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CONDITIONAL EMPIRICAL PROCESSES

By WINFRIED STUTE

University of Giessen

We prove a Donsker-type invariance principle for a nearest-neighbor-type
conditional empirical process. As an application we show asymptotic normal-
ity of conditional quantiles and derive large-sample distribution-free tests and
confidence bands for a conditional distribution function.

1. Introduction and main results. Let (X,Y) be a random vector in R!*¢
with distribution function H. For real Y (i.e,, d = 1) with E(|Y|) < co write
E(Y|X) = me X, with m(x) = E(Y|X = x) denoting the regression function of Y
at X = x. Assume that (X, Y;),(X,, Y;),... is a sequence of independent ran-
dom vectors with the same distribution as (X, Y). Much work has been devoted
to the problem of (nonparametric) estimation of m when only little information
on H is available. See Collomb (1981) for a survey.

For a general d, replacing Y by the indicator function 1,y_,,, y € RY, we
might apply the existing results for statistical inference about the conditional
distribution function

m(ylx) =P(Y<y|lX=x), (xy)eR"

at a fixed point y € R% As in the case of unconditional distribution functions,
such a result is insufficient for most purposes. For example, when dealing with
smooth functionals of m(:|x), it is necessary to handle estimates m ,(:|x) =
m,(:|x; X,,Y,,..., X,,Y,) of m(-|x) as a function rather than its value at a
single point. In other words, it is desirable to study the distributional character
of the process {m,(y|x):y € IRd}.

In Stute (1984b) we introduced a nearest-neighbor-type estimate of m(x),
which turned out to be asymptotically normal under minimal assumptions on H.
To be explicit, let d = 1 and write, for n > 1,

n

n
F(x)=n_lzl(—oo,x](Xi)a x €R,
i=1

the empirical distribution function of X, ..., X,,. Let K be a smooth probability
kernel with bounded support and put, for some bandwidth a, > 0,

(Fn(xO) - F(X,) )

mo(x0) = (nay) "' 3 VK

i=1

Under some mild growth conditions on a, (— 0) it was shown that

(nan)l/z[mn(-xo) - m(xo)] - N(0,0%)

a

n
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CONDITIONAL EMPIRICAL PROCESSES 639
in distribution, where
0% =var(Y|X = xo)sz(u) du.

As indicated above, replacing Y; by 1_, ;°Y;, we obtain the process
( F(x,) — F(X,)

n
mn(ylx()) = (nan)_lzl(—oo,y]OYi'K )’ yER(la

i=1 a

n

as an estimate of m(-|x,).

The main result of this paper states that when viewed as a random element in
a suitable (topological) space of functions, (na,)'/?[m,(-|x,) — m(-|x,)] = B, in
distribution, where B, is a certain Gaussian process (depending on x,). In other
words, we prove a Donsker-type invariance principle for the conditional process
mn(ylx())y y € Rd*

Observe that, since K is a probability kernel, m ,(y|x,) is nonnegative and
“nondecreasing” in y. It is not a proper distribution function, however, since in
general the weights K([F,(x,) — F(X,)]/a,)/na,,1 < i < n, do not sum up to
one. In the next section, we shall propose a modification of m,, which turns out
to be a proper distribution function with the same asymptotic behavior as m,,.

In the following write Y = (Y,...,Y%), and denote with G/, 1 <j < d, the
marginal distribution function of Y”. Define G: R¢ - [0,1]? by G(y,,..., y;) =
(G(y,),.-.,G%y,)), and let F be the distribution function of X. We then have

H(x: Yiseees yd) = C(F(x):Gl(yl)"“’Gd(yd))a

where C is the copula function of H, a distribution function on [0,1]'*“ with
uniform marginals. Similarly, for the empirical distribution function H, of
(X,,Y),...,(X,,Y,) we may write

Hn(x’ yl:"': yd) = Cn(F(x)’ Gl(yl)’ L] Gd(yd)),

where C, is the empirical distribution function of an i.i.d. sequence with distribu-
tion function C. The possibility of obtaining H and H, from the “uniform”
processes C and C, by means of the transformation (F, G',...,G%) € [0,1]' "% is
important for deriving statemerits about multivariate empirical processes on
R'*“ from corresponding processes on [0,1]'*“¢ with uniform marginals. More-
over, since the.weights K([(F,(x,) — F,(X;)]/a,) have the nice property of
depending only on the order statistics and ranks of X,,..., X,, we may write

F;z(x()) - F(x)

m,(ylx,) = a;:lfl(—oo,y](u)K( )Hn(dx’ du)

n

Fn(F(xo)) - F'n(x)

- a':lflto,my)](“)K( )Cn(dx, du)

= i, (G(y)|F(x,)),

where F, is the first marginal distribution of C,, an empirical distribution
pertaining to an i.i.d. sample with uniform distribution. Consequently, in order to

n
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derive distributional results for m,, we may and do assume that H has uniform
marginals.

