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MINIMAX VARIANCE M-ESTIMATORS OF LOCATION
IN KOLMOGOROV NEIGHBOURHOODS!

By Douc WIENS
Dalhousie University

We exhibit those distributions with minimum Fisher information for
location in various Kolmogorov neighbourhoods {F|sup,|F(x) — G(x)| < €}
of a fixed, symmetric distribution G. The associated M-estimators are then
most robust (in Huber’s minimax sense) for location estimation within these
neighbourhoods. The previously obtained solution of Huber (1964) for G = ®
and “small” ¢ is shown to apply to all distributions with strongly unimodal
densities whose score functions satisfy a further condition. The “large” &
solution for G = ® of Sacks and Ylvisaker (1972) is shown to apply under
much weaker conditions. New forms of the solution are given for such
distributions as “Student’s” ¢, with nonmonotonic score functions. The gen-
eral form of the solution is discussed.

1. Introduction and summary. Consider Huber’s (1964) theory of robust
M-estimation of a location parameter 6. Let 8 be defined as a zero of Xi(x; — ),
for a suitably chosen vy, where X; ~ F(x — ) and F is an unknown member of a
convex, vaguely compact class % of distributions. Typically, vn (8 — 0) is
asymptotically normally distributed. Let V({, F') denote the asymptotic variance
functional. The choice y, is then most robust, in the minimax sense, if it
minimizes sup;V(y, F).

In Huber (1964) and in particular in Chapter 4 of Huber (1981), general
procedures are derived for finding most robust M-estimators. We briefly sum-
marize what are, for us, the salient features. One first demands optimality only
over that subclass %’ of 4 whose members have finite Fisher information for
location I(F). Any F € %’ necessarily has an absolutely continuous, bounded
density f, tending to 0 as x = + o0, and then I(F) = [(f’/f)?f dx. There exists
F, € #’ minimizing I(F). If I(F,) > 0, and f, has convex support, then Fj is
unique. Furthermore, {, = —f;/f, is most robust over #'. If %’ is vaguely
dense in %, and if ¢, is sufficiently regular—see Theorem 5 of Huber
(1964)—then v, is optimal over the larger class. Necessary and sufficient for F
to minimize I(F) is the condition

(11) J2Uho= 1Yo+ (o= )W3de 20, all Fes.

In this paper we apply the above theory to cases in which %, written K, is a
Kolmogorov neighbourhood of a fixed distribution G: K, = {F|sup,|F(x) —
G(x)| < ¢}. In the case G = ®, the normal cumulative, Huber (1964) obtained the
most robust y, for & < 0.0303, Sacks and Ylvisaker (1972) for & > 0.0303.
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Somewhat surprisingly, the general case of this problem seems not to have been
addressed.

We will assume throughout that G is fully stochastic, symmetric, strictly
increasing on (— 0, 00), and has an absolutely continuous density g with respect
to Lebesgue measure. The score function { = —g’/g is assumed to be differenti-
able except possibly at zero. The assumption of symmetry implies that F is
symmetric [Huber (1981), page 89]. Although it is not assumed that I(G) < oo,
the continuity of G ensures that K is dense in K, [Vandelinde (1979), page 186].

Huber (1964) showed that the most robust ¢, has essentially the same form
for all e-contamination classes {F = (1 — ¢)G + ¢H; G’ symmetric, strongly
unimodal}. In contrast, we will show that the aforementioned “small ¢” solution
for K, does not extend in this way, but that it does apply in the presence of the
requirement—strictly stronger than strong unimodality—that J(§) = 2¢’ — ¢2
be decreasing on [0, o). Note that, under the requisite regularity, (1.1) becomes
[J(¢,)d(F — Fy) > 0 by partial integration. Similarly, I(G) = [J(£) dG.

It is our thesis that the form of y, may be inferred quite generally from the
behaviour of J(£). This approach was adopted by Collins and Wiens (1985) in
determining general properties of least informative distributions in arbitrary
e-contamination classes. In Section 3 it is applied to such distributions as G,(x),
with density proportional to exp(—|x|?/¢), and to “Student’s” ¢-distribution. For
distributions such as the ¢, £ and J(¢) are nonmonotone, resulting in this case in
six distinct forms of the solution, depending upon ¢ and the degrees of freedom.
Five of these are rather unwieldy; the sixth coincides with the Sacks-Ylvisaker
“large &¢” form. This form is shown to apply for all sufficiently large Kolmogorov
neighbourhoods, under very mild conditions on §£.

