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CONSERVATIVE CONFIDENCE BANDS IN
CURVILINEAR REGRESSION?

By DANIEL Q. NAIMAN
The Johns Hopkins University

This paper gives a method for constructing conservative Scheffé-type
simultaneous confidence bands for curvilinear regression functions over finite
intervals. The method is based on the use of a geometric inequality giving an
upper bound for the uniform measure of the set of points within a given
distance from vy, an arbitrary piecewise differentiable path with finite length
in 8*~1, the unit sphere in R. The upper bound is obtained by “straighten-
ing” the path so that it lies in a great circle in $*~',

1. Introduction. This paper gives a method for constructing conservative
Scheffé-type simultaneous confidence bands for curvilinear regression functions
over intervals. The method is based on the use of a geometric inequality
(Theorem 3.1) giving an upper bound for the uniform measure of the set of points
within a given distance from vy, an arbitrary piecewise differentiable path with
finite length in S*~1, the unit sphere in R*.

Consider the curvilinear regression model in which we observe

k
(1.1) Y= Y bf(x;)+e, i=1,..,n,
j=1

where the regression coefficients b; are unknown, the f; are known functions, the
design points x; are known, and the random variables e, are i.i.d. normal with
mean 0 and variance ¢, with 6 unknown. For example, if fi(x) = x/"! for
J=1,..., k, (1.1) is the usual polynomial regression model of degree £ — 1. More
generally, all of the results of this paper have obvious analogues when the
random vector e = (e,,..., e,) has a spherically symmetric distribution about 0.

We use f(x) to denote the vector ( f,(x),..., fi(x)) forx € R.Let I C R be a
closed (not necessarily finite) interval fixed for the remainder of this paper. f
defines a function from I to R* which we assume to be continuous, bounged
away from the origin, and piecewise differentiable with [;||f'(x)||? dx finite. b is
used to denote the least-squares estimator of b = (b,,..., b,) and s? denotes the
usual unbiased estimator of 2. We assume the des1gn matrlx is of full rank so
that b ~ Ny(b, 62%) for some known positive definite matrix =, vs%/02% ~ x2,
where » = n — k, and b and s? are independent. Let P be a & X k matrix such
that P'/P =3,
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Suppose we wish to construct a simultaneous confidence band for the regres-
sion function b'f(x) for x € I. We consider Scheffé-type bands, that is, bands of
the form

(1.2) bf(x) + csp(x) forx eI,

where p(x) = {f(x)=f(x)}"/? = || Pf(x)||, and ¢ > 0. The coverage probability of
the band is defined to be the probability that all of the intervals (1.2) cover b'f(x)
simultaneously, as x ranges throughout I. The main result of this paper (Theo-
rem 4.1) gives a lower bound for this probability, which allows for the construc-
tion of a conservative band.

The problem of obtaining simultaneous confidence bands in regression has
received a considerable amount of attention recently. Results for multiple regres-
sion functions under restrictions on the predictor variables have been obtained by
Casella and Strawderman (1980), Uusipaikka (1984) and Naiman (1984). Wynn
and Bloomfield (1971) considered quadratic regression over the real line. Knaf,
Sacks and Ylvisaker (1985) presented a numerical method for estimating the
coverage probability of Scheffé-type bands in polynomial regression, based on the
use of an inequality for the distribution of the maximum of a Gaussian process.
Wynn (1984) obtained results in the polynomial regression context for a different
class of bands, using results from the theory of quadrature.

2. Expression for the coverage probability. Before giving an expression
for the coverage probability of the band (1.2) we introduce some notation and
definitions. S%~! denotes the unit sphere centered at the origin in R*. Throughout
this paper U denotes a random vector with a uniform distribution on S*~1. y is
used to denote the uniform probability measure on S%*~1, F; ; denotes the F
distribution function with i numerator degrees of freedom and J denominator
degrees of freedom.

DEFINITION 2.1. A path in S*7! is a piecewise differentiable function y
mapping I into S¥~! such that A(y) = [;||y'(x)|| dx, which we refer to as the
length of v, is finite. The image of the path is defined by I'(y) = {y(x): x € I}.

Note that it is possible for a path to overlap itself so that the length of the
path is not necessarily the same as the length of the curve that I'(y) defines.

