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STATISTICAL ESTIMATION OF THE PARAMETERS OF A
MOVING SOURCE FROM ARRAY DATA'

By SHEAN-TSoNG CHIU

Rice University

This paper is concerned with the problem of estimating the variable time
delays of a signal arriving at an array of sensors. A procedure to estimate the
parameters of a linear time delay model is proposed. The procedure compares
the Fourier transforms at different frequencies (thereby taking the Doppler
effect into consideration). Under regularity conditions, the estimate obtained
is shown to be consistent and asymptotically normal. Simulations were
carried out and the results were found to agree well*with the theoretical
results. The procedure was applied to the records of the Imperial Valley
earthquake of October 15, 1979, as recorded by the El Centro differential
array.

1. Introduction. The situation we are interested in is that of a signal
emitted by a moving source, such as the leading point of an earthquake rupture,
as received by an array of sensors. The particular data we are working with come
from sensors located near the source of a major earthquake with a lengthy source
rupture. Ground motion obtained by such sensors is referred to as strong motion
records.

Strong-motion seismology is a relatively new discipline. It is however an active
one because of its importance in understanding the source properties, the wave
properties in near field, and the effect of strong-motion on engineering structures
[see, for example, Bolt (1981)].

Most earthquakes appear to be caused by faulting. The associated theory, the
elastic-rebound theory, of earthquakes was first outlined by Reid (1910) in his
study of the great San Francisco earthquake of 1906. According to the elastic-
rebound theory [see Boore (1977)], rocks are elastic, and mechanical energy can
be stored in them as in a compressed spring. When the two blocks forming the
opposite sides of the fault move by a small amount, the motion elastically strains
the rocks near the fault. When the stress becomes larger than the frictional
strength of the fault, the frictional bond fails at its weakest point. (The point of
initial rupture is called the hypocenter or focus.) From the hypocenter, the
rupture rapidly propagates along the surface of the fault, causing the rocks on
opposite sides of the fault to slip past each other. A portion of the elastic strain
the rocks had stored before the rupture is suddenly released. The rocks along the
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560 S.-T. CHIU

fault rebound to an equilibrium position in a matter of seconds. The elastic
energy stored in the rocks is released as heat (generated by friction) and as
seismic waves. The seismic waves are radiated by a moving source, so the waves
may be expected to show Doppler-like effects.

The faults of natural earthquakes appear to rupture in quite complex ways,
and a reasonable representation might be an erratic motion superimposed on a
generally smooth slip [Aki (1967)]. The ground motion produced by this kind of
rupture will tend to look like a stochastic process.

Available information for studying source rupture processes including records
from seismometers, located either close to or far away from the source. In this
paper, we study the records from an array of sensors which are close to an
earthquake source. In general, the model of interest can be described as

(1.1) X,(t) = S)(h(t,r,)) + e(t,r;).

Here X,(t) is the observation recorded by the sensor located at r,, S,(¢) is the
signal emitted by the source, and A(t,r,) is the time the signal which arrives at
time ¢ at location r; was emitted by the source. Thus, each sensor receives the
common signal, but with different time shift, together with the noise, ¢(¢,r,), on
that station.

In the following, we consider the case of two stations. We have the model

X,\(t) = S(t) + &(t),

(1.2) X,(¢) = S(h(t)) + ey(2).

2. Estimation of the time delay for a fixed source. When the source is
fixed, the time delay between the stations is constant and the model can be
simplified to

Xl(t) = S(t) + el(t)x
Xy(t) = S(t + 7)) + &y(2).

In this case the Fourier transforms of the signals have the relationship,

(2.1)

(2.2) d’(7,, A) = dT(X)exp(ity)),
where

: T-1
(2.3) dT(A) = Y S(t)exp(—iAt)

, t=0

is the Fourier transform of the signal S(¢) at frequency A, and

T—1
(2.4) dT(r,N) = Y S(t+ r)exp(—iAt)

t=0
is the Fourier transform of the delayed signal, S(¢ + r). With similar definitions
for d'fl(}\) and d’f)(}\), the Fourier transforms of the observed series have the
approximate relation

(2.5) d’(A) = d% (M)exp(id,) + di(X) — d(X)exp(iAr).
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This suggests estimating 7, by that 7 which maximizes the criterion

(2.6) Qr(r) = ¥ ¥(e)d%(w)dk(~w,)exp(—irw,).
|s|<T/2
Here w, = 27s/T, s =0, £1,..., are the Fourier frequencies. Since the spectra

of the signal and of the noise are usually not constant, the function ¢ was
introduced to put different weights on different frequencies. Hannan (1975)
proved that, under regularity conditions, such an estimate is strongly consistent
and asymptotically normal. Thomson (1982) extended the results to vector
observations. The case of dispersive waves (different frequency components
traveling at different speeds) was studied in Hannan (1975). We remark that the
problem of estimating the constant time delay has also been considered exten-
sively in the study of passive sonar signal processing [see Carter (1981) and
references therein).