2. Necessary and sufficient properties of F,. In this section we exhibit
some conditions which are necessary and sufficient in order that F, have
minimum information in K,. These lead to some heuristic considerations of the
general form of ¢ which motivate the solutions given, in Section 3, for some
special classes of distributions G.

Partition the support of f,, in (0, 00), into disjoint sets

By = {xjmax(},G(x) — ¢) < Fy(x) < min(1,G(x) +¢)},
B, = (xIFyx) = G(x) — ¢},
By = {x|Fy(x) = G(x) + ¢}.

Define a functional ¢/ on the set of continuous (except possibly at zero), piecewise
continuously differentiable functions y by J(¢) = 2¢’ — 2. Extend J(¢) by left
continuity where ¢’ is discontinuous. If ¥ is discontinuous at zero, set J(¢)(0) =
sign(¢(0*) — ¢(07)) - o0, corresponding to use of the Schwarz derivative [ Natan-
son (1960)].

It turns out that J(y,) = constant on each component of B,. We note that
the only solution to J(y,) = A* is of the form Atan(A(x — w)/2) for some
parameter w, and that those to J(¢,) = —A? are Atanh(—A(x — w)/2), A, and
Acoth(—=A(x — w)/2).
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THEOREM 1. If F, possesses the following properties, then it is the unique
member of K| minimizing I(F) over K .

1. F, € K,, F, symmetric, Fj(o0) = 1.
2. F, has an absolutely continuous density f, with respect to Lebesgue measure,
and , = —f,/f, is absolutely continuous on (— x, ).
3. There exists a, possibly infinite, set of intervals [b, a,,,], with 0 < b,,
a,<b <a;, , limsup,_  a,=a < ; and constants \,, X such that
(i) B, U B, =Uj[b;,a;,];

A, x<[0,0,],
1 Ai? X S ai, bl 5
(1) J(Yy)x) = ‘ ( ]
—-A2, x>a,

J(¢)(x), x € Int(B, U By,);

(ifi) if x € B,, then J(¥o)(x) = J(¥)x + O),
if x € By, then J(,)(x) < J(¢,)(x + 0).

ProoF. It follows from “J(y,) = —A*” on (a,o0) that ¢, =X >0 and
folx) = f(a)exp(A(a — x)) there. Here we use the fact that the tanh and coth
solutions are both eventually negative ( f, increasing). In particular, ¢, is
bounded and fy(x) = 0 as x = +00. On Int(B, U By;), f(x) = g(x)> 0. On
B, f, > 0 since no f, corresponding to a solution to J(¢,,) = A can descend to
zero with y,, remaining bounded. Thus f, > 0 on (— o0, ), so that we need only
verify (1.1), and that 0 < I(F,) < co. By partial integration, (1.1) becomes

(2.1) JI0)d(F = F) = 0.

It suffices to check this for symmetric F € K. Assume that “a” is the only
possible accumulation point of {a;,}—the general case is similar. If we put
H = F — F, and integrate [J(£) dH by parts on those nondegenerate intervals in
B, U By, (2.1) becomes

0< lim fo"’“'J(zp(,)dH— Azfde

= lim [{ Z (J(P)(b;) = J(¥y)(b; + 0))H(b,)

n—x
b<a;1<a,,,

+ Z (J(‘Po)(ain) _J(‘Po)(ain +0))H(ai+l)
(2.2) b<a;, <a,

d

—NH(0) — Y famH(x)Ex—

b;<a;,,<a, %

J(&)(x)dx}

+{J(¢0)(an+1)H(an+1) - J(‘P())(a + O)Ii(a)}}-

By 1 and 3(iii), all terms within the first set of braces are nonnegative, as is the
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limit of the remaining term. Thus (1.1) is satisfied. That 0 < I(F,) = [y2 dF, < oo
is obvious. O

It is also necessary that Fj satisfy the conditions of Theorem 1. Since the
necessity is not explicitly required, the proof (available from the author) is
omitted. We note however that F, € K_ forces, in turn, the additional necessary
conditions

4(1) fn(x) = g(x)’ x € BL U Bu;
4(ii) ¢(x) — &(x) < 0on B,;(= 0on By).