Throughout this paper assume that K is a twice continuously differentiable
probability kernel vanishing outside some finite interval. (a,), will be a sequence
of bandwidths converging to zero at appropriate rates.

While K and a,, are at the statistician’s disposal, the invariance principle may
be proved only under an additional smoothness assumption on the unknown H
(resp. m). Recall that for m, we may assume w.l.o.g. that F is the uniform
distribution on [0, 1].

ASSUMPTION (A). Assume that

sup |m(t|x) — m(s|x)|= o((lnS"):l) as 6 -0
it--sli<8

uniformly in a neighborhood of x,,.

Clearly (A) is satisfied whenever m is Holder continuous of some positive
order. No existence of densities is required. (A) also guarantees that m is
equicontinuous in a neighborhood of x,. This is quite natural in view of the fact
that the standardized process m, is expected to have a limit process with
continuous sample paths. Now, for y € [0,1]¢, put
Xy— X

a

m(v150) = 0, [0 (WK| " | H(as, dw).

n

Recall F = U[0,1], the uniform distribution on [0,1], and observe that, by
definition of m(:|x),

X,— X

m(yix) = a,' [ ‘m(ylx)K( ) dx,

n

a smoothed version of m(y|x,).

To state our first main result, we denote with D[0,1]¢ the space of all
“right-continuous” functions on [0,1]¢ with “left-hand” limits; cf. Billingsley
(1968) for d = 1 and Neuhaus (1971) for a general d. Endow D[0,1]¢ with the
Skorokhod topology, and let Z(D) be the generated Borel o field. Clearly, m, is
a random element in (D, #(D)), so its distribution is well-defined.

THEOREM 1. Assume that H has uniform marginals, and let a,, — 0 be such
that na} — . Under (A) we then have for Lebesgue-almost all 0 < x, < 1

(na,)*[m,(-xo) = M,(+1xy)] = By = By(x,) in distribution.

Here B, is a centered Gaussian process on [0,1]¢ with continuous sample paths
vanishing at the lower boundary of [0,1]¢ and covariance

cov(By(y,), B()(Y2)) = [m()ﬁ A Yolxo) — m(yllxo)m(yzlxo)]/Kz(u) du.
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In other words, B, is a scaled tied-down Brownian sheet with intensity
measure m(-|x,). When X is independent of Y, m(-|x,) = Qy, the distribution of
Y for all x,. Hence up to a scaling factor, B, is equal to the limit of the
unconditional empirical process pertaining to the Y sequence, as should be
expected. Observe, however, that the standardizing factor is (na,)/? with
a, — 0, indicating a lower rate of convergence. This is the price one has to pay
when making inference about conditional (local) quantities.

It is not hard to prove that the standardized processes m,(-|x) converge
jointly in distribution to By(x) even at finitely many points x = x,,..., x,, with
B(x,),..., By(x,) being independent.

The corresponding invariance principle for (na,)"/?[m,(-|x,) — m(-|x,)] may
be obtained under an additional smoothness condition on m(y|x) as a function of
x. This is necessary in order to guarantee that m, — m — 0 at a satisfactory rate.

AssuMPTION (B). For each y m(y|- ) is twice continuously differentiable in
a neighborhood U of x,, such that

sup sup [m”(y|x)| < .
xelU y :

COROLLARY 2. Under the conditions of the theorem, assume that (B) holds,
and let K be such that [uK(u)du =0. Whenever nal — 0 we have for
Lebesgue-almost all 0 < x, < 1

(na,)"?[m,(-1x,) — m(-|x,)] = B, in distribution.

