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LIMIT THEORY FOR THE SAMPLE COVARIANCE AND
CORRELATION FUNCTIONS OF MOVING AVERAGES

BY RicHARD Davis! AND SIDNEY RESNICK?
Colcrado State University

Let X, = X5 _ ¢;Z,_; be a moving average process where the Z,’s are
iid and have regularly varying tail probabilities with index a > 0. The limit
distribution of the sample covariance function is derived in the case that the
process has a finite variance but an infinite fourth moment. Furthermore, in
the infinite variance case (0 < a < 2), the sample correlation function is
shown to converge in distribution to the ratio of two independent stable
random variables with indices @ and a/2, respectively. This result im-
mediately gives the limit distribution for the least squares estimates of the

parameters in an autoregressive process.

1. Introduction. We consider the discrete time moving average process

[o0)
(1.1) X=X Cily_js
J=—0
where {Z,, —o0 <t < o} is an independent and identically distributed (iid)
sequence of random variables with regularly varying tail probabilities. More
specifically, we assume

(12) P(Z > x) = x~L(x)

with @ > 0 and L(x) a slowly varying function at co and,
P(Z, > x) P(Z, < —x)

(1.3) —————->p and —————— —¢q
P(1Z| > x) P(|Z,| > x)

as x > o0, 0 <p<1and g =1— p. Under these assumptions on the noise
sequence, the series defined in (1.1) exists (cf. Cline, 1983) provided

0
(1.4) Y e’ < oo forsome0 <8 <a,d<1.

==

Note that any stationary ARMA process driven by the {Z,} sequence, has such a
representation.

There has been increasing interest in modelling certain time series phenomena
by an ARMA process with heavy tailed noise variables. For example, certain
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signal processes appear to be modelled better when the signal and /or noise has a
heavy-tailed distribution rather than a Gaussian distribution. Mertz (1965) and
Stuck and Kleiner (1974) have demonstrated this for telephone signals, as has
Evans (1969) for signals with ELF noise and Rybin (1978) for strong narrow band
signals. Fama (1965) has similarly modelled stock market prices. Reeves (1969)
has considered air turbulence and Safiullin and Chabdarov (1978) have investi-
gated radio navigation with processes involving non-Gaussian noise. The ARMA
model is usually the basis for such processes.

In Davis and Resnick (1985), the weak limit behavior of the sample covariance
function for the {X,} sequence was derived in the 0 < a < 2 case. It then
followed immediately that the sample correlation function pj(h) =
Yroh X, X, p/EP X2 h > 0, converges in probability to the analogue of the
correlation function defined by p(h) = 7. _, ¢;¢;, /L% _, c;. A more refined
result for the sample correlation function from an AR(p) process with errors
satisfying (1.2) and (1.3) was given by Kanter and Steiger (1974) and Hannan and
Kanter (1977). They proved that for any § > a,

n'%(p(h) — p(R)) =p 0

with a similar result holding for the least squares estimates of the parameters in
the AR(p) model. Yohai and Maronna (1977) also considered AR( p) processes
and showed that n'/?(p(h) — p(h)) is bounded in probability provided the Z,’s
are symmetrically distributed and E log™|Z,| < co. We provide a much more
precise description of the limiting behavior of p(A) for infinite order moving
averages which includes as a special case the AR(p) process considered by the
above authors. Of course if the Z,’s have a finite variance then n!/2(3(h) — p(h))
is asymptotically normal under mild restrictions on the coefficients {c;} (cf.
Anderson, 1971, page 489).

In Section 2, the limit distribution of the sample covariance function is derived
for the case 2 < a < 4. In the special case, 2 < a < 4, the process has a finite
variance but an infinite fourth moment. It turns out that, as in the 0 < a < 2
case, the limit behavior of the sample covariance function is determined by the
partial sums X7, Z2 We also consider in Section 2 the situation when Z?
belongs to the normal domain of attraction with an infinite variance.

