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ON OPTIMAL DECISION RULES FOR SIGNS OF PARAMETERS

By YoseErF HOCHBERG! AND MARC E. POSNER

New York University

The problem of deciding the signs of £ parameters (0,,..., 6,) = 0 based
on (9,,..., 9k) ~ N(8, Z) such that py{any error} < a V 0 is discussed by
Bohrer and Schervish (1980). They characterize a desirable class of procedures
called locally optimal. For the case k =2, 2 =1, and a < %, they present a
particular rule from this class called the double cross. In this paper, we
address the problem of selecting a best rule from among all locally optimal

rules when k£ =2 and 2 = I. When a < é, the double cross is shown to be an

attractive choice. Other rules are obtained for higher values of a. We also
examine a more general optimization criterion than the oné used by Bohrer
and Schervish and obtain different optimal rules for several classes of prob-
lems. The optimal rule corresponding to one of these classes has no two-deci-
sion region. A modification of the formulation is offered under which a
well-known rule (with two decision regions) emerges as the unique optimal
procedure.

1. Introduction. A common statistical problem in comparative experiments
is the simultaneous decision of the signs of several parameters based on normally
distributed estimators. As examples, the parameters of interest might be mea-
sures of the effects of several competitive drugs (relative to a control) or measures
of several side effects of one drug or measures of the carcinogenic potential of
various materials.

This problem was first considered by Neyman (1935) who developed goodness
criteria for decision rules concerning signs. Lehmann (1957) gave a decision
theoretic formulation and characterized some unbiased and optimal rules. Another
early work on this subject was by Kaiser (1960). Bohrer and Schervish (1980) and
Bohrer (1982) provide further results and indicate additional applications for this
statistical problem.

To formalize the problem, let 6~ N(0, =) where diagonal elements of the
correlation matrix X are all 1. Based on the vector § and the known matrix =, we
want to decide for each component 6; of 8 whether it is positive or negative in
such a way that the probability of making at least one incorrect decision is no
larger than a specified value a. Bohrer (1979) showed that if a < 0.5, the
condition

(1) P,{no incorrect decision} > 1 — a V0 € R?

requires the inclusion of a third decision about each 6,. This decision must not be
incorrect under any value of 6, and is usually interpreted as “no decision” or “no
classification.” Generally, it is associated with low values of |6,|. By introducing
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the third decision, we are reducing the expected number of classifications to get a
sufficiently high probability of no incorrect decision under all values of 8 (in
particular the ones near 0).

We restrict our discussion to the case of two parameters with i.i.d. estimators.
Some comments will be provided on the problems of extending the results to
more general cases.

For the class of decision rules that satisfy (1), Bohrer and Schervish consider
those procedures that are symmetric and upper convex. Symmetry of the decision
rule can be expressed in terms of the following two implications:

D(énéz) =(i,j)= D(é2’él) =(J,1),
D(é]’éQ) = (l’ j) = D(iél’ ié?) = (‘iir :l:])r

where D() = (D,, D,) is the decision vector for the signs of 8, and 6, and each
D, takes on one of the values —1, 0, or 1 indicating the decision 6, < 0, no
classification, and 6, > 0, respectively.

A rule is upper convex if whenever 6 leads to making two classifications
D = (+1, +1), then for all ¢,, ¢, > 1, (¢c,8,, c,0,) leads to the same two decisions.

Bohrer and Schervish (1980) define a locally optimal rule as a symmetric,
upper convex rule satisfying (1) that maximizes the expected number of correct
decisions in the limit as § goes to 0. To identify such a rule they let

x,=p{D =(0,0)[6 = 0},

x, =p{D=1(0,1)|6 =0},

x,=p{D=(1,1)0=0}.
Under the symmetry conditions of (2), x, also represents the probability of each
of the three decision profiles D = (1,—1), D=(-1,1), and D = (-1, —1).
Similarly, x, represents the probability of each of the decision profiles D =

(—1,0), D = (1,0), and D = (0, —1). The restrictions placed on the decision rules
imply the following linear relations:

(2)

From (1),

(3) Xog+2x,+x,21—a;
from (1), upper convexity, and independence,

(4) . x, < @

and from probability theory,

(5)  xy+4x, +4x,=1.

