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TIME SEQUENTIAL ESTIMATION OF THE EXPONENTIAL
MEAN UNDER RANDOM WITHDRAWALS!
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and Columbia University

In the context of lifetesting, an asymptotically risk-efficient procedure for
the estimation of the exponential mean lifetime is considered when the
survival times of the units are subject to random censorship. The loss function
is the sum of squared error due to estimation, cost of recruitment of the units,
and cost of total time on test. Asymptotic properties of the sequential
estimator and stopping time are described as the per unit-cost of total time on
test decreases to zero.

1. Introduction. In several statistical experiments pertaining to reliability,
life tests, and other longitudinal investigations a sample of units on test are under
continual surveillance until one or the other specified terminal response is
recorded for each unit. Such experiments may entail a considerable expenditure
in costs and time particularly if the per unit cost of recruitment of subjects into
the study and of follow-up time are high. It is then desirable to curtail observa-
tion at an intermediate state, prior to the last response being recorded, and base
analyses on the current accumulated statistical evidence should it seem war-
ranted for the study under consideration.

In this article we address the problem of estimation of the mean exponential
lifetime 6 from a sample of subjects whose survival times are deterred from
complete observation due to random withdrawals or censorship. For each unit,
the censoring variable Y is assumed independent of the survival time X, but is
otherwise unknown, and the investigator only observes the datum (Z, §) where
Z =min(X,Y) and § = 1 or 0 accordingas Z = X or Y. Let Z,,,..., Z,, denote
the order statistic corresponding to the random sample Z,,..., Z, and 8 ;; = 1 if
Z, is uncensored and = 0 otherwise. At the kth response, 1 < k < n, we have
at our disposal the data {(Z),8;): 1 <i <k} on the basis of which an
appropriate estimator 8, , of # can be constructed. The loss incurred up to this
stage is measured by

(1.1) ' Ln,k=a(9n,k—0)2+ bn+cVn,k,
where the total time on test (TTT) or follow-up time expended is

k

i=1

The weights a, b, and c are given positive constants; b may be interpreted as the
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per unit cost of recruitment of units into the study and c the per unit cost of
follow-up time. The risk in estimating 6 by 0 1 is thus

(1.3) R, ,=aE(b, ,— 0)" + bn + cEV, ,,

and quite naturally, we seek to minimize the risk with appropriate choice of %,
for a given sample size n and specified constants a, b, and c¢. With the underlying
censoring distribution left unspecified and the variables {(Z ), 8[;: 1 <i <k}
being neither independent nor identically distributed, we do not have a tractable
expression for the risk (1.3). However, when n is large, (1.3) can be reduced to a
more transparent form from which the optimal choice of £ can be readily
obtained. Since # and the censoring distribution are both unknown it turns out
that no unique choice of 2 minimizes the risk universally and hence we explore
an alternative sequential procedure.

In this paper we describe a time-sequential scheme for the estimation of 6
which under some natural assumptions are asymptotically risk efficient as the per
unit cost ¢ — 0. Furthermore, we derive pertinent asymptotic properties of the
sequential estimator and stopping number of the proposed scheme. Section 2
states the main results of the paper together with the notation and assumptions
to be used in the sequel. The proofs are given in Section 3 followed by several
auxiliary lemmata whose detailed proofs are available in Gardiner, Susarla, and
Van Ryzin (1984), which also contains other relevant references.

A time-sequential procedure analogous to that described in this article has
been considered by Sen (1980) when censorship is absent. In this case the risk
(1.3) takes on a particularly simple form for each n, % and further (1.2) is
expressible as the sum of independent exponential (mean 6) variates. In fact we
may take 0 x =k, , and thus (1.3) reduces to &k~ 'af® + bn + kcf. Sen’s
treatment is remarkably elegant and exploits fully these spemal circumstances. In
the present article, our time-sequential procedure is based on the data
{{(Z), 8:7): 1 <i < k},1 <k <n} which are neither independent nor identi-
cally distributed. Furthermore the presence of random censorship and the nature
of (1.1) leads to several technical complications which require a more subtle
analysis.