For any closed subset I' of S*~! and u € S*~! define

cr(u) = sup{u'v: v eT}.
For r € [0,1] define
L, ={ue S 'cp(u)>r}
={ueS* ' |v-u|?><2(1 -r)forsomev €T},

so that I}, is the set of points in S*~! which are within {2(1 — r)}*/? of T. Note
that I, is empty for r > 1.
We define

(2.1) y(x) =|| Pf(x)|| 'Pf(x) forx € I,
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where p and f are defined in Section 1. Using the assumptions given about f in
Section 1 it is easy to verify that y and —v are paths in S*1,

Lemma 2.1, which is due to Uusipaikka (1984), expresses the probability that
coverage fails for the band (1.2) as the probability that a random vector U
distributed uniformly on the unit sphere lies within the (random) distance
{21 — ¢T)}/? of T(y) U — I(y), where T = s/|B||.

LEMMA 2.1. The coverage probability of the band (1.2) is given by
1/c
1- fo pHT(Y) U = T()}eo] F2(2) dt,
where [ denotes the density function of T = s/|B||, so that kT* ~ F, ,.

PROOF. Let B =P (b —b) and U =|B||"'B. B has a k-variate normal
distribution with zero mean vector and covariance matrix o2I,, independent of s,
and U has a uniform distribution on S*~* independent of (||B||, s). If T = s/||B||
it follows that 2T?* ~ F, ,, and T is independent of U.

The probability that simultaneous coverage for the intervals (1.2) fails is given
by

P[sgp {p(x)_l(f(x)’(b - i)))} >cs or sgp {p(x)_l(—f(x)’(b - i)))} > cs]
= P[sgp {y(x)U} > cTor s1;p{-y(x)’U} > CT]

= P[U e (T(y) U = T(v) }en] -
Conditioning on T and using the independence of U and T leads to the desired
result. O

3. Upper bound for p{T'(y),,}. For a given path y in S*~1 the main result
of this section, Theorem 3.1, gives an upper bound for p{I'(y),)}, the uniform
measure of the set of points within a given distance of the image of y. The upper
bound may be interpreted as follows. If we replace ¥ by y*, a path of the same
length but whose image lies on a great circle, then the bound may be thought of
as u{l'(y*),,}, except that we calculate this by ignoring overlap and instead of
counting points in I'(y*),,, which are closest to multiple points in I'(y) once, we
count them according to their multiplicities. Thus, we obtain a bound which
depends only on the length of the path and consists of two terms. The first term
is proportional to the length of the path and corresponds to the “tube” of points
in I'(y*),, which are closest to points in the interior of I'(y*). The second term is
the sum of the measures of two half spherical caps of angular radius cos™'r
corresponding to the points in I'(y*),,, which are closest to one of the endpoints
of y*.

The proof of Theorem 3.1 may be sketched as follows. It suffices to consider
the case when I'(y) is piecewise composed of great circular arcs, since I'(y) can be
approximated by curves of this type. In Lemmas 3.3 and 3.4 we prove the
inequality described above for a path whose image is composed of great circular
arcs by induction on the number of arcs. The piecewise great circular curve is
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replaced by a curve of equal length on a single great circle by “straightening out”
the curve at each point where the circular arcs are joined. For a path whose
image is on a great circle the geometry of the problem is simple and exact
formulas are obtained in Lemmas 3.1 and 3.2.

We first state some definitions and give some lemmas used in the proof of the
theorem. Let r € (0,1) be fixed throughout this section.

DEFINITION 3.1. A great circular arc in 8*~! with endpoints a and b is a set

of points of the form
T{x: xeSk L x2+xl=1,x >t x, >0},

for some t € (0,1), and some orthogonal transformation 7T, where a =
T((1,0,0,...,0)) and b = T((¢, {1 — ¢*}"/2,0,...,0)"). The length of the arc is
cos™ ¢,

For a given great circular arc A in S*~! with endpoints a and b we define the
following sets:

C(A) = {u € A, c4(u) > max{u'a,u’b}},
D(A,a,b) = {u€ A, cy(u) = wa},
E(A,a,b) = {u€ A, cy(u) = ub}.

REMARK 3.1. If A is any closed subset of S*~! it is easy to verify that
(TA),, = T(A,), so p{(TA),y} = p(A,), for any orthogonal transformation 7.

REMARK 3.2. It follows easily from the above definitions that C(TA) =
T{C(A)}, D(TA,Ta,Tb} = T{D(A,a,b)}, and E(TA, Ta, Tb) = T{E(A,a,b)},
for any great circular arc A and for any orthogonal transformation 7.