As 0 — 0, the limit of the expected number of correct decisions is given by
(6) 2x, + 4x,.
The resulting problem is a linear program where (6) is maximized subject to (3),
(4), (5) and x; > 0 V i. The solution for a < § is
a 3a?

(7) x0=1—2a+2a2, x1=§——2—, Xy =",
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When | < a < 4, the solution is

4a a
(8) x(,=1——3—, x,=0, x2=§,
and for | < a,
(9) x,=0, x, =0, X, = 1.

Thus, any symmetric rule satisfying upper convexity and either (7), (8), or (9)
is locally optimal. The case (7) is of main interest since in practice « is usually
smaller than }. For the case when a < }, Bohrer and Schervish (1980) identified
a rule in the class of locally optimal rules called the double cross. In this paper
we set up a criterion for selecting a best procedure from, the class of locally
optimal procedures and for (7) end up with a formal justification for the use of
the double cross. Also, we examine the effects of the modification of the
optimization criterion (6) on the class of decision rules.

There are some difficulties in extending our results to the case of dependence.
The main problem is characterizing those procedures that are locally optimal and
then controlling the probability of at least one error under all 8. This difficulty
was already noted for the £ = 2 dependent case by Bohrer and Schervish (1980).
They showed that the double cross does not control the probability of any error
under all 0 if the conditions for local optimality are satisfied.

Problems also occur for higher dimensions (£ > 2). In the case of indepen-
dence, a “double cross type” rule can be shown to be locally optimal under
natural conditions of symmetry and upper convexity. However, again there is
difficulty in establishing the required control of the probability of any error
under all 0.

2. Why the double cross? When a < ; the double cross depicted in Figure
1 is a locally optimal procedure. It has a (0,0) region in the shape of a cross
centered at the origin that is imbedded in a larger cross formed by the union of
all one-classification regions and the (0,0) region. z, is the 1 — a quantile of a
standard normal variable and z, > z, is determined so that the probability of
the shaded region in Figure 1 under 8 = 0 is 1 — a. This procedure decides that 6,
has the sign of 8, if |0, > z,, orif || > 2z, and |#,_,| > z,. Bohrer and Schervish
(1980) proved that it controls the probability of any error under all 8. However,
they did not provide further explanation as to why this rule should be singled out
from among all locally optimal rules. For instance, the locally optimal rule that
controls the probability of any error and minimizes the area of the (0, 0) region is
depicted in Figure 2.

In the following we provide some justification for choosing the double cross.
Let L be the class of locally optimal procedures. When a < 3 the two-decision
region of any procedure in L is the same as the two-decision region given in
Figure 1, while the probability of the (0, 1) region under § = 0 is (a — 3a?)/2 (see
(7).

A possible criterion for selecting a procedure from L is to maximize the
expected number of correct decisions at some 8 + 0. Let 8 > 0 indicate a vector 8
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F16. 1. The double cross.

with 6, > 0 for all ¢ and 6, > 0 for at least one i. Also, let T = Positive
Orthant N {(0, 1) region}.

THEOREM 1. The rule in L that maximizes the expected number of correct
classifications at 8 > 0 has a region T of the form

= {(91, 92)|e"292cosh(0191) + e®%2cosh(6,9,)
(10)
> c(a,0,,0,),0< 8, <2,0, <6},

where c(a, 8,, 0,) is determined so that p{T*|0 = 0} = (a — 3a?%)/4.