2. Main results. Let X be an exponential r.v. with mean 6, § € (0, ), and
let Y have the survival distribution G(-) = P(Y > -). Both # and G are un-
known. Throughout the paper, we assumed that G has a continuous density g on
its support [0, ¥,), ¥ < . Let H = GF with F(-) = P(X > ). In the random
censorship model we observe (Z,8), where Z= X A Y and 6§ =[X < Y]. The
symbol [ A] denotes the indicator of the event A. For a random sample of
n (= 1) units on test we have an underlying sequence of iid r.v.’s {(Z;, §,):
1 < i < n}. However, in view of the nature of our problem, at any intermediate
stage k, we only have the data {(Z),8;)): 1 <i <k} as described in the
introduction. For each &, 1 < k < n, we construct an estimator 8, . of 0 adapted
to B, = o{( (,),8[,]) 1 <i <k} by maximizing its hkehhood over 6. This
leads to a unique maximizer V,, ,/8, ,, provided 8, , = L*_,8 ; is nonzero. So
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for 1 < k < n, define 9n_k of 4 by

Vi if § 0
(2.1) bor=138,, "omk7"
0 otherwise.

The risk incurred in estimation is given by (1.3) which we seek to minimize by
an optimal choice k0 of k € {1,..., n}. If k) (< n) is an optimal selection, the

P

experiment is stopped at the k, th stage and 6 is estimated by 6, ;o of (2.1) with
corresponding minimum risk R, = R, ;.. In the generality considered here, if
the weights a, b, ¢ and sample size n are fixed, no explicit mathematical form in
k for (1.3) is available and therefore we seek a solution to the problem determin-
ing k!, when n is large. Formally, for a given per unit TTT cost ¢ (> 0) we take
n = n(c) observations such that

(2.2) limen?(c) = a* where a* € (0, ).
10

For a justification of (2.2), see Sen (1980). We also assume that
(2.3) b=pc wherep € (0,0).

In the sequel all limits are taken as ¢ | 0. We shall prove that, in this situation, an
optimal choice of kY can be obtained by examining the behavior of (1.3) along
sequences {k,} for which n~ 'k, - A € (0,1]. Then we show that (1.3) has the
expansion

(2.4) R, , = (ab?/b\)k,"' + pen + cbyk, + o(k, '),

where

(2.5) by=A"1 /”"‘“H(x)dx, H'(0)b(0) = —1,
0

and

(2.6) H7'(t) = inf{s > 0:1 - H(s) > t}.

From (2.4) an optimal choice is an integer £} where

(2.7) int(a3/cb?)""* < k* < int(af?/cb?)"” + 1.

Here int(x) denotes the largest integer < x. In view of (2.2), we also have
n~'k) — X\ provided X is a solution of

(2.8) fHAl(MH(x) dx = (a8®/a*)"".
0

The left-hand side of (2.10) is a strictly increasing continuous function in A whose
value at A = 1 is EZ. We can therefore obtain a unique solution in A for (2.10)
with A € (0,1] provided

(2.9) 0 > a* > ab?/(EZ)’.

However A could be small if a* is large. We are therefore led to define the
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optimal choice £ by

(2.10) kO = {k,”; if a* > ao3(EZ)V2,

n  otherwise,

where \ satisfies (2.8). Note that if a* > a§3(EZ) 2 we have A <1 and so,
asymptotically as ¢ |0, k? < n. Unfortunately both k? and RY still remain
unspecified since § and G are unknown. This motivates consideration of a
sequential procedure defined via a random stopping number N, and the associ-
ated estimator 9,,"’ N, (= 6,). This procedure is shown to be asymptotically risk
efficient; that is, its risk R* = E[L,,, ] is such that R*/R%—>1as c— 0.
Observe that V,, , of (1.2) can be expressed

(2.11) V= nfOZ"”Hn(x) dx,’

where nH,(t) = £7_,[Z; > t]. Then in view of (2.1) and (2.8), we define the
stopping number N, by

a
min{k <n-1:8,> (—)Vn k},
N ’ c ’
n if no such k exists.