PROOF. According to the theorem it remains to show that (na,)"/%[m (y|x,)
— m(y|x,)] = 0 uniformly in y. Because of na’ — 0, it suffices to prove
m, — m = O(a?). This follows, however, in much the same way as the corollary
in Stute (1984b). O

With the same method of proof, one may also treat the optimal choice of a
bandwidth, namely na® — ¢ > 0. For a general c, the limit process is equal to the
noncentered Gaussian process

\Em”( E2Y)
|

Bé:y — By(y) + u’K(u) du.

Clearly, for B¢, ¢ > 0, to be continuous, we also need continuity of m’/(-|x,). As
for the usual empirical process, the invariance principle for the conditional
empirical process may be used to test the hypothesis m(-|x,) = my(:|x,) and to
determine confidence bands for m(-|x,). For example, when d =1 and G is
continuous, we have (when ¢ = 0)

1/2
(na,) / sup |mn(y|x0) - m(y|x0)|
yER

= (nan)l/z()supl |r7Ln(u|F(x0)) - ﬁi(u]F(xO))|

— sup |By(u|F(x,))| in distribution.

O<u<l
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Here 7, and m are the processes pertaining to the “uniform” C, and C.
Observe, however, that for continuous m(-|F(x,))

sup | By(ulF(x,))| = |/ [K*(u)du sup |B(u)]
O<ucx<l1 O<ucx<l

in distribution, where By is a standard Brownian bridge on [0,1]. As a conse-
quence, we see that the Kolmogorov—Smirnov test statistic leads to large-sample
distribution-free tests and confidence bands for m(-|x,).

2. A proper conditional empirical process. As mentioned earlier, m, is
not a proper distribution function. Alternatively, we might consider the function

i 1(_w’y]y.i . K(Fn(xo) - Fn(Xz) )
mi(ylx,) = = n _ -
.EK(Fn(xO)a Fn(Xt))

a proper distribution function. Observe that

mi(ylxy) = m,(y1x,)/f(x0),

where

- F 0 _Fn Xi
fn(x())=(nan)l;K( (o) ( ))

a,

In other words, f,(x,)=m,(x,) with Y, = 1. Since for such a Y one has
m(x,) = 1 and var(Y|X = x,) = 0 we obtain that

(na,)"?[f,(x,) — 1] = 0 in probability.
It follows that under the smoothness assumptions of the theorem

1/2 1/2

[m:(nyO) - ,—ﬁn(yle)] = (nan) [mn(ylx()) - mn(ylx(b)]
+0p(1) uniformlyiny.

(na,)

We thus see that m* fulfills the same invariance principle as m,,.

3. Conditional quantiles. When d =1, i.e., when Y is real-valued, the
process m* has an inverse or quantile function

m* Yulxy) = inf{y € R: m¥(ylx,) 2 u}, O0<u<l.

This is scheduled for estimating the u quantile of m(-|x,). In this section we
derive the limit distribution of

Q. (u)= (nan)1/2[m:‘1(u|x0) - m (ux,)], 0<u<1fixed.

For such an u, write y, = m~'(u|x,).
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THEOREM 3. Under the assumptions of the corollary, if m'(y,|x,) =
(0/3y)ym(y|x,) > 0 aty = y, and G is continuous we have for almost all x,,

Q.(u) = N(0,02) in distribution,

where

o2 = u(l - u) [K*(x) dx/[m( 3,/%,)]"

ProoF. The method is the same as for showing asymptotic normality of
(unconditional) quantiles. [See, e.g., Wretman (1978).] Compared with Wretman'’s
proof, we use C-tightness of m* rather than Chebyshev’s inequality (because of
the heavy dependence of the summands) to show that-when

1/2
n* = (nan) / [m:( yulx()) - m( yulx())]
and
2 2
VVn = (nan)l/ [m:( yu + y/(nan)l/2|x()) - m( yu + y/(nan)l/ |x())] ’

then W* — W, — 0 in probability. The theorem then immediately follows from
asymptotic normality of W * and continuity of the standard normal distribution
function. See Wretman (1978) for details. O

4. Lemmas and proofs. Put

Bu(y) = Bu(ylxo) = (na,)*[m,(ylx,) — M, (¥Ix,)].

We shall prove the theorem by showing that:

(i) the finite-dimensional distributions of 8, converge to those of B,,.

