1

Proof of Proposition1. Let x < y < z be any three equally spaced points in
[ag, A], such that y —x =2z —y=L/k,.
Let p = S(y)/S(x), ¢ = S(z)/S(x); then0 < g <p < 1.

LEmMMA 3. Let X be a binomial random variable B(n, p) with p < 3. Then
fort > 0,

IR &
PI'{X— nu > t} < exp{—gm},

1 t?

Pr{X-np< -t} < exp{—gm}.
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Proor. The proof follows from Hoeffding (1963). O

LEMMA 4. If F has IFR, then q > § for n sufficiently large.

Proor.
_S(z) _ 8(x) ~5(2)
a S(x) S(x)

and

S(x) = 8(2) _ 18(x) - 8(2)
S(x) B €

< 2LM(k,e,)"" (since f(t) < r(t) < M)

< 3 forlarge n.

Hence q > ; for n large enough. O

1123

LEMMA 5. If F has IFR and satisfies assumption (A), then S%(y) — S(x)S(z)

> cL?k;,%S(x)S(2).

PROOF.

H(z) - H(y) = /Oz“ny(y +t)dt

- ["H (y+ t) at.
0

Similarly,

H(y) - H(x) = f()Lk;lH’(x +t)dt.

Using these and the existence of c,

A = [H(z) — H(y)] - [H(y) — H(x)]
- /OLkn“[H/(y +t) - Hi(x+t)] dt

Lk;!
> /0 c(y—x)dt

= cL%k};2.
On the other hand,
NN B )
S(2) S(y) S(x)S(2)

Hence,

S%(y)[S(x)S(2)] " = exp|cL?;?].



1124 J.-L. WANG

This implies
S%(y) — S(x)S(z) = S(x)S(2)[exp(cL?;,?) — 1]
> S(x)S(z)(cLk,?). o

PRrROOF OF PROPOSITION 1. Smce L,H, is linear on each of the %, equal
length intervals [a], a], ], j = Sk, — 1,
k,—2
n n {Hn<ajn+1) - Hn(ajn) =< Hn(a;'l+2) - Hn(aj"l+1)}

=0

A

kn
n’an’

Jj=0

where B, ; is the event in the above bracket.

Fix some Jand let x =af, y=a},,, 2=a},,. Let B,(t) =nSy(¢) for ¢t in
[ay, A]. Then B,(t) is distributed as a binomial random variable B(n, S(t)).

Given B, (x)= N, B,(y) has binomial distribution B(N, p) where p =
S(y)/S(x) as defined above. Given B,(x) = N, B,(z) has binomial distribution
B(N, q) where ¢ = S(z)/S(x).

By Lemma 4, for n large enough, p > ¢ >

Let U= Np - B,(y) and V=B, (z2) — Nq Let B;;; be the complement of
B, ,. For n large enough, consider the conditional probablhty

P{B:|B,(x) =n} = Pr{Sz(y) < S,(x)S,(2)|B,(x) = N}
{Bi(y) < B(x)B,(2)|B,(x) = N}
(AL1) = Pr{(Np — U)* < N(Ng + V)|B,(x) = N}
< Pr{(Np)” - 2UNp < N%q + NV|B,(x) = N}
= Pr{N(p® - q) < (V+ 2Up)|B,(x) = N}
< Pr{N(p®-gq) < V+2U|B,(x) = N}.
Let t = 1N(p® — q). Since F has IFR,
= [H(2) - H(y)] - [H(y) - H(x)] = 0.
But
S*(y)
S(x)S(z)’

hence S%(y) > S(x)S(z) and p? > q. This implies ¢t > 0. Also p2— ¢ <1 — g;
hence 0 < ¢t < {N(1 — q).