3. Estimation of the linear time delay parameters. When the source is
moving, the time delays between sensors are time dependent. Due to the
complexity, little research concerning a ‘moving source has been done. The
problem was considered in Knapp and Carter (1977) and in Schultheiss and
Weinstein (1979).

It was shown in Chiu (1984) that, for some pertinent cases, the time delay can
be well approximated by a linear function. In these cases we have the approxi-
mate model

Xl(t) = S(t) + fl(t)’
X,(t) = S(ay + Byt) + &x(t),

and the problem of estimating the variable time delay is simplified to the
problem of estimating the parameters «, and B,. In practice, B, is quite close to 1
and it seems reasonable to write B, ' = 1 + ¢,/T. Then we have

(3.2) d’_{.‘((a(,, By)s A) = dT( A/By)exp(ia ),

where d’((a, B), ) is the Fourier transform of the shifted signal, S(a + ft).
Therefore, the Fourier transform of the second series can be written as

d?(._,(k) = d’.f((a(), Bo)> >\) + dfﬁ\)
= d’g(l( A/By)exp(ile,) — d:‘l( A/By)exp(ire,) + di_,( A).
This suggests consideration of the estimate (&, [?) which maximizes the criterion

(3.4) Qr(a,B) = ¥ ¥(w)d%(w)d%(~w,/B)exp(—ila).

ls|<T/2

(3.1)

(3.3)

In the following, we only discuss the case of stochastic signals. Similar results
for a deterministic signal can be found in Chiu (1984). In the next section we will
state the assumptions under which the estimate is strongly consistent and
asymptotically normal.



562 S.-T.CHIU

4. Assumptions and results. We first describe the model of interest in
Assumption 1.

AssUMPTION 1. Let S(¢), —oo < ¢ < o0, be a real valued stationary process.
Let the observations X (¢), X,(¢) have the structure

X,(t) = S(¢) + (1),
X,(t) = S(ay + Byt) + &y(2).

Further suppose that ¢t = 0,...,T — 1 and B; ' = 1 + ¢,/T. Also assume that «,
and c, are contained in the interiors of compact sets A and C, respectively, in R.

(4.1)

The requirement that («,, co) is contained in the interior of a compact set
seems not to be a strict one, for in usual physical situations it is clearly possible
to limit the extent of the delay. We next assume the series, ¢,(¢), €,(¢), and S(t)
to be statistically independent Gaussian processes and to satisfy mixing condi-
tions.

ASSUMPTION 2. S(¢), &(t), and ey(t) are stationary independent Gaussian
processes with mean zero. Also suppose 2(1 + |u|)|c(u)| < oo, where c(u), i =
1,2, are the autocovariance functions of ¢;(¢), i = 1,2.

Under this assumption, the noises ¢,(¢), i = 1,2, have power spectra f, (A),
i = 1,2, respectively. In practice, the sampling interval usually has been chosen
so that the signal has very little spectral mass beyond #. Therefore, it seems
reasonable to assume that the signal has no spectral mass above frequency 7.

AssuMPTION 3. Let c(u) = E[S(¢t)S(t + u)], —o0 < t,u < o0, the autoco-
variance function of S(¢), satisfy

=]
(4.2) Y (L+o) sup fe(u)|< o,
= — o0 t<u<v+l1
and f(A) = 0 for |A| > 7, where f(A), —o0 <A < 0, is the power spectrum of
S(t).

Because the signal in practice often has significant magnitude only in some
frequency intervals, we would like the weighting function to satisfy the following
conditions.

AsSUMPTION 4. Y(A) = I(A)$(A), where ¢(A) is a nonnegative continuous
function of A with period 27, Iy(A) is here the indicator function of a set
Q c (—m, m), Q is a finite collection of intervals, and Y(A) is symmetric about 0.
Further suppose [Y(A)f(A)dA > 0.

The condition, [y(A)f(A)dA > 0, requires the intervals, {2, to contain some
frequency intervals in which the signal has spectral mass (otherwise, we will not
be able to estimate the parameters).
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Under Assumptions 1-4, the estimate obtained by maximizing the criterion
function @,(6) of (3.4) is strongly consistent and asymptotically normal. We
state the theorems here and postpone the proofs to the last section.