The weak limit of the sample correlation function in the infinite variance case
(0 < a < 2) is considered in Section 4. It is shown that there exists a slowly
varying function at oo, L(-), such that n'/°L(n)(p(h) — p(h)) converges in
distribution to the ratio of two independent stable random variables with indices
a and a/2, respectively. If the tail distribution of |Z,| is asymptotically equiv-
alent to a Pareto (as is the case when the Z;’s have a stable distribution), then we
may take L(n) = (log n)~'/%. Whereas the asymptotic properties of the sample
covariance function are governed by the partial sums Y7_, ZZ the weak limit
behavior of the sample correlation function is determined by the vector of partial

sums (P, Z2Y" Z,Z, 15 s 201 Z,Z,, ). In Section 3, we show that this
sequence of vector-valued random variables converges in distribution to a vector
(Sy, Sy, .., S,,) of independent nonnormal stable random variables. This result is

proved using point process techniques and ideas from extreme value theory. The
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limit random variables for the sample correlation function p(&) can then be
identified as

Y, = ¥ (p(h+5) + (k= 5) = 20(1)o(R))S/S,

J=1

In the classical case (var(Z,) < co) the same result is true where the S;’s j > 1
are iid N(0,1) rv’s and S, = 1 and this provides an easy way to compute asymp-
totic covariances of the p(4)’s. Further discussion on this point is contained in
Section 4.

The limit results derived for the sample correlation function enable p(4) to be
used for model identification and estimation of parameters in the class of ARMA
models. In particular, limit distributions for method-of-moments type estimators
of the parameters in an ARMA process can be derived (some examples are
considered in Section 5). These estimators will be weakly consistent regardless of
the value of a. On the other hand, if more detailed information about the
distribution of the residuals is known (for example the value of « in (1.2)) then
there may be better estimation methods such as minimizing the a-dispersion
(Stuck, 1978, and Cline, 1983) or minimizing absolute deviations (Bloomfield and
Steiger, 1983). In the absence of knowledge about «, one may fall back on the
following iterative procedure: (a) obtain preliminary estimates of the parameters
using the sample correlation function; (b) estimate a based on the resulting
estimated residuals from (a) (cf. Hall (1982), DuMouchel, 1983); (c) update the
estimated parameters by minimizing the a-dispersion between the predicted and
observed values.

2. Sample covariance function. The aim of this section is to derive the
weak limit of the sample covariance function for the process { X,} satisfying (1.1)
with 2 < a < 4. Assume

(2.1) X,= Y ¢Z,; with } ¢ <o,

Jj=—00 J=—o
where the Z, satisfies (1.2) and (1.3). Put a, = inf{x: P(|Z,| > x) <n~'} and
define the sample covariance function by

1 n
?(h) = ZXtXt+h’ h>0.
t=1
The following proposition is the key step in evaluating the weak limit behavior of
¥(h).

ProposITION 2.1. If 2 < a <4 and EZ, = 0, then for every positive integer
h,

n

(2.2) a | ny(h) — X X cicinZii| —p

t=11i=—-
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ProoF. We have

anz( Z XIXl+h - Z Z Czct+th21)

t=1 t=11i=—=

- (z 5 ecp, )

t=11#J

= Z Z cc ,+h(Z1711[|Z, J<a,] ™ #n)(Zrﬁ,‘lnz, J=<a,1 ™ Hn)

t=1 H&j

+a lun Z Zczcj+h(Z1 11[|/ J<a,l] + Zt 11[|/ /|<a,,])
t=11#j)

-2
a Z LcciinZiiZi Az, > a,oriz, > @
t=11#)

—na, ﬂnZCzCHh
£
=A+B+C+D,
where p, = EZ |1}, ., - We shall show that A, B,C—-,0and D — 0.
Define
Z .= Z11[|Z,|_<_a”] — Ky,

and we have
n n

A)=a,*Y Y Y Xec j+hckcl+hE(Z{7i,nZt—j,nZsfk,nZsfl,n)'

s=1t=11i#j k+l

Since {Z, ,, —o0 <t < oo} is for each n an iid sequence of zero mean random
variables, the above expectation is zero unless {t — i, ¢t —j} = {s — k, s — I}.
When this is the case, the expectation is of the form

EZ} Z3 , = EZ} ,EZ3 ,
<(EZA,, : =gt
= ( 1 [|[.|sa,,]) no

where o7 = EZ]1;,, ., ;- Hence
n

a;“o,f Z Z Z(lcz”cj+h|Icsft+i||csft+j+h|

s=1t=11i#j

IA

var(A)