LEMMA 3.1. Let A be the great circular arc given in Definition 3.1 with T
being the identity map. Then

(i) c(A)= {u eSSt tul+ui>r?u/{ul + u%}l/2 >t uy > O},
(i) D(A,a,b)={ueS*'iu >r, u,<0},
(i) E(A,a,b)={ues tm +(1-1)"u,>r,

ul/{ul2 + u%}l/2

< t}.

PrROOF. Fix u e S* ! and let ¢ = c4(u). Define h(s) = (s, {1 — s%}'/?
0,...,0)u for s € [¢,1], so that ¢ = sup{h(s): s € [¢,1]}.

To prove (i), let C’ denote the set on the right-hand side of the equality in
. If ueC let v=_(u/{u?+ u}’? u,/{u? + ui}/?0,...,0y. Clearly
vEA, hence ¢c>u'v={ul+uj}”>>r, so u€A,. Using the fact that
t<u/{ul+ul}/? and u,>0 it is easy to show A(17)> h(1), hence
¢ > h(l) = w'a, and Ah(t*) > h(t), hence ¢ > h(t) = w'b. This proves u € C(A).

Now suppose u € C(A) so that ¢ > r and & is maximized at some s € (¢,1),
where h'(s) = u; — su,/{1 — s?}/2 =0, and h(s) > max{h(t), h(1)}. u, must
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be nonzero since u, = 0 and A’(s) = 0 together imply u, = 0 hence A(s) = A(1).
It follows that s/{1 — s2}/?2=wu,/u, and h(s) = {uZ + ul}/2 > r. Also
h'(s) = —uy/{1 — s?}*% < 050 u, > 0. We have
0<t/{1-2)"" <s/(1-5%)"" = u/u,,

so u, > 0, and if we apply the monotone increasing function g(x) = x/{1 + x2}*/2
we obtain ¢ < u,/{u? + u2}'/? so u € C’ and the proof of (i) is complete.

To prove (ii), let D’ denote the set on the right-hand side of the equality in (ii).
If u € D then u, = w'a = ¢ > r and A(s) is maximized at s = 1. Since A(17) <
h(1), it follows that u, < 0,sou € D".

If u € D’ then A'(s) = u; — su,/{1 — s2}'/2 > 0 for s € [¢,1]. It follows that
h is maximized at s = 1, so ¢ = w'a. Furthermore, w'a = u, > r, sou € D.

For (iii), let T be the orthogonal transformation on S*~! defined by

T(u) = (fu, + {1 — 62} u,, {1 = £2}"u, — tu,,0,...,0).

Then T(A)=A, T(a)=b, and T(b) = a. It follows that T(D(A,a,b)) =
E(A,a,b), and using (ii) it is easy to verify that T(D(A, a, b)) is the set given on
the right-hand side of (iii). O

REMARK 3.3. From Lemma 3.1 it follows easily that A ,, is the disjoint union
of the sets C(A), D(A,a,b), and E(A,a,b).

LEMMA 3.2. If A is a great circular arc in S*~! with endpoints a and b and
length L, then
n{C(A)} = F,_,5(2(r™* = 1)/(k — 2)) X L/(27)
and

n{D(4,a,b)} = w{E(A,a,b)} = F,_,4((r"* - 1)/(k - 1)) /4.

Proor. By Remarks 3.1 and 3.2 it suffices to consider the case when A is as
given in Definition 3.1 with T' being the identity map.

Write U = |X||"!X where X ~ N, (0, I,). Then |(U,, G,)|"*U,, U,) =
(X1 Xo)|I”%(X,, X,) is independent of (X7 + X2, X,,..., X,,) so if we let
F = {XF X /k - 2)/{(X} + X})/2}, then F ~ F, ,, independent of
(X XY HX,, X,

Using Lemma 3.1(i) we obtain

P(U e C(4)) = P({X] + X3} /IXI* = r*, X,/ (X2 + X}/ > 4,
X,/ (X2 + X2} > 0)
=P(1/{1+ (k- 2)F/2} > r2)p(X1/{X12 + X22}1/2 -
X,/ (X2 + X2} > 0)
=P(F<2(r?-1)/(k-2)) x L/(27),
and the proof of the first equality is complete.
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To prove the second equalities, note that by symmetry
P(U € D(A,a,b)) = P(U € E(A,a,b)).