THEOREM 1. Suppose Assumptions 1-4 hold. Let 97.= (&p, ) be a se-
quence of estimates which maximizes Qr(0) of (3.4). Then 6, converges to
6, = (a,, c,) almost surelyas T = oo. Here 7' =1+ ¢/T, 0 = (a, c).

THEOREM 2. Under the conditions of Theorem 1, let 97‘ = (&r, &p) be a
sequence of estimates which maximizes Q(0). Then T'/*(&; — ay, & — ¢,) is
asymptotically normal with mean zero and covariance matrix

4 6
(4.3) a(6 12).
Here a equals
2mf T NN £ (A + £ (M)] + £ (M) FN)] X
(7.2 () (A) dA)”

From the covariance matrix, we saw that the correlation coefficient between &
and ¢ is quite high (0.866). This was confirmed in the simulation study. It should
be noted that Figure 2 is the plot of & and B. Since B~' =1+ ¢&/T, as we
assigned before, Figure 2 shows a negative correlation between & and B.

(4.4)

5. Estimation of the spectra and selection of the weighting function.
From Theorem 2 we see that the asymptotic covariance matrix of the estimate
depends on the spectra of the signal and the noises. In practice, however, these
spectra are unknown and we need to estimate them. After getting the spectrum
estimates we can estimate the covariance matrix by substituting the estimated
spectra for the true ones. We discuss a method of estimating the spectra in this
section.

We note that

d% (M)d% (=A/B,)exp(—iagA)
.= d7(8,, \)d"(8,, —\) + d%(8,, \)dT(—A/B,)exp( —ia,))
+dT(N)dT(— /By )exp( —iay\)
+dT(N)dT(—A/By)exp(—iay\).

On the right-hand side the expected value of the first term is equal to 27Tf ()
and the expected values of the second, third, and fourth terms are zero. So

(5.2) dT)‘(z(A)dT)},( —A/By)exp(—ia))

has expected value approximately equal to 27Tf(A). These values are asymptot-
ically independent at different Fourier frequencies, w, = 27s/T. This suggests
estimating f,(A,), the spectrum of the signal at frequency A,, by averaging the

(5.1)
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d’ (w,)d% (—w,/By)exp(—iayw,) at the Fourier frequencies near A,. Though we
do not know the true value of 6,, we expect that replacing 6, with 6, the estimate
of 6,, will give us a useful estimate of the signal’s spectrum. We establish the
following result.

THEOREM 3. Under Assumptions 1-4, let 07 — 6, and M — oo, M/T — 0,
then limTHocElfs(}\()) - fs(}\())l2 = 07 LUhere

1 1
27 M,T

Y di(e,)d% (- w,/Br)exp(—iarw,)

W, € IM1-

(5.3)  fi(Ay)

Cand I m, 18 the set containing My Fourier frequencies which are closest to \,.
[Here B7' =1+ ¢g/T and 01 = (ag, c7).]

Having an estimate of the signal spectrum, we may proceed to estimate f, (A ),
the spectrum of the noise ¢,(¢), by max(0, fAXl(}\O) - f;(AO)), where fAXI(}\(,) is an
estimate of fy(Ay) = f(Ao) + f.(A,), the spectrum of X(¢). f, A,), the spectrum
of the noise &,(t), can be estimated in a similar way.

We have applied a weighting function in computing the criterion function
Q,(0) of (3.4). We should now discuss a method for selecting a pertinent
weighting function. Some specific weighting functions have been suggested.
Knapp and Carter (1977) have reviewed some of these weighting functions. The
optimal choice of ¢(A) is

f2(N)
F) o (A) + F(M)F(A) + (M) f(A)

This was obtained by using a quasi-maximum likelihood procedure [see Hannan
and Robinson (1973)]. This weighting function minimizes the value of a of (4.3)
in Theorem 2 among all weighting functions. In practice, however, the spectra of
the signal and the noises are unknown. This may cause problems when one
substitutes the estimated values for the true ones, since when the signal to noise
ratio is low the spectrum estimate of the signal tends to be bigger than the true
value. This gives too much weight to that frequency. Hannan and Thomson
(1981) assumed a finite parameter linear model, and then estimated the spectrum
of the linear model.

Since the spectrum of the signal often has significant magnitude only in some
frequency intervals, we would want the summation of (3.4) to extend only over
these intervals. This suggests an alternative approach, namely, to discard the
information at frequencies where the signal to noise ratio is low. So we select
Q = A U(—A), where A is a finite collection of intervals in (0, 7), and use a
weighting function which can be written as ¢(A) = ¢(A)Ig(A). ¢(A) is an even,
positive, and continuous function over (—m,7), and I4(A) is the indicator
function of .