We can now state the main results of the paper. All limits are taken as ¢ | 0 in the
rest of the paper.

(2.12) N, =

THEOREM 2.1. Under (2.2) (i) N,/k? - 1 a.s. and (ii) E(N,/k)" — 1 for
anyr > 0.

THEOREM 2.2. Under (24) (i) 6, > 0 a.s. and (i) LNVXB, - 60)/6) -
H(0,1), where V,, ., n8. = NSO

THEOREM 2.3. Under (2.4) and (2.5) R*/R% - 1 as ¢ — 0.

3. Representation of risk R, ,. Before we commence the proofs of
the theorems of Section 2, we shall provide here arguments leading to
the risk expansion (2.4) under the restriction to the sequences {&,} such that
k,/n —> A € (0,1]. We then show that for the minimization (of risk R, ,)
problem described in Section 2, the optimal sequence cannot be such that
k,/n — 0. The argument for any other type of sequence {k,} is given right
before (3.16). Throughout, &, € {1,..., n} and the dependence of &, on n is
suppressed for convenience. All the inequalities involving conditional expecta-
tions are taken to hold almost surely. Let ||£||5 = (E[|§|P]) for any p > 1.

In view of (2.3), we write for each &,

(3'1) 9n,k -0= (Vn,k - 08n,k)8n_,lk[8n,k =4 1] - a[sn,k = 0]

Setting U, , =V, , — 08, ,, and kd, , = nfH "PunH(x)dx, (n+ 1)p, , =k,
(3.1) takes the form

(3'2) én,k - 0 = 0(1/dn,k){(Un,k/k) - Wn,k}’
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where

(3.3) v.‘/’rz,ie=(]€71 n,k){kilan,k_a_ldn,k}

x{k8, ;) '[8,,=1]—-8[8, ,=0].

Our goal below is then to obtain the behavior of the second moment of (9,1, )]
via representation (3.2) and the moments of U, ,, 8, ,, and 8, }.

By Lemma 4.1, we have that (U2, — £k, U*? %, ,: 1 <k <n)} is a zero
mean martingale where, for each &,

(3.4) Uky=(n—k+1)(Zg = Zry) = 080y = Vs — 88049
Therefore, :
k

(3.5) E[U;4] = E|ZE[U;:%|%’,,,“]}-

i=1
Using the conditional distribution of Z,, given B, ,_, and (3.4), we obtain that
EWUX%, ;) = 0E(V,*|%, ;_,) which, via (3.5) and Lemma 4.4, implies that
(3.6) rE(U2,) - 9>\*1/”"‘“H(x) dx = 0b,

0

under the assumption 2/n — A € [0, 1], which is assumed until otherwise stated.
Therefore, in view of (2.5), we have from (3.2) and (3.6),

(37) E(, ,—0) = (ab’/b)k" + o(k™")

+0%d, 5 E(W, { W,.x = 267U, 4}) |-
Since V,, , = L*_\V,*,, Lemma 4.4 implies
(3.8) k7'E(V, 4) = by

Thus the expansion (2.4) will hold in view of (2.2), (3.7), and (3.8) provided we
show

(3.9) E(W, {W, ,—2k7'U, ,}) = o(k7").
To obtain this, note that from (3.3) and Holder’s inequality,

(3.10) W, I3 < 1E7'U, 4lIElk™"0, & — 0-'d, s

’X”k_lan,k[sn,k = 1]"(23 + 02P[8n,k = O]'
Therefore, applying Lemmata 4.2, 4.4, and 4.6 we obtain
(3.11) 0<E(W?,)—62P[5, ,=0]=0(k2).