A = log
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Putting ¢ into our calculation (A1.1), we have
Pr{3t < V+ 2U|B,(x) = N}

<Pr{V>torU> ¢t|B,(x) = N}

1 t? 1 t? (by L 3)
S — + —_———_—
< exp 2 Nq(l — q) exp 2 N(l —p) T2 y Lemma

1 t2 1 £2
S“*“ENu—q>}*“*‘ENu—q>+aW1—w}

1 t?
<2exp{ —————

2 $N(1 - q)
| NP —a)
T\ T ) [

Let a = (p? — ¢)%/(24(1 — q)). Then 0 < a < 1/24. We have proved so far
that, for n large enough,

Pr{B;|B,(x) = N} < 2exp{ —aN}.

Pr{B;;} = E{Pr[SX(y) < S,(x)S,(2)|B,(x)]}

< E{2exp[—aB,(x)]} (from (A1.2))
= 2[1 - S(x) + S(x)e™*]" (since B,(x) is distributed as B(n, S(x)))
=201~ S(x)(1 — &))"

(A1.3) < 2exp[—nS(x)(1 — e )] (because (1 - %)n <effor0<é<n

< 2exp[—nS(x)(a ~ f;)]

< 2exp[— %nS(x)] (since a < 1).

Consider

S(x) = (P - g)’S(x)  [$%(y) - S(x)S(2)]*
T o401 — q) 24[S(x) — S(2)]S%(x)
[L2%S(x)S(2)k;2]°
> 24[5(x) - 8(2)]5°(@) (by Lemma 5)
[EOLZC]2

> 24 [F(2) - F(@)] (since S(x) = ).
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Now
F(z) - F(x) = [ () dt < 2LM&;".
Hence
L?[ege]’
(A1.4) aS(x) = W
From (A1.3) and (Al1.4)
nL®[ e c]’
PI‘{an} < 2exp{— W .
Hence
k-2
1-Pr(A4,)=Pr| U B;;
j=0
nL?[e,c]?
2 —-_—— ). m
< 2k, exp{ 96ME?
APPENDIX 2

Proof of Proposition 2.

LEMMA 6. Let X,(t) = n*?(H,(t) — H(t)]. Given ¢ > 0, there exist § > 0
and an integer N, such that for all n > N,

Pr[sup{|X,(¢) — X,(s)l; forall |t — s| <8 andt,s, in [ay, \]} > €] <e.

ProoF. It can be checked by standard procedures that the process X,(t)
converges weakly to a Gaussian process Z(¢) with continuous paths in D[a,, A],
where EZ(t) = 0, Var Z(t) = F(¢t)[1 — F(t)]™!, and Cov(Z(s), Z(t)) =
F(s)[1 — F(s)]"! if s <t Since Z(t) has continuous paths on D[a,, A] with
probability 1, the result follows from the tightness conditions on Skorokhod
topology. O

PROOF OF PROPOSITION 2. Given ¢ > 0, since k, — oo there exists N, such
that for all n > N,, Lk, < § for the § in Lemma 6.
Let S,H be the piecewise shifted H. That is,

S,H(t) = H(t) + [H,(a?) - H(a?)] foral<t<al,.
Then
SnH(aj"‘) = Hn(a}') for j=0,..., k,.
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Consider
n'/*(H, - S,H)(t) = n1/2{[Hn(t) - H(t)] - [Hn(aj’-') - H(aj")]}
= X,(t) - X,(a?) fora’<t<al,,.

Then
n%H, — S,H||,= sup sup |X,(¢) - X,(a})|

O<j<k,-1 a<t<a),,

< sup |X,(¢) - X,(s) ifn> N,.
|t—s|<8

Lemma 6 now implies
(A2.1) n'?|H, — S,H|, = 0 in probability.
Recall the definition of L, the linear interpolation in Section 2:
LH(a}) = Ha}) = S,H(af) = L(SH(aF)),  J=0,.ecsky
Since L, is the piecewise linear interpolation process,
L,H,(t)=L,(S,H(t)) forallzt.
We have
(H, - L,H,)(t) = (H,- S,H)(¢) + (S,H - L,S,H)(t)
+(L,S,H - L,H,)(t)
= (H,—- S,H)(¢t) + (S,H - L,S,H)(t)
= (H,- S,H)(¢) + (H - L, H)(¢),

since S, H is the piecewise shifted H.
If n'/?|H — L,H||, — 0 in probability, by (A2.1) this will imply n!/?||H, —
L,H,|, — 0in probability. O

APPENDIX 3

Proof of Lemma 2.