Intuitively, we would like to select these intervals which have high power from
the signal and low power from the noise. Under our model it is equivalent to

(5.4) ¥(A) =
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choosing the intervals which have high coherence. Thus, we can use coherence to
select the intervals. Brillinger (1975) discussed estimating coherence from the
periodogram and gave the asymptotic distribution of the coherence estimate. We
should note that this theory is for stationary series, and the model we discuss
does not satisfy this condition. However since S, is quite close to 1 we might still
get a reasonable estimate of the coherence.

After getting the estimate of the coherence, we can calculate, for example, the
90% quantile of the null distribution of the estimate under the hypothesis that
the coherence is zero. We shall choose those intervals inside which the coherence
estimate is higher than that quantile. Having chosen the intervals, we select a
weighting function, for example, by the quasi-maximum likelihood method. Then
we compute the criterion function @,(8) and estimate 8, = («,, c,) by 6=(a @)
which maximizes @(8). .

Now, we reestimate the coherence. This time we substitute d’ (—w,/8,) for
d?ﬂ( w,) in the estimation procedure, as before ,l?l_ ! =1+ ¢,/T. This should give
us an improved estimate of the coherence. We then use these estimates to choose
intervals and the weighting function to get the final estimate of the time delay
parameters. :

In practice some other considerations may affect the choice of the weighting
function. The sensors may receive several signals at the same time, and different
signals might have different frequency contents. For this case if the signal we are
interested in has low power in some frequency intervals, then we should not
choose those intervals even when they have high coherence. We also note that the
estimated coherence tends to be bigger than the true value when both spectra of
the observation series have small power. Therefore, we should be careful in
employing the intervals which have small signal power.

6. Simulation results and application to seismic data. In this section we
present simulation results to evaluate the performance of the estimation proce-
dure discussed in the previous sections. The signal used in the simulations is a
band-limited stationary process. The frequency content is limited in the interval
(607 /512,1207 /512). The signal is

2000

(6.1) ‘ S(t) = %6 g (zl(j)cos(}\j) + zQ(j)sin(}\j)),

where z,(J), z,(J) are independent Gaussian random variables with means zero
and variances 1, and

607 607
(6.2) A=

+ .
512 512 - 2000

We first generate the signals, S(¢) and S(a, + Byt), of length 512 with
a, = 0.25, 8, = 1.02. We then form the observed series by adding noise to the
signals, that is,

X,(t) = S(¢) + ei(2),

(6.3) X,(t) = S(0.25 + 1.02¢) + £,(¢).
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Fic. 1. Sample series of the simulation.

The noises are independent Gaussian white series with mean zero and variance 1.
Figure 1 is the plot of a pair of sample series. We show only the first 200 points of
each series.

The criterion function used in the simulations is

(6.4) Qr(0) =Re Y. % (o,)d% (—w,/B)exp(—iaw,),

s=29

where w, = 27s/T and 6 = (a, B). Figure 2 is the plot of the estimates which
maximize Q,(8) above. Figures 3 and 4 are the normal probability plots of the
estimates. The result of 75 simulations is summarized in Table 1.

The estimation procedure was applied in analyzing the accelerograms from the
El Centro differential array in Imperial Valley. The data are records from the
October 15, 1979, Imperial Valley earthquake. This earthquake has been studied
extensively. The information about the array can be found in Bycroft (1982).

We analyze the records of stations 1 and 4, which are 420 feet apart. Station 4
is on the north of station 1. We take 512 time points (5.12 seconds), beginning at
23:17:05.15, from each of the north-south components of stations 1 and 4.

In order to examine the frequency content of the signal and choose a proper
weighting function, ¢(A), we first estimate the power spectra and the cross-spec-
trum. We estimate the spectra and the cross-spectrum by smoothing the periodo-
grams at the Fourier frequencies w, = 27s/T, that is, we smooth the functions

Iy(w,) = (w )d% ( w,)/2xT,
(6.5) Ipy(w,) = X2 W )d ( w,)/2nT,

I(@,) = d(w,)d%(~a,)/20T,
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1 1 1 ] 1 1

.016 1.017 1.018 1.018 1.020 {.021 1.022 1.023
B

--0.5

F1c. 2. Estimates of the 75 simulations.

Here d’ (A),d% () are the Fourier transforms of the data. From the estimated
spectra, we see that most of the frequency content lies below 0.1 (10 Hz) for both
series. Figure 5 is the plot of the estimated coherence. It suggests that the
frequency contents below 0.07 (7 Hz) of these two series are highly correlated.
The criterion function we used in deriving the estimates is the real part of

31
(6.6) Y d% (w,)d% (—w,/B)exp(—iwa).