When n~ 'k — A € (0,1], we show P[8, , = 0] = o(n™°) for any a > 0, whence
in this case E(W;? ) = O(k?). Also

(3.12)  E(W, (k7'U, 4)) <IW, sllollk™ Uy 4ll, = O(k=).
Combining (3.10), (3.11), and (3.12) will yield the desired (3.9). Thus we are left
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with proving
(3.13) P[5, ,=0] =0o(n*)

prov1ded n” 'k — X\ € (0,1]. Consider first the case A € (0,1). Since [§, , = 0] =
N 1[3[,J = (0], we obtain that

k
(3.14) P[5, ,=0]={n!/(n- k)'}f{ I;I]F(yi)g(y,)}H"_k(yk),

where the integration is over {(y;,..., ¥,): 0 <y, < --- <y,< 00}. On writing
Y, ..., Y, for the order statistics corresponding to a random sample of size n
from G, (3.14) may be written as

k-1

(3.15) Pl3,, = 0] = {(HF< (”>)F" F(Y)).

For arbitrary £ > 0 consider the expectation in (3.15) separately over the events
[Y,,, < €] and [Y,,, > €]. Then we obtain exponential bounds for the probability
of these two events; for the first one by a judicious choice of ¢ (% /n —G(e) >0
for large n) and Hoeffding’s (1963) inequality, and the second one is bounded by
(F(g))" **1, These two bounds lead to (3.13), and (3.13) holds also for A = 1 since
8, ) is nondecreasing in k.

Observe that when n™ 'k =0, R, ,> (ab?/b)k™"' + o(k™'). However,
= (ab?/EZ + a*p + a*EZ)n"! + o(n" ') and therefore as n — oo, we have

R, . > R, ,. Thus the optimal sequence (%) cannot satisfy n~'k — 0. Also note
that whenever n~'k > A € [0, 1], kR, , > inf{ad/by + a*N(p + Ab))} +
o(1) = C + o(1), with C = af?/sup b,. Now the usual arguments utilizing subse-
quences reveal that for all sequences (k,) we have liminf kR, , > C + o(1). It
now follows that we may restrict attention to sequences for which n~'% - A €
(0,1], in order to obtain the optimal choice %°.

We now turn to the proofs of the theorems of Section 2. Recall the definition
of the stopping number N, of (2.14). We also define 7, by

. = {min{k <n-1:8 > (a/c)n"7},
¢ n if no such k exists.

R

" n

(3.16)
Here y > 0 is a constant to be selected later. We prove

LEMMA 3.1. As c|0, almost surely, 7,<n and 7,>k,. where k, =
int[(a/c)"/3n""?].

PrOOF. Note that n™'%k,. < (a/cn?)"/3n~1*7/3 and so from (2.4) as ¢ | 0 we
have k,. < n. Also, the inequality 7. > k,, is immediate once we established
7. < n as. as ¢ 0. To this end observe that from (3.16), [7.= n] c [n", , <
(a/c)/*n""* + n~']. Hence since E(n™'8, ,) = 0 'EZ and n(c) ~ ¢ '/?, we
obtain that for any sequence (c,)|0 and n large enough P[7, =n]<
P[{n"'8, ,— 0" 'EZ} < —(20) 'EZ]. The result now follows from Hoeffding’s
(1963) inequality and the Borel-Cantelli lemma.
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The salient properties of the stopping number NC are summarized in the
following lemma. For 0 < & < 1, write k,, = int(k%(1 — ¢)) and k,, = int(k(1 +
e)), where k! was defined in (2.10). Notice that with ¢ sufficiently small,
k. < ky, < kg, In the sequel all limits are as c | 0, unless otherwise stated.

LEMMA 3.2. As c |0, almost surely (i) N. > 7, and (ii) N, < n if a*(EZ)? >
ab®.