ProOOF. A symmetric procedure in L that maximizes the expected number of
correct decisions at 6 > 0 has a (0,1) region such that the probability of {(0,1)
region} U {(1,0) region} is maximal at 6. Since the (0,1) region is symmetric
about 0 =0, if (01, 6 b) € T, then (— 0,, 0 ) € {(0,1) region}. Further,
(92, 91),(92, -4 1) € {(1,0) region}. To find T* a generalized Neyman-Pearson
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FiG.2. The locally optimal rule that minimizes area of (0, 0) region.

lemma can be used. Accordingly, any point (91, 92) in the positive orthant for
which the generalized likelihood ratio exceeds a critical constant d(«, 8), ie.,
(11) fﬂ(él’ 92) + fo(_én 92) + fo(oz’ 01) + fo(az’ _01)
fo(8y, ;) + fo( =6y, 8,) + fo(6s,0,) + fo( by, —0,)
(f‘,(él, 92) is the joint normal density of (91,92) with mean 0) is in T*. The
numerator and denominator in (11) are the contributions to the likelihood of the
{(0,1) region} U {(1,0) reAgion}Aby a point (8,, 6,) and the associated symmetric
points (—8,, 8,), (6,, 6,), (6,, —6,) under 6 and under 0, respectively. Substitution
for fo(+, ) in (11) gives

exp — 5(67 + 67)

4

>d(a,0) >0

[90292(90191 +e 00 4 efil:(efh e“’zgl)] > d(a,0).
By letting
4d(a,0)

0(0,01,02) = exp — l(012+ 022) ’
2

(10) follows. O

COROLLARY 1. As 010, the region defined by (10) converges to the (0,1)
region of the double cross.

ProOF. Let {h(8))|0 < 0, < z,} represent the boundary of T with the (0,0)
region. Therefore,

(12) e®"®cosh(6,0,) + e®* P cosh(6,6,) = c(a, 6,,6,) for0 < b, < z,.
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Implicitly differentiating (12) with respect to 91 and then solving for A’( 91) gives
—0,e%"sinh(6,0,) — 6,e*sinh(6,0,)
B,e%7®) cosh(6,8,) + 0,e%7® cosh(6,0,)

When 0 — 07, the limit of h’(él) — 0. This implies that the limiting form of A(-)
is A(-) = constant. O

h’(él) =

This corollary implies that for any rule r € L where r # double cross, there
exists an € > 0 such that

Ey(number of correct classifications under r)

< E,4 (number of correct classifications under double cross)
for all ||0)| < e.

Note that the double cross is also the rule in L that minimizes the maximal value
of |6, for which no decision is made on 6,.

Applying a similar approach to (8) for < a < 2, gives the unique optimal
procedure depicted in Figure 3. For (9), the case when 2 < a, the optimal
procedure is unique without additional restrictions to the problem.

3. Generalized optimization functions. The optimization function (6) used
by Bohrer and Schervish (1980) is based on the number of correct decisions in the
various decision regions. Thus, a region with one correct and one undecided
classification has the same value as a region with one correct and one incorrect
classification. This is somewhat unappealing as a region with one correct and one
undecided classification under some circumstances might be more attractive.
Also, we wonder why the doubly correct classification region should necessarily
have twice the value of a one correct, one undecided region. More generally, are
the relative values assigned to the different types of regions in the computation of
(6) always justified?

These considerations lead us to postulate a more general objective function
that is an arbitrary weighted combination of the probabilities of the various
regions. Usually, the weight will increase in relation to the level of attractiveness.
Due to symmetry, the probability under 8 = 0 for each of the two classification
regions is identical. Similarly, all one-classification regions have the same prob-
ability. Thus, it can be shown that for any a € (0,1), and for any weighted
combination of the probabilities of the regions, we can formulate an optimization
problem. Since x, = 1 — 4x, — 4x, (see (5)) and x, > 0, the optimization prob-
lem can be formulated in terms of only x, and x, as follows:

maximize ax, + bx,,

subject to 2x, + 3x, < «,

x, < a2,
(13)
X, +2x,< 4,

X, %520,
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F16.3. The optimal procedure for the solution (8).

where a and b are constants obtained from the weights given to the regions. We
assume that a, b > 0.

Note that the Bohrer and Schervish formulation is a special case of (13) with
a=2, b=4. For a=0, b=1, the objective function becomes the (limiting)
probability of making two correct decisions. When a =2, b = 3, we are opti-
mizing the (limiting) probability of making at least one correct decision.