§=3

The maximum of Q,(#) is located at (—0.10,1.0163). Now we reestimate the

w
e L
w
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(o]
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o
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N i 1 1 1 I}
?
-3 -2 -1 0 1 2 3

Standard Deviation

F1G. 3.  Normal probability plot of the 75 estimates of a, = 0.25 from the simulations.
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-3

Standard Deviation

Normal probability plot of the 75 estimates of B, = 1.02 from the simulations.

TABLE 1
Simulation Results

Theoretical Sample
Mean (&) 0.25 0.349
S.D. (&) 0.352 0.377
Mean (B) 1.02 1.0197
S.D.(B) 0.00119 0.00123
Corr. (&,B) —0.866 —0.838

Ll 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5
A 2m Frequency in cycles per 1/100 sec
Fi16. 5. Estimated coherence of X, (1) with X,(t).
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Coherence

0.0 0.1 0.2 0.3 0.4 0.5

A 2% Frequenay in eveles per 1/100 sec

F1c. 6.  Modified coherence of X, (t) with X,(1).

cross-spectrum, this time smoothing the modified periodograms
(6.7) I(,) = d% (©,)d% (- ,/1.0163) /27T.

As before w, = 27s/T and T = 512.

Figure 6 is the plot of the modified coherence. This plot shows correlation only
for frequencies below 0.07 (7 Hz). In comparing with Figure 5, we see that the
estimated coherence has risen from 0.83 to 0.95 for frequencies near 0.03 (3 Hz).
This gives evidence of the existence of the moving source in the data. Because the
modified coherence does not suggest that frequency components above 0.07 are
correlated, we will not change the weighting function. The final estimates are
those above. We then estimate the variances of the estimates by substituting the
estimated spectra for the true ones in Theorem 2. The variances of & and ,é are
estimated at 0.0608 and 0.696 X 10, respectively. Thus the estimate of «, is
—0.10 with a standard deviation 0.25 and the estimate of §, is 1.0163 with a
standard deviation 0.0008

This set of data has also been analyzed by Spudich and Cranswick (1984).
They estimated the variable time delays between the stations. The method they
used is to move a time window of fixed length (the length is 127 sample points in
their analysis) along the series. For each time window, constant time delay
estimate was obtained by finding the location of the maximum of the cross-
covariance function of the filtered series. (This method is equivalent to the
method we discussed in Section 2.) Then, the time delay estimates were plotted
as a function of time. Figure 7, taken from Spudich and Cranswick (1984), shows
the results of the north-south components between station 1 and station 3. A
variable time delay can be observed from the figure. The vertical unit in the
figure is slowness; the slowness is obtained by dividing the time delay (in seconds)
by the distance (in km) between the stations. The period of the data we analyzed
is from 5.8 seconds to 10.9 seconds, and the major part of the seismic waves
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MOVING WINDOW CROSS-CORRELATION, N/S COMPONENT, DAI AND DA3

S
| PEAK CROSS
CORRELATION

0 WINDOW
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DAl N/S ACCELEROGRAM
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o | e /W

SLOWNESS, S/KM
1

0 5 10 15 20
TIME AFTER 59.37. S

Fic. 7. Moving-window cross-correlation of the north—south component accelerograms from station
1 and station 3. The vertical line indicates the theoretical arrival time of the S wave from the
hypocenter. The upper trace shows the peak value of correlation as a function of time, the middle
trace is the north—south accelerogram, and the lowest is the slowness as a function of time through
the record. Also indicated are the width and weighting function of the moving window [ from Spudich
and Cranswick (1984)].

arrived in this period. In Figure 7, the slowness changed 0.6 (from 0.3 to —0.3) in
this period. This result is quite consistent with ours. From our estimate of B8, we
find the slowness changed 0.65. Since the common time of these records was lost
and different time origins were used, we cannot compare the value of & with the
estimate they obtained at 5.8 seconds.

For the situation of variable time delays, the moving-window has two main
disadvantages: (1) The constant time delay estimates are unstable when the
window length is sm-1l. (2) When the window length is big, the time delay cannot
be approximated by a constant time delay model; therefore, it will be difficult to
find the stacictic: | properties of the estimates. In this case a linear function, or a
piecewise linear function, provides a better approximation to the variable time
delay function.