In Section 3 we exhibit the minimum information distributions F; for some
particular Kolmogorov neighbourhoods. The general principle at work appears to
be that for sufficiently small ¢, ¢, should differ from ¢ only near the local
extrema of J(£); and that here we should have J(y,) = const, with this constant
being less extreme than that attained by J(£). In line with (2.1), we should have
fo > &, F, — G increasing from —e to ¢, near the local minima of J(§), f, < &,
F, — G decreasing from ¢ to —¢, near the local maxima. This is illustrated by
Theorem 2 below. As ¢ increases, the regions of constancy of J(y,) coalesce. It
is shown in Theorem 3 that for sufficiently large &, the solution quite generally
has J(¢,) = N2(e) on [—b(e), b(e)], J(Y,) = —N(e) elsewhere, with Fy(b) =
G(b) — eand b, A;, A - 0 as ¢1 5. We conjecture that this “large ¢” form of the
solution is universally valid. We also give examples (Examples 2 and 3 below) of
classes of distributions for which there are intermediary forms of the solution.

3. Some classes of solutions. The preceding discussion suggests that if
J(£) is decreasing on [0, o), so that £(0*) > 0 as well, we should have B, = [a, b],
B, = ¢, 0 < a < b < . Before proving this, we show that our monotonicity
assumption implies that g is strongly unimodal.

LEMMA 1. If J(§) is strictly decreasing on [0, o0), and continuously differen-
tiable on (0, o0), then £ is positive and strictly increasing on (0, o). The converse
is false.

Proor. Under the stated conditions, any critical point x, of £ must furnish a
local maximum. Thus £(x,) > 0, and in order that £ not become negative on an
unbounded interval there must exist an inflection point x, > x, at which 0 =
£"(x,) < &(x)€'(x,) <0, a contradiction. Thus £ is monotonic and nonnegative
on (0, c0). From this observation the result is immediate.

Counterexamples to the converse are furnished by the distributions G, defined
in the Introduction with /> 2. O

If J(£&) is merely decreasing on (0, 00), Lemma 1 fails for, say, g(x) = (1 +
2|x|)exp( —|x|) /6. Some distributions satisfying the conditions of Lemma 1 are the
logistic, and those G, with 1 < /< 2.
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THEOREM 2. Under the conditions of Lemma 1, there exists e, = e(G) such
that for ¢ € [0, &,], I(F) is minimized over K by that F, with

bl) = [Mtan 25, 60, 3 = 600),

S
g(a)cos®—

fu(x) = |~ &(x), £(b)exp(~£(b)(x = b))

cos®>—
2

on [0, al, [a, b], [b, »), respectively. The constants a, b‘, A, are determined by (i)
F(a)= G(a) — &, (ii) F(o0) =1, and (iii) Y(a — 0) = &a). Thus B, = [a, b],
B, = ¢. Minimum information is

I(F,) = 2{)\ﬁ[G(a)’— e— 1] - R[1-G(b) +¢] + ["I(&) dG).

The limiting values are (g, a, b, X2, —=X*) = (0,0, 00, J(£)(0), J(§)(0)), and &(G)
is defined by a(e,) = b(g,).

PROOF. It is a straightforward matter—see Wiens (1985) for details—to
establish the existence of constants a, b, A, satisfying (i)—(iii) and

£(x) 2 9y(x), x€[0,al; J(§)(a) <N

Integrating this first inequality shows that f, < g on [0, @]. The monotonicity of
¢ ensures that £ >y, and f,>g on [b, ), and that J(£)(b) > —A2 The
conditions of Theorem 1 are then satisfied, as long as a < b. O

We now establish sufficient conditions under which the “large ¢” form of the
solution is valid.

THEOREM 3. Suppose that, on (0, 0), £(x) satisfies (A.1) &(x) > 0, (xé(x)) ‘
> 0, (A.2) (&(x)/x) < 0, and (A.3) ¢ has no local minima in (by, ), where b, is
defined by byé(b,) = 1. Then there exists & = &(G) such that for € € (g,1/2],
the minimum information F, € K _ is described by

( Ax Ab
Yolx) = {AltanT, A= }\,tanT},

Ax
g(b)cosQ?
fola) ={ ——x5 — &(b)exp(~A(x = b))

2
cos”—
2

on [0,b] and [b, ), respectively. The constants A, b satisfy (1) Fy(b) =
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G(b) — ¢, (ii) Fy(o) =1, and (iii) ¢(b) < &b). Thus B, = {b}, B, = ¢.