Proor. From the definition of IFR distributions, H ™! exists provided one
defines H *(0) = a,. Thus H '(y) is concave on [0, H(A)] and differentiable
except for countably many points. Let N, be the exceptional set where H'(y) is
not differentiable. Let J be the complement of N, that is, J = [0, H(A)] — N,
and f be the derivative of H ! on J. Since H’ is bounded on H (J), we have
f(x)>8 for some >0 and all x in o, and f(u)=[H'(H Yu))] !>
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[H/(H Y(v))]"! = f(v) for any u < v on J. Also,
f(u) = f(v) = [H(H ()] " = [H(H ()]
H'(H'(v)) - H'(H Y(u))
H'(H '(u))H'(H '(v))

> C[HY(v) - H™Y(w)] f(2)f(v)

> C[(v — w)f(v)] f()f(0).
The last step is due to the fact that f is decreasing on oJ. Therefore,
f(u) — f(v)
(v —u)f(v)
for any pair u < v in J.

We are now looking for a decreasing linear function g(u) = b — au with
g(u) > 0 on [0, H(M)] so that the ratio f(u)/g(u) will be decreasing on J. This
can be done in the following way.

Given b > 0, there exists @ > 0 such that b~ aH(A)>0 and 0 <a <
c8%[b — aH(M)]. From (A3.1)

() - (o) () - (o)
@< G wf(ey 0 T N = )

for all ¥ < v in J. Hence

[f(w) = f(0)][b - av] > af(v)(v - u),

(A3.1) > cf(u)f(v) = c8?

[b—av]

and this implies
) 1)
b—au b— av
Hence, we have found g such that f(u)/g(u) is decreasing on J and g(u) —
8g(v) = a(v — u). Let G(y) = ay + [gg(u) du. Then G is concave and G” = —a
on [0, H(A)]. Let K(x) = G~ (x) on [a,, N'], where [a,, X'] is the range of G on
[0, H(A)]. Then K is convex and K exists on [ay( F'), X']. Moreover

G"(G_l(x)) -3
-—— =a|g(G X« .

[G,(G_l(x))]3 [ ( ( ))]
This means K "(x) > ab™®> 0 for all x in [a,, ] and K" has a finite upper
bound because g is bounded away from zero. Part (1) has thus been proved.

Let ¢(x) = H Y(K(x)). From the way K is defined, ¢ is a function from
[ag, N'] to [ag, A]. Note that ¢'(x) will exist if K ’(x) exists, and at any point x
where K ’(x) exists,

for u < vin J.

K(x) = [674)]" =

K(x) _ i(K(x))
HTH (K@)~ e(K@)

Hence, ¢/(x) exists and is a decreasing function on [a,, X'] except for countably
many points. This proves the concavity of ¢ and hence part (2). O

¢(x) =
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APPENDIX 4
Proof of Proposition 4.

Proor. The proof will be separated into two parts.

(i) This is the case where F' has a jump at a; with 1 — F(a; — ) > 0. In the
proof of Lemma 6 in Appendix 2, we showed that vn (H (x) — H(x)) converges
in distribution (in the Prohorov sense) to a Gaussian process Z(x). Let || ||,
denote the supremum norm, of a function on [«,, ;). By Donsker’s invariance
principle (1952), n'/?|H, — H llo, is bounded in probability. For any & > 0, there
exists N large enough such that pr{||H, — H||, <&} >1—¢ for all n > N.
Let E, be the event that ||H, — H||, <e. Then we have P(E,) > 1 — ¢ for
n> N. Let b be a fixed point between a and A. Let m be the right-hand
derivative of CNx) at x = a. Under E,, H,(x) lies entirely within the band
{H(x) — ¢, H(x) + ¢}. Hence

- [H(b) +¢] — [H(a) — ¢] B H(b) — H(a) + 2¢
m b—a B b—a '
On the other hand, for any y > A,
H(y) —Hy(a) H(y) -~ H(a) - 2

y—a y—a
H(y) — H(a) 2¢
= y—a T A-a
H(\) — H(a) 2¢
> A—a T A-a’

If ¢ is small enough, by strict convexity of H we have
[H(A) - H(a)]/(A - a) — 2¢/(A — a) > [H(b) — H(a) + 2¢]/(b - a).