Whenever a/b < 2, we get locally optimal conditions identical to (7), (8), and
(9). The discussion in Section 2 suggests good choices for the optimal rule.
For a/b> 2 and a < %, the solution to (13) is x, = a/2, x, = 0. By direct
application of the limiting arguments given in the prior section we have the
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Fic.4. Anoptimalrulewhena /b > 2 and a < 1.

unique rule that is depicted in Figure 4. For 1 > a/b> % and < a < %, the
solution is x, = 2 — &, x, = « — ; and the double cross can be used as the
optimal rule. When 2 < « the solution x; = 0, x, = ; yields a unique optimal

rule.

Procedures with no two-decision region (such as the one shown in Figure 4)
seem unappealing. It is hard to accept a rule that does not classify 8, for large
values of éi. Nevertheless, such procedures are optimal for the given set of
constraints and objective function. One approach to circumvent this situation is
by adding some restrictions to L. Notice that upper convexity is only defined for
the two-decision region. It seems logical to extend the upper convexity require-
ment to the one-decision region. This implies that if 0 leads to D, = +1, then for
all ¢,,¢,>1, (¢, ¢,0,) leads to the same D,. Under this generahzed upper
convexity requirement we have the following result

THEOREM 2. There is a unique symmetric and generalized upper convex rule
that maximizes (13) for 1 > a/b> 2 and a < 2, which satisfies (1). For this
rule, the (0,0) region is a square |0 | < K and the two-decision regions are of the
form {(8,,8,)|10,) > K, i = 1,2} where K is the (1 — a)'/? percentile of a stan-
dard normal variate.
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Proor. The {(0,0) region} N {(1,1) region} # {¢}. Otherwise, there exists a
pomt(ﬂ,, 6' ) € {(0,1) region} such that for some ¢ > 1, (c()l, 6, ,) € {(1,0) region}.
This would violate generalized upper convexity for D,. Suppose that the intersec-
tion of the (0,0) and (1, 1) decision regions consists of more than 1 point. Since
x, + x, = | is not a binding constraint, there exists an ¢ > 0 such that x, can be
reduced by ¢, x, increased by je, and the solution remains feasible. As this new
solution has a higher value, the original one is not optimal for (13). Consequently,
every optimal rule must have the (0,0) and (1, 1) regions intersect at precisely one
point.

To satisfy upper convexity, the (1,1) decision region must contain the set

S = ‘(9,,9 )imin{#,, 8,} > K} for some K > 0. If S is a proper subset of the
(1, 1) region, x, can be reduced and x, increased as above. Thus, in an optimal
rule the (1, 1) decision region is of the form {(01, 6, )|m1n{l9|, 6. ,} > K > 0}.

Suppose the (0,0) region is not a square. By rearranging the areas (keeping X,
and x, constant), we can find an equivalent rule where the (0,0) and (1, 1) regions
intersect at more than one point. By a prior argument, x, and x, are not optimal
for (13). As a result, the (0, 0) region is square.

Now, for some K > 0, the optimal solution can be written as x,(K) =
[O(K)— d(—K)][1 - ®(K)], x, =[1 — &(K)]* Let y = ®(K ). The objective

92
(=40 (0,4) +54)
cm— (—’O) (+:0) s 4 91
(0,0)
(_’—) (0’_1) (+3—)

F1a. 5. The Sp cross.
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function of (13) becomes ¥(y) = a(2y — 1)(1 — y) + b(1 — y)% Since 0 < K <
o0, 050 <y < 1. ¢'(y) <O0for y € (0.50,1) if /b < 1. Hence, {( y) is monotone
decreasing and attains the maximum value on the boundary of the constraint set.
Since the constraints 2x, + 3x, < a and x, < o are equivalent to y > (1 — a)'/?
and y > 1 — a, respectively, the optimal solution has ®(K) = (1 — «)'/2 This
completes the proof. O

The optimal rule according to Theorem 2 is depicted in Figure 5. This rule is a
well recognized procedure that is discussed by Bohrer (1979) and Bohrer and
Schervish (1980). It has been named the Sp cross and was originally discussed by
Spjetvoll (1972) for a slightly different problem.

2

We have omitted the case of a/b = } from our discussion. When a < 7, the
optimal solution to this case will not be unique. Thus, examination of additional
criteria will be required to fix x, and x,. We leave this to future research.
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