(ii) {B,: n = 1} is uniformly C-tight, i.e., for each ¢ > 0 and every p > 0 there
exist some § > 0 and n, € N such that for all n > n,

P sup |8(v) — B3> 0) <e.

ly1 = yall<8

Observe that 8,(0) = 0 for each n € N. As to (i) we have the following

LEMMA 4. Under the assumptions of the theorem, the finite-dimensional
distributions of B, converge to those of B,,.

Proor. Follows at once from the theorem in Stute (1984b) upon applying the
Cramér-Wold device. O

To prove tightness we shall have to rest on some bounds for the oscillation

modulus of multivariate empirical processes. For this, let a(l),...,a(l + d)
be some positive constants (which may depend on n) and put a = (a(l),...,
a(l +d)). For x =(x,...,%,,4) <y =(¥,.--, Y14+4) cOmponentwise denote

with I, = T1}{(x,, 5] the pertinent rectangle in R'*“ In Stute (1984a) we
derived finite sample upper bounds and almost sure limit results for maximal
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deviations of the empirical process
an(x]y'“rxl+d) = nl/Q[Hn(xly"-7x1+d) - H(x17~~~yx1+d)]

over small rectangles. To be specific let
w,(a) = sup{|an(Ixyy)|: ly, —x|<a(i)forl <i<1+ d}

denote the oscillation modulus of «,. Then it was shown in Theorem 1.7 of that
paper that under certain growth assumptions on a(1),...,a(l + d)

—(1+d)

(1) P(w,(a) >s) < Cl[ min a(i)] exp| — C,s%/min a(i)]

1<i<l+d
for some C,, C, not depending on a, s, n, or H.
To study conditional empirical processes at a point x, € R, we shall have to
restrict ourselves to rectangles I,  for which x, < x, < y,. Write

w,(a; %) = sup{ |a,( Ly ) |: 13 — il
<a(i)forl <i<1+dandx, sxosy;}
and put (with p denoting the distx’ibutioﬁ pertaining to H)
v(a;x,) = sup{u(L,,)}

with the supremum extended over the class of rectangles appearing in w,(a; x,).
To motivate Lemma 5 below, we should like to mention that (1) had been derived
by bounding w,(a) from above by the maximal deviation ofa, over a finite
number of small rectangles I,,..., I, forming a partition of [0,1]'*% with
the length of each side being of the order min,_,_, ,a(i). Hence m ~
[min, _,_,, 4a(i)]"**9. After that, an appropriate maximal inequality together
with a standard Bernstein exponential bound applied to a,|l;, 1 <j < m, then
yielded the desired bound (1). In the case of w,(a; x,), since x; < x, < y, for all
rectangles in question, it suffices to partition the coordinate space [T} [0, 1] into
small rectangles with each side having length of order min, _,_,,,a(i). From
this observation it is likely to obtain a bound for w,(a; x,) similar to (1), but with
[min, _; _;,,a(i)]"**9 replaced by the smaller factor [min, _;_,,4a(i)]"% As
remarked after Theorem 1.7 in Stute (1984a), the bound (1) may be improved if
some further information on H is available, e.g., if H has a bounded Lebesgue
density. In fact, the denominator min, _;_,,,a(i) in the exponential factor
occurs when applying the Bernstein bound by observing that for each I, , with
|y, — x,| < a(i) we have p(I, ;) < const xI1'*a(i). Noting that, by definition,
Y(a; x,) is a general upper bound for p(1, ,) we thus obtain:

LEMMA 5. Suppose that H has uniform marginals. Then there exist con-
stants C,, C, > 0 (not depending on s, n, a, or H) such that

(2) P(wn(a; xy) > 5) = C1[2 min a(i)] _deXp[_CTSZ/Y(a; xo)],

<i<l+d

provided that 2 < syn and Cyy(a; x,) = s/ Vn, C; finite.
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We shall apply Lemma 5 to vectors a = (a(l),..., a(l + d)), where a(1) =
a, — 0 at appropriate rates and min, _; ., 4@(i) = § > 0 is small but fixed.

LEMMA 6. {B,: n > 1)} is uniformly C-tight.

Proor. Write
B.(y1xo) = \Jna, [m,(ylx,) — mi(ylxo)] + Jna, [mi(ylxe) — ma(ylxo)]
= nl(yle) + ,3,,2(y|x0),

where

F,(xy) — F(x)

m(ylxo) = a;' [ 1[o,y](u>1<( )H(dx, du).