Furthermore, forp > 2, (iii) P[N, > k,;.] = O(c?’*), and (iv) P[N, < k,_.] =
O( cp(l - 2y)/12).

Proor. (i) Observe that in view of Lemma 3.1,

N, -
(3'17) []V( < Tc] = [N(_ < kl('] U [N(_ 2 klc] n [83,k < (a/c)n_”] *
k=k,,

Now [N, <k, ]=1[8},>(a/c)V, ,, for some ke (1,...,k.—1}]C[Z,, <
n "7, Similarly the second event on the r.h.s. of (38.17) is contained
in [Z, <n Y] Since the series L{P[X <n "*"]+ P[Y < n ("™]}
is convergent, it now follows from the above set of inequalities and Theorem
4.3.3 of Galambos (1978) that for any sequence (c,,) with ¢, |0 as m — oo,
X, P[N, <7, ] < co.This gives (1) of the lemma.

(i) By deﬁmtlon [N,=n]=1[8,,<(a/c)V, ,_ 1] In view of Lemma 4.4,
(n-=1)7'%V,, > EZ as. and (n-1)7'5, ,_ .= 07'EZ as. Hence from
(2.4) and our hypothes1s [N, =n] - [a* < a8®/EZ*] = 0 as. which entails
N.<n as.

To establish (iii) note that P[N,> k3.]= P[V, , > (c/a)s? kh(S,(f,k“ —
(a/c)8)]. Write K for a generic constant not dependmg on c. From Lemma 4.4,
k3!, p, = 0 'by14, as. and further since af® = (Ab))’a* we can take
{(k,(‘Sn ky )2 — (a/c)0k3?} > K (> 0) by taking c sufficiently small. Hence we
obtain, for small ¢, P[N, > k] < K-Pk;7E|U, k[P = O(cP’*), by Lemma 4.2,
provided p > 2, completing the proof of (iii). ‘

(iv) We first observe that from definition n~'k,, > A(1 — ¢) where A < 1 or
A =1 according as a* > af3/(EZ)? or a* < a#®/(EZ)%. For either case the
proof of (iii) is the same. Observe that

[N.<k,.]= [83 > (a/c)V, ,,forsome k € {7,,..., ky.}]
C [Un’k < (c/a) n’k(b‘n’km - (a/c)0),f0rs0me ke {r,..., kzc}]~

Therefore we have
kye

U {Unx < (c/@)8, 4824, — (a/c)8 )}]

k=1,

In view of Lemma 4.4, and the fact that (Ab,)? = (af?/a*), we may take
{(k3!8, 1,)" — (a/c)bk;?} < —K, with K > 0 for sufficiently small c. Thus in
(3.18) we obtain for small ¢

(3.19) P[N,<k,] < P[ max |U, ,| = Kk&%.—v)/ii]'

(3.18) P[N,.<ky,]<P

<hk<ky,
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Applying the maximal inequality to the martingale {U, ,} and Lemma 4.2 yields
(3.20)  P[N, < ky.] < K(kyo)™" (kyo)™”? = O(cP=20/12),
completing the proof of (iv).

ProoF oF THEOREM 2.1. In view of (iii) and (iv) of Lemma 3.2, we have
immediately () 'N, — 1 as., by selecting y < } a priori and p (> 2) large
enough.

Furthermore (kR%)"!N, = (n 'N)(n 'k%)"' < (n"R?)"! as. as c¢l0,
n 'k,.— A > 0. Thus (k?)"'N, is a.s. bounded for sufficiently small c. It then
follows from the dominated convergence theorem that E(k’) "N/ — 1 for any
r> 0.

PROOF OF THEOREM 2.2. (i) In view of Lemma 4.4 we have that £~'V, , — b,
a.s. whenever n~ 'k - A € (0,1]. Therefore from (2.10) and part (i) of Theorem
2.1 the result obtains.