+ Icz”cj+h|ICSftJrjllcsftJerrhI)

(Sleierend) + (;|c,c,+h+s,|)(Z|cj+hc,+s_,|))

i

I/\

—

s=11t=1

IA

i 3

ota,‘n Y ((

[tl<n

Tl + (Zlclc,+h+,|)(Zlc,+,,c,+,|))

IA

4
2(Z|ci|) na, ‘o!.
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For 2 < a < 4, 6 has a finite limit and in the a = 2 case it is slowly varying by
Karamata’s theorem (Feller, 1971). So in either case o, is slowly varying.
Moreover, a, is regularly varying with index 1/a, which together with the slow
variation of ¢, implies na, ‘o,) = 0 as n = oo. Thus, var(A) — 0 as desired.

As for the term B, we have

2
EIB| < 2na, ", )| Zled) B2z, <0,
12

2
<2(Ziel) Biziina,’ln, .

Since EZ, = 0 by assumption,

a—1a,

Bal = 1EZ 112> a0l < ElZiyz5 00~ =0 7,

by Karamata’s theorem. Hence na, ?|p,| = 0 as n — co.
Next

2 .
E|C| < na;2(2|cl|) E|Z1Z2|1[|Z||> a, or|Z,>a,l]

i

2
< 2na;2( Z|ci|) E\Zy|E\Z\|11{12,> a,

i
-0

by Karamata’s theorem as for B. Finally, D = O(na, %) — 0 since for B we
have already proved na,?n,| — 0 and this completes the proof. O

For a > 2, define
y(h) = cov(X,, X, n)

o
— 52
=0 )y CiCivn |
J= o

where 02 = var(Z,). The next theorem gives the main result of this section. Here

and in what follows, convergence in distribution is denoted by “ = .

THEOREM 2.2. Suppose {X,} is given by (2.1) where {Z,} satisfies (1.2) and
(1.3) with 2 < a < 4. If EZ, = 0, then for any positive integer 1

(2.3) (na;2(3(h) - b, ,),0<h<l)= S(zc}, chcj+l,..., chcj+[)7
J J J

where S is a stable random wvariable with index a/2 and b, , =
Y2 o ciCi nEZM 7 < 0.1,0 < h < 1. Moreover, if 2 < a < 4, then

(24) (na;2(3(R) ~ v(1)),0 < h <) = 8 = == |(4(0)-... V(D) /e,
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Proor. By Theorem 4.1 in Davis and Resnick (1984),

n oC oC
a;?Y ¥ cenlZi—o7)= L cc,,S forallh>0,
t=11i=-oc 1=-
where o? = EZ}; ., and S is a stable random variable with index a/2.
From the proof of this same theorem, we have for any positive integer /

( S S (22— a?), 3 S (2= o) ¥ e 22— 0?)

t=1 i t=1 1 =1 1
2
=>S(ch,chcj+1,...,Ecjcj+,).
J j j

This combined with Proposition 2.1 proves (2.3).
If a > 2, then 0? — 0 and by Karamata’s theorem,

(44
2 -2 _ —2p72 s
no,a,” =na,"EZilq; 5 q 1™ P

2 -2 _
no‘a,

so that by the convergence of types result, (2.4) holds. O

COROLLARY. The same limit law is attained in Theorem 2.2 if y(h) is
replaced by a mean corrected version

1 n-h _ . _ 1 n
?(h)=; Y (X, = X)X — X), whereX:;ZXi-
t=1 i=1

The proof of this corollary is analogous to that of the corollary following
Theorem 4.2 in Davis and Resnick (1985) and is therefore omitted. Also note that
the corollary remains true if EZ, # 0 by considering the process X, — EX, =
Z;C= — o cj(Zt*j - EZt*j)'

Corresponding to the case a = 4 we have the following result.

PROPOSITION 2.3. Suppose {X,} is defined by (2.1) with EZ, = 0 and
EZf1[|Z,|gt] = L(t)

is slowly varying with lim, _, , L(t) = . Define a,, by
nL(a}/?)