7. Proofs. We proceed to prove the results in this section. The following
lemma allows us to replace d («w,/B)exp(iaw,) by d% (0, «,). This makes it easier
to calculate various cumulants.
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LEMMA 1. Let S(t), —oo <t < oo, satisfy Assumption 3 and S(t)=
(t/T)S(t), i = 0,1. Then, for any bounded function g(\) and i, j = 0,1,

Bl T g(0)d(6), a)d5(~o./BJexp(~ias0,)|
|s|<T/2
(7.1)

- T g(w)dl(6),0,)d5(6,~ )} + O(T logT)
|s|<T/2

uniformly on ® X ©. Here w, = 2ws/T, B;* =1+ ¢;/T, and 0, = (a;, ¢;).
Proor oF LEMMA 1. Forany A, A, € (—7, 7)
E{d7(6,,A,)d%(1,)]

= Z Z(tl/T)i(t2/T)jc(al + Bty — ty)exp(—iA,t,)exp( —il,t,)

L L

(72) =L X(6/T) (t/T) exp(=idits)exp(—idst;)

L L

x [ explin(a, + Bity = 1)) f(n) dn

= [ HI(\ = nB)HT (N, + n)exp(inay) f,(n) d,
where HI(A) = LT X(t/T)'exp(—iAt), i = 0,1,2. So

E{ Y g(ws)dﬁ(ﬂl,ws)dfj(—ws/BQ)exp(—iazws)}
|s|<T/2

= ¥ g, [ Hl(o,—nB)H(~0,/B, +n)exp(ina;)

|s|<T/2
(73) x exp(—iaze,)f(1) dn
= ¥ 2o, HN o, nB)H(~w, + 1;)exp(ina,)
|s|<T/2 -
xexp(—ian)in)dn+ 0| [T |Hi(a,~n8)]dn).
—7s|<T/2

The last equality holds because HT(BA) = HI(A) + O(1) and exp(iaw) =
exp(ian) + O(Jw — 7)). Note that the first term of (7.3) is equal to

(7.4 Bl T 400, 0)d5(0,- o),
Is|<T/2

and the second term is of order T log T. This completes the proof of the lemma.
O

Analogous to the proof of Theorem 4.5.1 of Brillinger (1975), we have the
following lemma. The details of the proof can be found in Chiu (1984).
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LEMMA 2. Let &,(t), e,(t) satisfy Assumption 2 and let y(\) satisfy Assump-
tion 4. Then

(7.5) hm T? Y, Y(w,)di( )al(w,/B)exp(iaw,) =0 a.s.

T |sI<T/2
and uniformly on (a,c) € © = C X A (C, A compact sets in R). Here '=1+
¢/T and w,=27s/T, s =0,%1,....

In proving the strong consistency of the estimate and deriving its asymptotic
distribution, we need to calculate the limits of

z ‘l/(ws)df(al?ws)d"ls‘(_ws/B2)exp(——ia2ws)7

|s|<T/2

where S;(t) = (¢/T)'S(¢) for i = 0,1,2. Lemma 3 glves us the values of these
limits.

LEMMA 3. Let S(t) satisfy Assumption 3 and Y(\) satisfy Assumption 4.
Let ST(t) = (¢/T)' S(t), i = 0,1,2. Then, uniformly on ® X 0, and for i, j=
0,1,2,

(7.6) hm T2 Y (o dT(ﬂl,w )d] ( w,/By)exp( —iayw,) = Q,A,(anﬂz)

s |s|<T/2

almost surely. Here w, = 2ws/T, ;' =1+ ¢/T, 0, = (a,c,), and

Qu(6,.6,) = [ w(mexp(in(e, — a;))f(n)

(7.7) . A
Xf exp[in(c, — ¢y)x]x* dxdn.
0

PROOF OF LEMMA 3. By using the same arguments as in the lemma of
Hannan and Robinson (1973), one can show that

(7.8) Z ll’(‘*’s)HlT(ws - Bl"?)H_/T(_ws + Bsm)
|s|<T/2

converges to

(7.9) . ¢(n)flx'+~’eXP(in(02 —¢;)x) dx.

Here H(\) = 72 (t/T)‘exp( —ikt), i = 0,1,2, as defined in the proof of Lemma
1. From this and Lemma 1, we have

Y 4(w,)dT(8;, 0,)d7 (6, - ws)}=Q”(01,02).

(7.10) hm T 2E{
s|<T/2

i o
Then, similar to the proof of Lemma 2, one can show that

(7.11) T2 L y(e)dl(0,0)d0(0, 0,)

|s|<T/2

converges, uniformly, to Q:rj(ﬂl, 6,) almost surely. O
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Next we prove Theorem 1 concerning the strong consistency of the estimate.