(ii) Notice that 62 — 0%/b, a.s. We first show

(3.21) L[(k2)"*(8, 0 - 8)] — N(0,6%/5,).

If a* < a@*(EZ) 2, then k2 = n and |W,_ || = O(n~?). Then (3.21) follows from
(3.2) and an apphcatlon of the ordinary central limit theorem. If a* > af YEZ)™?
then n 'k? > A € (0,1) with A satisfying (2.8). Now (3.21) obtains once we
establish

(3.22) 2[(k2) U, ] = #(0,00,).
To this end we apply the martingale central limit theorem of MacLeish (1974,

Corollary 3.8). From Lemma 4.6 and the arguments preceding (3.6) we get

k()
(3.23) (k°)™ ZE(U*Q ..i-1) = 0b, in probability.

Furthermore, for each ¢ > 0 and n > 0, E(U*?[|U*,| > &(k2)"/*]) is bounded
by (e2k2)""/ 2E(|U*|**") and, from the proof of Lemma 4.2 we have that for
p>1 (kY 'Lk L E(UX/P) is bounded in c. It now follows that
(R~ 'Zk” E(U*2[|U*| > e(k2)1/2]) - 0 and so together with (3. 23) we get
(3.22). Finally Theorem 2.2 will be established once we prove E (0,, N, ko)
o(c'/?) which follows from (3.25) and (3.26) below.

Proor or THEOREM 2.3. The proof of the theorem follows along lines
analogous to those of Theorem 1 of Gardiner and Susarla (1984) and therefore
only an outline of the details is provided here. Notice that

R*/R’-1=a c*‘/Q{E(f)n N~ 9) E(b, 4 - 0)2>
(3.24) +a,c'/2{EVn,N(_ - EVn,k:P}
=A,+ A, (say),
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where a,, a, are constants independent of c. Since E(4, o — 0)? = (ab?)%'? +
o(c'/?) and utilizing the Holder inequality we can estabhsh A, =0(1) in (3.24)
once we show

(3.25) E{(b, 5, = B 10) Thoe < N, < Ry T} = o(?),
(3.26) E{(8, n, = )TN, < ky. 0r N, > ky, 1} = o(c'/?),

and a corresponding statement of (3.26) with b, , v, Teplaced by ., k0. To establish
(3.26) consider first E{( — 0)’[N, < kQC]} (The proof of the remaining part
of (3.26) is entirely analogous) From (3.2),

(3.27) E{(ﬁn,M - 0)’[N. < k%]} < E{(NL.“U,I:N()2[NC < kzc]}

+E(W/'12y N(»[NC = k20])7

where here and in the sequel, we have suppressed constants not depending
on c. Now the first term on the rhs. of (3.27) is bounded by
EVP(max, _jop(k7'U, )Y’P(P[N, <ky.])"/?with p~' + ¢~' = 1. On apply-
ing the maximal inequality, Lemmata 3.2 and 4.2 we find that the term is of
order O(c?"*1V/%) where h = 1{(s/4q) — 1 — ((s/2q) + 1)y} and s > 2. Taking
y < ; and (s/q) appropriately we have A > 0. This yields

(3.28) E((N; U, 5 ) [N, < ko 1) = o(72).

For the second term in (3.27), use Lemma 3.2 and the definition 7, to drop the
term [§, , = 0] in W, , of (3.3). Then using the fact that W, .||, = o(k™ ") for
p = 1, the Holder inequality and Lemma 3.2 we obtain E{W2 [N <k, ]} =
O(c'” 2) whence in view of (3.28) the proof of (3.26) may be terminated.

To show (3.25) we again use (3.2) and consider the two parts involving U, ,
and W, , separately. Then bound E({N U, N — (R)T'U, oy’ [ky. < N. <
kD by E(maxkzl_<ksk:((k U, » — (k)7 ko))2 Notice that for 20 < k& < k.