Let X be as above and note that F' = X% ,X?/((k — 1)X?) ~ F,_, ;. Using
Lemma 3.1 and the independence of X,/|X,|and (X,, X7, X;,..., X,) we obtain

P(U € D(A,a,b)) = P(X,/|X|| = r, X,/|X,| < 0)
= P(X,/|IX|| = r)P(X,/|X,| < 0) = P(X,/|X|| = 1) /2
= P(X2/|X|2=r?)/4=P(1/{1 + (k- 1)F'} > r?)/4
=P(F < (r*-1)/(k-1))/4,
and the proof is complete. O

LEMMA 3.3. Let A, and A, be great circular arcs in S*~! with common
endpoint (1,0, ...,0) so that

A, = {({1 - 52}, sv{)': 0<s< s,}

for some v, € S¥72 and s; € (0,1) for i = 1,2. Thus A, has endpoints a, =
({1 — s2}/2, s,v}) and b, = (1,0,...,0), and A, has endpoints a, = (1,0,...,0)
and b, = ({1 — 83}'/% sv;). Set B, = (A)),), C;=C(A;), D;=D(A,a;b),
and E; = E(A;,a;b,) fori=1,2.

Define

F = {(t,x) €8 xv,>0,xv,>0,r<t<1},
F,={(t,x) €8 1:xv,;<0,xv, <0, r<t<1}.
Then we have the following:

(i) (B, U B,) - (C,UD, UGUE,)CEF;
(i) F, c (C,V D)) n (G U E,);
(iil) p(Fy) = p(F)).

REMARK 3.4. Since Lemma 3.3 is the basic tool used to prove Lemma 3.4
some discussion is appropriate. Consider the set A = A; U A,. A, is composed
of four pieces, namely, C; U D,, C, U E,, S, the set on the left-hand side of
(i), and T, the set on the right-hand side of (ii). Using (i)-(iii) we see that
w(C, U D)) + u(C, U E,) is an upper bound for p(A,,). We can interpret this
upper bound as p(Af,)), where A* is A “straightened out,” that is, A* has the
same length as A but its components all lie on the same great circle.

ProoF. We use c, to denote ¢, for A = A,, i = 1,2. To prove (i), define
G,={(t,x)y eS*xv,<0,r<t<1}, i=1,2
We will show below that

(@ E, - (CbUE)cD,and D,— (C,UD,)CE,,
(b) E, c G, and D, C G,.
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To see that (i) follows, we have
(B,UB;) — (C,UD,UCUE,)c[B, ~(C,UD,UCU E,)]
U[Bz - (Cl UDUC U E2)]
= [E, - (G U E;)] U [D, - (C, U D))]
CE,ND,cG,NG,=F,,

where the last line uses (a) and (b).

To prove (a), suppose u € E, — (C, U E,). Thenu € E, so ¢,(uw) =ub, >r.
But b, € A,, so cy(u) > u'b, > r, thus u € B, and it follows that u € D,. The
second claim in (a) is proved in exactly the same manner.

To prove (b), note that if u = (¢,x’) € E, then ¢,(u) > r and c,(u) = u'b, = ¢
so t > r. Let h(s) = (¢,x)({1 — s2}/2, sv}) for s € [0, s,]. Since the supremum
of h(s) is attained at s = 0, 0 > A’(0) = x'v,, thus u € G,. The proof of the
second claim is the same.

To prove (ii), let u = (¢,x’) € F; so that r <t <1 and x'v, > 0 for i = 1,2.
Then ¢,(u) > u'b, = ¢t > r, so u € B,. If h is the function defined above, then
h'(0) = X'v, > 0, so h(s) is not maximized at s = 0, and hence c¢,(u) > u'b,.
Thus u € B, — E, = C, U D,. This proves the first claim. The proof of the
second claim is the same.