Minimum information is
I(F,) = 2(A\i + X)(G(b) = ;—¢) = N\

The limiting values are (&, b, N3, —=\*) = (}, %,0,0).

Proor. The identity (xg(x))’ = g(x)1 — x§(x)), together with (A.1), implies
that lim, _, _xg(x) =0, lim, _, ,x&(x) < 1, lim,_, _x&(x) > 1; hence the existence
of a unique point b, as in (A.3). It is easily checked that if (i)-(iii) are satisfied,
and if F, € K, then the conditions of Theorem 1 are met.

Similar to the development in Sacks and Ylvisaker (1972), (A.1) implies the
existence of &£4(G) < § such that (i)-(iii) are satisfiable for ¢ > ¢,. Then (A.2)
ensures that on [0, b], £(x) remains above the line segment joining (0,0) to
(b, ¢(b)), hence above the convex function ¢,. As in Theorem 2, this implies
that g > f, on [0, b], so that G > F, > G — ¢ there. Alternatively, this may be
established under the conditions of Lemma 1. Now {A.3) implies the existence of
£(G) € [y, 5] such that for & > ¢, F, remains within the boundaries of the
Kolmogorov strip on (b, o). As in Theorem 2, if (A.3) is replaced by the stronger

(A.3): ¢(x) > 00n(0,00),

then we may take ¢, = ¢,. See Wiens (1985) for the details. O

COROLLARY 1. Under the conditions of Lemma 1, the least informative
F, € K, is as described in Theorems 2 and 3, with ¢,(G) = &(G).

ExampLE 1. Those distributions G,, 1 < £< 2, are covered by Corollary 1.
Huber (1964) and Sacks and Ylvisaker (1972) obtained ¢,(G,) = 0.0303. Working
through the numerical details of Theorem 3 extends the result to the Laplace
distribution (¢> 1), with ¢(G,) = 0.

Theorem 3 applies to those G, with /< 1, and we find ¢/(G,;) = 0.0355,
£,(G,-5) = 0.0153. Although assumption (A.2) of Theorem 3 fails for G, if £/> 2, a
sligh. modification to the proof shows that the conclusions apply to these cases as
well, with &, = &,.

ExaMPLE 2. Denote by G,(x) the “Student’s” ¢ distribution on r d.f., with
£(x) = (r + x/(r + x?%). Theorem 3 applies, but Theorem 2 does not. The
function J(£,)(x) = (r + 1)2r — (r + 3)x?)/(r + x?)? attains a positive maxi-
mum at 0, decreases to a negative minimum at (r(r + 7)/(r + 3))'/2 := M,, then
increases to 0 at oo. The discussion in Section 2 then suggests that for sufficiently
small ¢, say € < ¢,(r), there should exist points a, b, ¢, d, with 0 <a < b <
M, < ¢ < d such that F, has B, =[a, b], B, =[c,d]. More precisely, this
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“Stage I” solution is given by

Ax
\P()(x) = {Altan“z—', £(x), Aztanh(

(= o) €00 3 = g(a)),

—-A
B0t gp)eosti - o)
f()(x) = N.a , 8(x), Y ,
2™ 9 2
cos®—— cosh(—Z—(b—w))

8(x), g(d)exp(—§(d)(x — d))

on [0, a], [a, b], [b,c], [¢,d], [d, ), respectively. See Figure 1. The seven
constants are determined by the conditions Fy(a) = G(a) — ¢, Fy(c) = G(c) + &,
Fy(o0) = 1, and continuity of f, at ¢ and of ¢, at a, b, c. Given the existence of
such constants, the conditions of Theorem 1 are easily verified.

For r = 1, some numerical values of the constants are given in Table 1 below
for this, and the three subsequent stages. Stage II differs from I in that a = b
and Y(b) < §(d), and is valid for e € [¢,(1), e;;(1)] = [0.00573,0.02515]. Stage
III has as well ¢ = d and {(c) > &(c), for ¢;(1) < & < 0.0377 = g;;(1). Stage IV
is then as described in Theorem 3, and is obtained by letting w — o in Stage III.