Proor orF THEOREM 1. Note that @;(6) can be separated into four terms,
namely,

Qr(6) = T 2L 4(6,)d1(0), 0,)d%(~,/Bexp( ~ioa)
+T 2 Y d(w,)dl(w,)d%(—w,/B)exp( —iv.a)
(7.12) o ,
+T" ZZ‘P( Wy )dT( by, w, )df,( —w,/B)exp(—iwa)
+T 2 4 (w,)dl(w,)dl(—w,/B)exp( —iwa).

From Lemma 2 the second, third, and fourth terms converge to 0, uniformly on ©
and almost surely. Further, from Lemma 3 the first term converges uniformly to

T X ] 0 -1
(113) Q(0) = [ explin(ay - ) RN L) ),

— in(cy— c)
Because y(7n) and f(n) are symmetric functions, @(#) is a real-valued function.

The theorem can be proven by following a classical argument [Jennrich
(1969)], if we can show that @(#) has a unique maximum at 6 = 6,,.

Since |exp(in(c, — ¢)) — 1] is the distance between 1 and exp(in(c, — c)), and
Im(c, — ¢)| is the length of the arc between 1 and exp(in(c, — ¢)) on the unit
circle, Q(8) will not attain the maximum when ¢ # c,,.

Consider

Q((a, C())) = /W exp(in(ao - a))tl/('n)fs(n) dn

-

=2 cos(n(a, ~ a))¥(n)f,(n) dn.

(7.14)

If a, # &, then we can find an interval o/ contained in the set, {w: Y(w)f(w) > 0}
such that cos(n(a, — a)) < 1 for n € J. Therefore the only maximum is located
at §,. O

Next, we prove Theorem 2 concerning the asymptotic distribution of the
estimate.

PROOF OF THEOREM 2. When T is large enough, the estimate 6 will be in the
interior of ©, and dQy(8)/da = dQ(8)/dc = 0. Therefore, we can find points
0’ and 6” between 6 and 6, such that

3Qr(0,) *Qr(0)  3°Qp(0")
: Ja . ; Jda da da dc & — a,
) -T2 =T T|. .
(7 15) aQT(BO) BZQT(BH) azQT(au) ( C — Cy )

dc da dc dc dc
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Firstly, we should find the asymptotic distributions of

d 0
a6 L gl (o)l e/Blepl —iaw,)
|s|<T/2
and of
d )
(7.17) Q;i )= Y iwd(w,)d% Lo )dT( w,/B)exp( —iaw,).
[s|<T/2
Here
T-1
(7.18) JH0) = L 2 X(Oexp(~io),

t=0

and as before 87! = 1 + ¢/T. [We define cig()\) and J: similarly.]
From Lemma 1 we find that the expected values of

(719) Z wslib(ws )dz‘( 0()7 ws)dg _ws/ﬁt))exp( - ia()ws)
|s|<T/2

and

(7.20) Z ‘*’s‘l/( Wy )d’f( by, w, )d’f( —w,/By Jexp( —iaw, )
|s|<T/2

are of order T log T. Therefore
( 9Qr(6,) )

o

(7.21) lim T-%2E

T—-x

= lim T”/zE(
¢

T—-x

aQTwo)) Y

In order to derive the covariance matrix of T *%(3Qr(6,)/da) and
T %2(3Q,(8,)/dc), we need to compute the values of the cumulants.

Cum[ziwsll/(ws)dl‘(gt)’ ws)dt{;‘(g()’ _ws)7
S o, (0,)d7(6,, w,)AT(6,, —ws>],

cum[z iwy(w,)d?(8,, »,)ad7(8,, —w,),

(7.22)
Zl‘*"l/ )d 0y, w, )d §( ()Y—ws)]i

Cum[ziwstl/(ws)df(@o, ws)J;‘r(o(): —w,),

Zl‘*"l/ )d by, w, ds(ﬂo:_ s)]

It is easy to see that the first one and the second one are of order o(T?). The
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third one is equal to

Z Z - ws,wszlp(ws,)‘l/(wsz)cum[dz(007 ws|)d~g(00’ —ws|)’

df(b’o, "’sz)‘ig(aoy _‘*’sz)]
=Y T - 0,0, 0 (w,)¥(w,,)cum[dT(6y, v, ), dZ(8y, — )]
(7.23) 51 8
x cum|dZ(8, ~ w, ),d%(8,, «,, )]

+ Z Z - ws,wsz‘l/(ws,)‘ll(wsz )Cum[dz‘( 0‘07 wsl)f dZ( 0()7 wsz)]

s Sy
X cum[tig(ﬂo, '—""s,)’ Jg(eo’ _wsz)]'

The second term of (7.23) is equal to (27T3/3)/™ A4 A)f(A) + O(T?log T).
The first term of (7.23) is equal to