Hence, [H,(y) — H,(a)l/(y — a) > m for any y > A. This means that for y > A,
H,(y) lies above the line passing through (a, H,(a)) with slope m. Since
CNa) < H,(a), H(y) also lies above the line passing through (a, CN(a)) with
slope m. Thus for all y > A, H,(y) does not affect C)(a), hence does not affect
CMNx) for all x < a. We have shown that under E,, C)x) = C¥(x) for all x < a.
Thus, pr{C(x) = CNx) for C* all x < a} - 1.

(ii) This is the case where F is continuous. If X distributes as F, then F(X)
distributes as U(0,1), the uniform distribution on [0, 1]. Also its survival func-
tion S(X) =1 — F(X) distributes as U(0,1). From Karlin (1972), page 250, for
a>1 Pr{S,(x)<aS(x) for all x} =1—-1/a for all n. This implies
Pr{H,(x) > —loga + H(x) for all x} =1 —1/a for all n. For any ¢ > 0, let
b =loga = —loge We have

(A4.1) Pr{H,(x) > H(x) - b} =1 —e.
Asin (i), n'/?||H, — H]||, is bounded in probability. Hence, given any § > 0, there
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exists IV, large enough such that
Pr{|H, - H||<8} >1—¢ forn > N,.

Let m be the right-hand derivative of C(x) at x = a. We want to show that
with high probability, for x close to a; and n large enough, H, (x) is above the
line passing through (a,C)a)) with slope m. Hence, what happens in the
right-hand tail does not affect C(x) for x < a. To achieve this goal, let E, be
the event that ||H, — H||, <§é. Under E,, H, lies within the band {H(x) —
8, H(x) + 8}. Hence, m < [H(\) — H(a) + 26]/(\ — a)and H,(a) < H(a) + 4.
From (A4.1), it is sufficient to show that H(x) — b > [H(a) + 8] + [H(A) —
H(a) + 28)(A — a) Y(x — a) for x close to a;, or equivalently, [H(x) —
H(a)l/(x —a) = (b+8)/(x —a) + [H(N\) — H(a) + 20]/(A — a) for x close
to aj.

If @, < oo, the ratio [H(x) — H(a)]/(x — a) increases to co as x tends to
a,(F). Hence there exists x, such that for x > xo, [H(x) — H(a)]/(x — a) >
(b+8)/(x —a)+[H) — H(a) + 28]/(A — a).

If a, = co, this means (b +90)/(x —a)—> 0 as x — «;. Since [H(x) -
H(a)l/(x — a) > [H(A) — H(a)]/(XA — a) for x > A, with § small enough, there
exists x,, such that for x > x,, [H(x) — H(a)]/(x —a) 2 (b +8)/(x —a) +
[H(A) — H(a) + 28]/(A — a).

So far, we have shown that given ¢ > 0, there exist x(¢) and NV; > 0 such that
for n > N,

(A4.2) Pr{forall y > x,, H,(y) does not affect C}(x) forall x < a} > 1 — 2.

For this x,, n'/?||H, — H||,, is bounded in probability. Using the same argument
as in (i), one can show that there exists N, > 0 such that for n > N,,

(A4.3) Pr{C}x) = C¥(x)forallx <a} > 1 —e.
Combining (A4.2) and (A4.3) we have
Pr{C)x) = CX¥(x) forall x <a} > 1 - 3e

for n large enough. This proves the result for (ii). O
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