For (iii), if T is the orthogonal transformation defined by T((¢,x")) = (¢, — XY,
then p{F,} = p{TF,} = p{F;}. O

LEMMA 34. Let A; be a great circular arc with endpoints a; and b; for
i=1,...,mandassumea;=b,_, fori =2,...,m. Set B; = (4,),, C,= C(A)),
Dz = D(A,,a,,b,), and Ei = E(Auanbi)' Then

o 0] < £ uc) + o) + wis.

i=1

Proor. The proof is by induction on m. For m = 1 the result follows from
the fact that B, = C; U D, U E,. Assume the result holds for m = M > 1 and
consider the case when m = M + 1. We can assume without loss of generality
that b, = a, = (1,0,...,0), since if necessary, we can apply an orthogonal
transformation and use Remarks 3.1 and 3.2. Thus, we may assume that A, and
A, are given as in the statement of Lemma 3.3. Let F), F, be as in the statement
of Lemma 3.3 and define

H =C,uD,
and
M+1
H,= U B;- D,.
i=2

We will show the following:
@) UM“Bi — (H,V H,) C Fy;

1=1

(ii)) F, € H; N H,.
To prove (i), note that for i > 2,
B, -H,cD,=B,- (C,UE,).
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Thus
(B;— H,) — H,c (B, - (C, U E;)) — (C, U D)),
so we obtain
(3.1) B,— (H,UH,)c (B, UB,) —(D,uC,UC,UE,).
Since D, U C, U C, U E, C H, U H, it follows that (3.1) holds for i = 1 and 2.
Thus,

M+1
U B,- (H,UH,)c(B,UB,) - (D,UC,UCyUE,)
i=1

and the result follows from Lemma 3.3(i).
To prove (ii), note that

CUE,=B,-D,CH,,
S0
(C,uD,))N(CLUE, cH NH,
and the result follows from Lemma 3.3(ii).
Using (ii) and Lemma 3.3(iii)
(3:2) w(H, VU H,) < p(H,) + p(Hy) — p(F) = p(Hy) + p(H,) — p(F).
By the induction hypothesis

M+1
M(Hz) = l‘( U Bi) - I‘(Dz)
1=2
M+1
(3.3) < Y w(C) + p(Dy) + p(Epyy) — n(Dy)
i=2
M+1
= Y w(C) + u(Epy,).
1=2
It follows from (i) and inequalities (3.2) and (3.3) that

M+1 M+1
M( U B < H( U B;— (H, U H,)| + p(H, U H,)
< u(F) + p(H, U Hy) < p(H,) + p(H,)
< I-"(Cl) + l‘(Dl) + .22 :“'(Ci) + !-"(EM+1),

and the result holds for m = M + 1, so the induction is complete. O

THEOREM 3.1. If v is a path in S*~! then
M{F(Y)(r)} =< min{Fk_2,2[2(r'2 -1)/(k - 2)] X A(v)/(27)
+F [ = 1) /(R - 1)] 72,1}

Proor. If y is a path such that I'(y) = U™ A, where the sets A, are as
given in the statement of Lemma 3.4, then the inequality for p{T' (Y)(r)) follows
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from Lemmas 3.2 and 3.4, and the fact that p is a probability measure. The
general case follows from the fact that we can approximate I'(y) by sets of this
form. O

REMARK 3.5. A result due to Hotelling (1939) gives equality in Theorem 3.1
under two conditions. The first condition is that there be no “local self-overlap-
ping” of the “tube” T'(y),, which amounts to the condition that the path be
twice differentiable and that the radius of curvature of the path at each point be
at least (1 — r?)1/2. The second condition is that there be no global overlapping
of the tube, which occurs when points lie within parts of the tube corresponding
to nonneighboring arcs of I'(y).

A generalization of Hotelling’s result due to Weyl (1939) gives an exact
expression for u(T,)), for I' a manifold contained in S*=1 when r is sufficiently
large and no global overlap occurs.

4. Conservative confidence bands. We now apply Theorem 3.1 to define
conservative confidence bands in the context of Section 1.

THEOREM 4.1. The following is a lower bound for the coverage probability of
the band (1.2),

1- jo‘”min{p,e_u[2((ct)~2 ~1)/(k - 2)] x A(y)/n

+F,_1a((et) > = 1) /(& = )], 1) fr(2) at,

where fr denotes the density function of T, a random variable such that
kT? ~ F, ,. Thus, zf c is such that the above expression is at least 1 — a € (0,1)
then the band (1.2) is @ 100(1 — «)% conservative confidence band.

Proor. Since p{I' U — T'} < 2u(T") the result follows from Lemma 2.1 and
Theorem 3.1. O

Some applications call for a one-sided confidence band. For upper (or lower)
Scheffé-type bands, i.e., bands of the form

(4.1) b'f(x) + csp(x) or bf(x) — csp(x) forx eI,
a proof similar to the proof of Lemma 2.1 yields the following expression for the
coverage probability,

1- fol/c ({T(¥)}en) F2(2) at,

and this leads to the following result.