(k_lUn,k - (k?)ilUn,k?) < 2(k3)7 (Un,k - Un,k?)2
(3.29)

22((h0) 7 - k) U2

For the first term in (3.29) use the maximal inequality of the martingale
(U 5 = Uy, p0): k2 < k < Ry} and for the second term use Lemma 4.2. Then
since ¢ can be arbltranly chosen and (k?)™2 ~ ¢ we get

2
(3.30) E( max (k_lUn b= (k?)_lUn ku)) = o(c'/?).
kK <k<hy, ’ e
For the term involving W, , in (3.25) follow the same argument using the fact
that E (W, #) = O(k~?). Then together with (3.30) this establishes (3.25). We are
left with the term A, in (3.24). Once again consider separately the expectation
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E(V, n — V, ) restricted to each of the events [N, < ko ), [N.> k; ], and
[k,. < N. < k). For the first term use Lemma 3.2 with y < } to show that it is
of order O(c!!~2Y/12) and likewise the second term is of order o(c'/?). Finally for
the last term we have a bound & O(c~/2). This establishes A; = o(1) and so from
(3.24) the theorem is proven.

4. Auxiliary lemmata. We present here the proofs of several auxiliary
results utilized in the proofs of Section 3 some of which are of interest in
themselves. In particular, Lemma 4.1 gives a general martingale result and
Lemma 4.3 gives a moment bound on a useful functional of centered empiricals. If
¢,...,&, are n uniform (0,1) r.v’s, nl,(¢) = E/_ [£; < t] will denote its em-
pirical d.f. Also if I is the identity function on (0,1) and g(t) = {#(1 — )}/,
r> 2, te(0,1), we write p (I, I) = sup{|L},(¢) — ¢|/q(¢): 0<t<l}.cycy,...
are constants independent of n and of any & in {(1,..., n}.

LEMMA 4.1. For any n>1, {U, 4, ®,,: 1<k<n} is a zero-mean
martingale.

LEMMA 4.2. Foranyp > 2 and n, ||Un;k||p < c,kV2

PrOOF. By the theorem of Dharmadhikari, Fabian, and Jogdeo (1968) and
Lemma 4.1, ||U, ,ll, < C XX ,Ux))' /|, for p > 1 with ¢, depending only on p.
Now an application of Holder’s inequality followed by c,-inequality obtains that
the right-hand side of the above inequality is O(k?/?) provided that
E[k'TL\V,*P)] < M < oo with M independent of % and n. But this follows
since

n—i+1

(4.1) E[VB, ] =p[ x» {H(Z+x(n—i+ )7")/H(Z)}" ",

where Z;_,, has been abbreviated to Z and since the integrand can be dominated
by the integrable function x”~'exp(—x/8).

LEMMA 4.3. For eachp > 0, |p(T,, I)||, = O(n~'/?), providedr > 2V p.

ProoF. We obtain the result by showing that
A= n”/2E[{sup{|Fn(t) —tl/q(t):0<t< i}}p] = 0(1).

To get this result, we take § = ; and ¢ as defined earlier in Theorem 1 of
Wellner (1977b). Then with Y; as in Wellner’s result, we have E[|Y,|’] < o0
for p <r. Now let p > 2 until otherwise stated. Now Wellner’s theorem
obtains that A < c,E[|T,|?] where nT, = XY, with Y, = ¢ '(£,)(0 < ¢, < 3] -
&/ - x)q, ,2(x)) dx. Hence an application of Burkholder’s inequality fol-
lowed by Jensen’s inequality (need p > 2 here) to E[|T,|?] shows that A <
¢, E[|Y,|P] < oo, completing the proof for p > 2. For p <2, A<1+
P/ AP~ 'P[sup{Vn T (t) — t|/q(t): 0 < ¢t < 1} > A]dX and again by Wellner’s
theorem, the last integral is at most c,( /AP~ 3 dA\)E[Y?] < oo, completing the
proof of the lemma.
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LEMMA 4.4. For anyp >0, |[k7'V, , —d, 4ll,= O(k™'* and ||k, , —
0 Vldn,k” = O(k71/2)'

ProoF. Since the second result follows from the first result and Lemma 4.2,
we prove the first result only. From (2.11), we have

- n % n Ziky H Y(p, 1)
RV, ,—d =(—) “(H, - H +—( Wp — ""'«h)
n, k n, k k ‘/(; ( n ) k '/(’) j(.)
=TI+ 1II (say).