Since Theorem 2 becomes applicable at r = oo, it is clear that this sequence of
stages cannot hold for all ». Numerical investigations have shown that it is in
fact only valid for r = 1. For r > 2, Stage Il is altered by requiring ¢ = d, a < b,
Yo(c) > &(c). On arange 2 < r < R, Stage III then has a = b, Y (b) < &(b). For
r > R, it has instead a < b, ¢ = d, F(c¢) < G(c) + & In each of Stages I-III,
Bl ¢ asr— co.

Collins and Wiens (1985) obtained the most robust ¢, for an e-contamination
neighbourhood G, of G,, and found it to be of the form exhibited in Figure 1,
without the “tan” and “constant” portions. This reflects the fact that in K_,
maxima of J(§) may be dampened by removing mass from g, whereas in G, only
minima may be handled, by adding mass to (1 — ¢)g.

ExampLE 3. If { is positive, decreasing, and convex on (0, c0), then J(&) is
negative and increasing there but J(£)(0) = + co. Examples are the distributions
G,(x), ¢£< 1, for which Theorem 3 applies.

In view of the Dirac delta in J(§) at 0, we expect that for small values of e,
J(¢,) is constant on three contiguous intervals symmetric about zero, and in
neighbourhoods of + o0. As at 3(iii) of Theorem 1, F, cannot remain on the lower
boundary of the Kolmogorov strip, in (0, o). The “small ¢” solution should then
be obtained from those same equations defining the Stage II, r = 1 solution of
Example 2. It is then easy to see that the remaining two stages must be as for the
Cauchy distribution. For G, ;, see Wiens (1985) for some numerical values.
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0.0 I ] ! ]
alb M c d

Fic. 1. Most robust ¢, for a Kolmogorov neighbourhood of the Cauchy distribution, with ¢ = 0.005
(Stage 1). The constants are given in Table 1, and the horizontal axis is In(1 + x).

REMARKS. 1. Some feeling for the geometry of a Kolmogorov neighbourhood
is given by the “infinitesimal loss of Fisher information” d/de I(K;), . In
general, if F, is determined by equations (i)—(iii) of Theorem 2, or by (i) and (ii) of
Theorem 3, then

d

7 1R = —2(Ni(e) + N(e)).

For G, 1 < I < 2, this varies monotonically from —co at e = 0 to 0 at ¢ = . For
the logistic, it varies from —4 to 0.

2. Consider the #' neighbourhood of G, defined by &£! = (F|[|f — g|dx <
¢}. If F, is determined as in Theorem 2, or as in Theorem 3 with (A.3’) holding,
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TABLE 1
Least informative F, in Kolmogorov neighbourhoods
of the Cauchy distribution
Stage € a b c d NN A w 1/I(F)
I 0 0 V2 V2 o 2 1155 0 2

0.001 0.411 0.800 2.66 159.15 1.81 1.04 0.013 4.09 2.05
0.005 0.599 0.635 3.55 31.81 1.64 0.94 0.063 4.88 2.22
0.00573 0.620 0.620 3.66 27.75 1.63 093 0.072 4.99 2.26

11 0.006 0.622 370 2650 1.62 0.92 0.075 5.03 2.27
0.010 0.657 426 15687 1.53 0.87 0.125 5.57 2.45
0.025 0.765 6.19 626 129 071 0.312 7.54 3.19
0.02515 0.766 6.22 622 129 071+ 0.313 7.56 3.20
III 0.026 0.772 6.24 128 070 032 7.67 3.24
0.030 0.797 6.31 123 067 039 831 3.45
0.035 0.825 6.21 117 062 0.51 9.93 3.72
0.0377 0.839 6.08 1.14 0.59 0.59 0 3.86
IV 0.0377 0.839 . 114 0.59 3.86
0.0535 0.946 1.02 0.54 4.7
0.0608 1.00 0.98 0.51 5.17
0.15612 1.56 0.58 0.28 16.74
0.3366 3.85 0.16 0.05 484.12

0.5 © 0 0 )

then F, € %, . Since the symmetric (hence less informative) subclass Z1 of £,
is contained in K, Fy minimizes information over .Z,, as well. Note that for
e> L, inf{I(F)|Fe2L) =0.
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