THEOREM 4.2. Under the assumptions given in Section 1 the following
expression is a lower bound for the coverage probability of the upper (or lower)
simultaneous confidence band (4.1),

1= [ min{Fyy[2((e) " = 1)/(k - 2)] X A()/(2m)

+F, ()7 = 1) /(k = 1)] /2, 1) £(2) at.
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Thus, if ¢ is such that the above expression is at least 1 — a € (0,1) then the
band (4.1) is a 100(1 — a)% conservative confidence band.

REMARK 4.1. Theorems 4.1 and 4.2 are easily seen to give strict improve-
ments over the Scheffé method, for which the critical constant in (1.2) is given by
cs = {kF, ,.,}'/?. This is because the integrands in Theorems 4.1 and 4.2 are
bounded by f(¢), with strict inequality for values of ¢ sufficiently close to 1/c.
See Section 5 for numerical comparisons in the case of quadratic regression.

5. Example. Theorem 4.1 can be used to construct conservative two-sided
confidence bands for quadratic regression over I, an interval subset of R. In this
section we compare bands constructed using this method to those constructed by
other methods. The results are summarized in Table 1, which gives ratios of
critical points, or equivalently, ratios of band widths.

For quadratic regression in (1.1) we take k£ = 3, and f(x) = x/~' for j = 1,2,3.
For the case when I = R, Wynn and Bloomfield (1971) (Section 3.4) show that
the image of the path in (2.1) is the intersection of the cone

(5.1) (8/(1+8))x2+ (1/(1 + 8))x2 =x2

in R? with the unit sphere S?, where § € [0,1] is a constant depending on the
design. They tabulate the constant ¢y for which the band (1.2) has an exactly
prescribed coverage probability for § = 0, 0.5, and 1.

For the purpose of comparing band widths, Table 1 gives ratios ¢/cyy, where
¢ is the constant obtained using Theorem 4.1. Note that the ratios are fairly close

TABLE 1
Ratios of critical points for quadratic regression

a 8 v c/cwn c/cs ¢/ Ccwn
0.01 0.0 10 1.026 0.996 0.66
0.0 + 00 1.027 0.996 0.68
0.5 10 1.046 0.980 0.65
0.5 + oo 1.047 0.980 0.67
1.0 10 1.015 0.951 0.67
1.0 + o0 1.016 0.951 0.69
0.05 0.0 10 1.025 0.964 0.69
0.0 + o0 1.023 0.964 0.73
0.5 10 1.045 0.979 0.68
0.5 +o00 1.042 0.979 0.72
1.0 10 1.014 0.950 0.70
1.0 + 00 1.013 0.951 0.74
0.10 0.0 10 1.022 0.967 0.74
0.0 + o0 1.015 0.967 0.79
0.5 10 1.043 0.982 0.73
0.5 + 00 1.036 0.981 0.78
1.0 10 1.014 0.954 0.75

1.0 + o0 1.009 0.955 0.80
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to unity. This is in spite of the fact that we should not expect the inequality in
Theorem 4.1 to be very sharp when I'(y) forms a closed curve, due to the fact
that the F),_,; term in Theorem 4.1 is unnecessary when the Hotelling (1939)
result applies. The Scheffé (1953, 1959) method can be used to give simultaneous
confidence intervals for all linear combinations of the three unknown parameters,
and restriction to quadratic regression leads to a conservative confidence band.
Table 1 gives the ratio c¢/cg, where cg = {3F, 3 ,}'/?, the critical point for the
Scheffé method.

For the case when I is a proper subset of R use of cyp leads to conservative
bands and for sufficiently small intervals, one would expect to obtain narrower
bands by using Theorem 4.1. In order to indicate the greatest potential improve-
ment we give the limiting ratio ¢/cypg, as I shrinks to a point. Clearly, this
equals ¢,/ cywpg, where ¢, is the critical point obtained by using Theorem 4.1 with
A(y) = 0. Note that use of Theorem 4.1 can lead to considerable savings in band
width.

In preliminary calculations for compiling Table 1, little variation was found in
ratios of critical points as a function of », for » = 10, 20, 40, and + 0. For this
reason, only the values for » = 10 and + co were included.
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