(X2

n

-1,

so that a, is regularly varying with index §. If a, = a)/* then in R'*!
@5)  (naz2(3(h) - ¥(R)),0 < h<1) = N+ (v(0),..., v(1)) /o,
where N is a N(0,1) random variable.
REMARKS. (1) Define L (x) = L(x'/?) so that L, is also slowly varying (de

Haan, 1970, page 21). Then a, must satisfy nL(a,)/a? — 1. Set U(x) =
x2/L (x) so that U, is regularly varying with index 2 and «,, satisfies U(a,) ~ n,
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and this shows «a, may be taken as the asymptotic inverse of U, at the point n
(cf. Seneta, 1976, page 21).
(2) For the classical result assuming EZ} < oo, see Anderson (1971, page 478).

Proor. We begin by showing the analogue of Proposition 2.1. The difference

0;2 ny(h) — Z Z (Cicz+h)Zt2—i

t=11=-o

is again decomposed into the pieces A + B + C + D.
We have var(A) = O(na,*). Since L(t) > oo we have a,/ Vn = oo and hence

na,*=na,;% -0,
as desired. For B we have
E|B| < (const)na,’E|Z,|1y > q 1-
Since L(t) + [{z*P[|Z,|e dz] we have
EIZ1s 0 = /amzP[|Zl|edz] - f;t"’L(dt)

= 3/00L(s)s’4ds - L(a,)a,?

a,

= a,'La,){ [3(L(ay8)/L(a,))s *ds 1),
so that
na;2E|Z1|1[|le>a"] = nL(an)a;"’{./;w3(L(ans)/L(an))s’4ds - 1}.
However, since nL(a,)a,* — 1, the above term is asymptotic to
a;{ [73(L(ays)/L(a,))s4ds ~ 1),

which goes to zero since a, — oo and the expression within the braces goes to
zero by Karamata’s theorem. The term E|C| is handled in the same way and D
is of smaller order than E|B| so the analogue of Proposition 2.1 is proved. O

Before continuing with the proof we need the following result.

PROPOSITION 2.4. Suppose {X,} satisfies (2.1) with EZ, =0 and U(t) =
EZ?1,, < 1y slowly varying. Define g,, by

g, "EZ |5, < g~ 1.
Then

where N 1s N(0,1).
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PROOF. A proof can be fashioned after the method used in Davis and Resnick
(1985) to prove Theorem 4.1. We have Z, in the domain of attraction of the
normal so that g, Y7 Z, = N. Furthermore for m > 1

n
Yn= {g;lzzt—j’ljl Sm} = (Nv N""yN)

t=1
in R2”*! and therefore by the continuous mapping theorem

(c_ppyevesCp) Y, = ( Y cj)N.

Jlsm
It remains to show
n “~
(2.6) lim lim sup P[|gn1 Y X, — (CopmyeerCm) - Yol > 8} =0
M=% pn_se0 t=1

for any § > 0 as well as

(2.7) ( > cj)N=>(j§ cj)N, m = .

ll=m =~

The validity of (2.7) is obvious.
We have that

gr;lZXI_(c—my'--ycm)'Ynzgr:IZ Z chtfj
t=1

t=1|j|>m

n
="'y X ¢(Z-diz e EZ ) < a)

t=11j|>m

LR P

Now
lim limsup P[la| >8] =0

m—=o pooc
by an argument identical to one used in the proof of Theorem 4.1 of Davis and

Resnick (1985). (We use the fact that ng, “’EZIQI[| Zi<gn] 1.) For the other two
terms we calculate

|EZ 17, < g = 1EZil(z,5 4,1

< EIZ N0 = | tP[|Z1|edt]=fg t'U(dt)

n

— [Ts7U(s) ds — &, 'Ulg,),
gll
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and so applying Karamata’s theorem (recall U is slowly varying) we get
8. B2\ (17,24,

lim ————— =
n-—oc U(gn)
Thus
1Bl < &8, 'MEZ 1}, <. > lc)l
[J]>m
nU(g,) EAEZ L7 <g. S e
gr% U(gn) |j|>n1 /
~ gnlEZ11[|Z||sg,,]| Z chl/U(gn)
[J]>m
-0 asn — 0.
Likewise
lim limsup P[|y| > 6] < lim limsupd~'g, 'nIEZ\1j > 4,1 lc)l
m—=9%C pooc m—=o pooc |j|>m

=0,
as desired for the verification of (2.6). O

CONTINUATION OF THE PROOF OF PROPOSITION 2.3. From Proposition 2.4 we
have (recall 62 = EZ} = var(Z,))

D) c,»ciM(zz_,»—o?):( 5 )N

t=11i=—0o0 i=—0o

and hence, from the analogue of Proposition 2.1,
na;2(§/( h) — y(h)) = ( Zcici+h)N'
The assertion of Proposition 2.3 easily follows.