Define the function % on [0,1] by k(-) = [ '“YH(x) dx. By our assumptions, %
is differentiable on [0, 1) with k() < 6. So by the mean value theorem,

/ZUUH _ /H'l(p,,',‘,)H
0 0

where £, is the kth order statistic corresponding to a random sample size
n from the uniform distribution on (0,1). By Lemma 2 of Wellner (1977a),
€4y = Pu. &ll , = O(k*/?/n), whence in view of (4.3) we have II = O(k~1%). To
handle I of (4.2) note that with g as in Lemma 4.3, we have

[, — 1| < o (T ) [*“a(H).
0 0

Since [ q(H) < o0, Lemma 4.3 and (4.4) yield that I = O(k '/?) provided
A =liminf £/n > 0. If A =0, there exists a subsequence {n}, such that
k,/n;— 0, along which we show I = O(k~'/?). It then follows from the usual
subsequence arguments and the first part of our proof, that this same order for I
obtains for all sequences {k,}. Thus in the sequel to show I = O(k~'/?) we
assume n~ 'k — 0. Note that

[, = )| < 01 Dty > $( [t + o7, D [0,

where p*(T,, I) = sup{|T(¢t) — ¢|/(1 — t): 0 <t < ;) and p, as in Lemma 4.3.
For the first term in (4.5), apply Lemma 4.3 together with the fact the P[£,, > }]
has an exponential rate of convergence to zero. This yields

(4.6) log(Tas D[k > 311, = O(n ).

For the second term in (4.5) on noting that {(1 — ¢) " (T,,(¢) —¢):0 <t < j;}isa
martingale yields ||p*(T,, I)|l, = O(n~'/2). Treat [{ H by triangulation using
(4.3) and the fact that (n/k)[H "*/™H - (h(0))~'. We will get | [/~ H]||, =
O(k/n) and so in view of (4.5) and (4.6) the proof may be terminated.

(4.2)

p < 0|, _‘Pn,k“,,,

(4.3)

(4.4)

(4.5)

LEMMA 4.5. Forp > 0, ||k8, }[8, , = 1], = O1).
Proor. Write
k

E[(k8,,) 18, =11 = ¥ (&°Y) "P[8, , =]
(4.7) J=1

Y o+ Y + )Y =I+1I,

J<€k J<ek J>ek
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where ¢ (> 0) will be selected later on. Whenever n~ 'k — A we have d,, , — b,
with b, defined in (2.5). Therefore, by the usual subsequence arguments we have
liminfd, , > A(> 0) where A = inf{d,: A € [0,1]}. Now choose ¢, a priori such
that fe < A. Then for the sufficiently large n, P[§, , < ek] < P[|k™'8, , —
6°'d, ,| > d] for a d > 0. The lemma now follows from (4.7) and Lemma 4.4
upon observing that I < kPP[8, , < ek] < k"PO(k”) and II <& ”.

LEMMA 4.6. If k/n - A €(0,1), then forp > 0

k o
kY E(VERB, )~ Do+ 1) [ (Hx) /() () d.

=1

Proor. Follows from arguments similar to those in Lemma 4.1 of Gardiner
(1982) on first showing that

sup |E(V;:'i’|@n,i—1) - F(P + 1){H(Z(i71))/h(Z(i~1))}p| L, 0.

I<i<k
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