LY - Arte,0,0 (0, )¥(w,)

(7.24) oi%
><H1T(wsl - ws‘Z)HlT(o.)32 - ws‘)fsz(wsl) + O(T?).
Because
T-1
HI(\) = Y t/Texp(—iAt)
t=0
7.25
( ) exp(—i\) — exp(—iAT) (T — 1)exp(—iAT)
T[1 - exp(—i))]? T(1 - exp(—id)) ’
which is equal to iT/2#s at A = w, = 27s/T, s # 0, expression (7.24) is equal to
47m2s;s
Y - ri () fHo,) + LY ——5fXa,) + O(T?)
s 8 #8y (s, — 32)
2aT®  2aT3\
(7.26) = _.( W4 + 71r2 )f APHN)FEHN) AN + o(T?)

S fjﬂ"ztl/?(?\)ff(h)dk +o(T?).

3

The first equality of (7.26) holds since ¥*_,1/s% = #2/8.
It may now be seen that the covariance matrix of (0Q,(6,)/da, dQ(8,)/3dc)
converges to

(7.27) p(_i —f)
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with
p =27 [ ML £,(N) +£,(0)] A

(7.28) .
+2w/_ﬂ>\2¢2()\)fsl()\)fe2(>\) dA.

From Lemma 3 it may be seen that if 6 — 6, as T — oo, then T2 3?Q,(07)/da?,
T-203%Q(07)/3c% and T 293°Q.(0;)/da dc converge, almost surely, to —d,
d/2, and —d/3, respectively, with

(7.29) d:f” My (M) F(A) dA.
Note that
30 1 -1 “_ 4 6

giving the covariance matrix indicated.

Next, since the kth-order cumulants of T~ %%(3Q(8,)/da, 0Q,(8,)/dc) are
of order T'"*/%(log T)*, these converge to zero for k > 2. Therefore,
T~30Qr(8,)/da, 1Q(6,)/dc) is asymptotically normal and the proof is finished.

O

We next prove Theorem 3.

THEOREM 3. Under Assumptions 1-4, let 0 — 6, and My — oo, My/T — 0.
Then limy_, , E|fi(Ao) = f(Ao)I = 0, where

1 1

@31) ) =5 57

Z dgfg( ws)dTJ;',( — w,/Br)exp(—iarw,)

wg € Iy
and I, is the set containing My Fourier frequencies which are closest to Ao
[Here B7' =1+ ¢r/T and 0, = (ay, cp).]

ProOOF OoF THEOREM 3. First we note that, as in the proof of Lemma 1,

(7.32) -E[d%(8y, ,)d%(—w,/Br)]

= E[dT(w,/B0)a%(~ w./Br)]exp(iage,) + O(1).
Now, we calculate the expected value of d%(w,/B,)d%(—w,/Br). It is

I

(7.33) 27/ (/30 BT)fs(x(,) +0(1),
where

(7.34) AT(N) = Til exp(—iAt) = 1 — exp(—iAT)

=0 1—exp(—i\) ~
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Since Al(w,/B, — w,/Br) = T + o(T), we get
(7.35) E(d%(w,/By)A%(~w,/Br)) = 27Tf(N,) + o(T).
We therefore have
R 1
(7.36) E(fJ(N\,)) =

soar| Z27TH(N) + o(T)| = £i(Ay) + o(1)

w, € Iy

Next we want to find the variance of f;(}\). We first show that the covariance of
dl(w,/ By —w, /Br) and d{(w, /B)A{(~w,,/Br) for o, w,, € Iy, and w, #
w,, can be neglected. This can be seen from the following argument. We note that

cum( (wsl/,B(,)dT( ws,/BT)’ dT( Wy ,/:80) (w /:31 ))
(737) = cum( (ws,/lB()) dT( wsz/BT))cum(d.[c‘( - wsl/B’l‘)’ d{»( ws /BU ))
+ cum(d_f( ws,/Bo):dZ( wsz/,Bo))Cum(dr( ws./ﬁr) (= w, J/Br ))

The second term is bounded. For the first term, we have

cum( (“’s./Bo) (= “’s/BT))*2'”AT( S5 ) «(Ay) +0(1)
By By

~ of(oy - ).

(7.38)

Hence we have

Cum(df( by, o, ) (- ws,/BT) (6, wsz)df( ‘*’sg/ﬁr))
= 0((%l -, _2).

Then, it can be seen that the variance of f(\,) is

(740) M £ (Ao)[ (o) + FlRo) + RG] + £ (N0 FfRo) -

This finishes the proof of the theorem. O

(7.39)
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