We show that both 8,, and B,,, n > 1, are uniformly C-tight. As to 8,;, we have,
upon integrating by parts,

n

m,(ylxo) — mi(ylxo) = ay'[H,(1,y) — HQ1,y)| K

F,(x,) — 1)

n

—a;' [[H,(x,y) - H(x,y)] K,,(dx)
with
F,(x,) = F,(x) )

K,(x) = K( -

Since F(x,) = x, (0 < x, < 1) with probability one, a, » 0 and K has finite
support, the first summand is zero with probability one for all n > ny(w), say,
not depending on y. Similarly, for n > n,(w)

JH,(x,5) = H(x,y)] K ,(dx)

— [[H(x,y) = H(x,y) = H,(x,,¥) + H(xo,)] K ,(dx).

Assume K = 0 outside (—1,1) wlo.g, ie., the last integral remains
unchanged when restricting the domain of integration to those x’s for which
|F(x,) — F(x)| < a,. For given & > 0 the Dvoretzky—Kiefer-Wolfowitz (1956)
bound entails that for some finite (large) C, one has, up to an event of probability
less than or equal to ¢, that

|F(xy) — F(x)| < a, + Csn~ % < Cya,
whenever |F,(x,) — F(x)| < a,. Denoting with | K || the total variation of K we
thus obtain for all large n, neglecting an event of probability < e, that

d

sup |ﬂn1(y1|x0) - Bnl(y2|x0)| < a;1/2”K“ Z wn(C4an, 1, LR} 8: 17 ey 1, xO)'
Iy — y2ll<8 i=1
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To bound the last sum, we may apply Lemma 5 with s = p‘/;,: by observing that
v(Ca,,1,...,8,...,1; x5) = Csa,8, so that the growth conditions are satisfied
for at least all large n. For such an n

P(w,,(C4an, 1,...,8,1,...,1;x9) > pfaj) < €8 %xp| - Cy0%a,/v].

By (A), vy =o(a,/In87') as § - 0 and n — oo. Hence the last exponential
bound can be made arbitrarily small for all 8§ < §, and n > n,, say. This proves
tightness of 8,,.

As to B,,, write

F(x,) — F(x)

n

mﬁ(ﬂxo) = a;lfl[o,y](“)K( )H(dx, du)

;2 [110, (W[ Folx0) = F(x) = F(xo) + F(x,)]

XK,(F<x0> - F(x)

n

)H(dx, du)

+a;° (150, (w)[ Ey(%0) = F(x) = F(xo) + F(x)]*
x K "(A)/2H(dx, du)

= rT’Ln(yle) + IQ(y, n) + I3(y7 n)

with A between a; '[F,(x,) — F(x)] and a, '[F(x,) — F(x)]. Similar to Lemma
1 of Stute (1984b) we get that (na,)/*I( y, n) — 0 in probability uniformly in y.
Thus to prove the lemma it remains to show that

{ na,l(-,n):n> 1} is uniformly C-tight.

With a,(x) = n'/?[F(x) — x],0 < x < 1, we have

ey (3. 1) = a5 iyl [aeo) — a0 K |
= ;% [[m(ylx) - m(ylxo)] [an(x0) - a,,<x>]K'(x" _ x) d
razmiyteo) flen(o) = a1 KA | .

Use the same arguments as in the proof of Lemma 3 in Stute (1984b) to show
that the first summand converges to zero in probability uniformly in y whenever
m(-|x) is equicontinuous in a neighborhood of x,. Finally, for large n,

0 m(y1xo) flan(x) ~ (]|

Xy — X

e

X, — X

- _a;l/Qm(y|x0)fK( )an(dx)-

n
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Since a,'*[K[(x, — x)/a,]a,(dx) has a normal limit distribution and is hence
stochastically bounded, and since m(-|x,) is (uniformly) continuous, this proves
tightness of 8,,. O

5. Concluding remark. It is possible to extend the results of this paper to
multivariate X. We found it useful, however, to separate the univariate from the
general case. In fact, regarding the distribution of X, our processes m,, (resp. m¥)
turned out to be distribution-free. For multivariate X, the transformations
involved lead to processes with underlying uniform marginals, but otherwise
depending on the (joint) distribution of X.
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