REMARK. The same limit law holds if (%) is replaced by the mean corrected
version:

W(h) = ~5(X,~ X)Xy - X).

3. Sample covariance function of {Z,}. Assume {Z,} is iid and satisfies
(1.2) and (1.3) with 0 < a < 2. As before define

(3.1) a,=inf{x: P(Z,| > x) < n~'}.
Applying Theorem 4.2 in Davis and Resnick (1985) to the Z, sequence (i.e., take

¢;=0,7+0 and ¢, = 1), we obtain

a2y 22,,,28-0=0 forall >0

t=1
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and

n
a,? Y. Z} =S,
t=1
where S is a positive stable random variable with index a/2. In this section, we
give a different normalization for the partial sums ¥%_, Z,Z,, ;, h > 0 in order to
get a nondegenerate weak limit. Not surprisingly, these partial sums (i.e., sample
covariances) at different lags turn out to be asymptotically independent. This will
be the main building block for deriving the limit distribution of the sample
correlation function of the X, process in the next section.
Throughout this section we shall assume E|Z,|* = co. It then follows from
Theorem 3.3(iv) in Cline (1983), that the product ZyZ, belongs to the a-domain
of attraction. That is, Z,Z, satisfies

P(Z,Z,| > tx) w
(3.2) - 7 ast — o0, x > 0,
P(ZyZ,| > t)
and
P(ZyZ, > t) ' 2
3.3 —— > p?2+ (1 - t—
(3.3) AR P (1-p) ast— oo,
where p is given in (1.3).
Define
(3.4) a, = inf{x: P(|Z,Z,| > x) <n”'}.

We first show that
(3.5) a,/a, > .
Observe that for a fixed positive number M,
P(Z,Z,| > t) - P(Zy| > t/|Z,|,1Z)] < M)
P(Zy| >t) — P(Z,y| > t)

_ '/;MP(|Z0| )P(|Z | dy).

| P(Z| > 1)
We then have, by Fatou’s lemma and (1.2),

P(ZyZy| > t)

M
liminf ———— = > “P(|Z,|e d
im in P(Zy > 1) fo Y*P(|Z,|edy)

and upon letting M — co, the lower bound converges to E|Z,|* = 0. It now is

easy to check that (3.5) must hold.
The joint asymptotic behavior of the partial sums (L7_,Z},X7,Z,Z,,,
_.Z,Z,, ) is handled using point processes techniques. For background on

pomt processes see Kallenberg (1976). Set Y, = (Zt,ZZt+15 2, Z,, ) for
t=0,+1,+2,... and define a,'Y,= (a, th,a ZZyirse--s Gy ZtZHh). The
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relevant sequence of point processes for this problem is given by
n
In = Z €a,'Y,»
t=1

which is defined on the state space E = R**!\ {(0,0,...,0)}, where ¢_ is the
measure assigning unit mass to the point x and zero elsewhere. In defining a
point process on E, we shall use the convention that if a point falls outside the
state space it does not contribute to the sum. & will denote the usual product
o-algebra on E modified so that the compact subsets of E are those compact sets
in R”*! which are bounded away from (0,0, ...,0).

It will be shown that the sequence {I,} converges in distribution to a Poisson
process defined as follows: Let

o0 e ¢] oc
Z Ej;en, Z Ej;'m,..., Z Ej;lm
k=1 k=1 k=1
be A iid Poisson processes on R \ {0} with intensity measure given by

A(dx) = apx ™ g (%) dx + a(’j(—x)_a_ll(_oo_o)(x) dx,

where p = p?+ (1 —-p)?and §=1— p. Further let P € ;o also be a Poisson
process on R \ {0} independent of the & Poisson processes above with intensity
A(dx) = apx™* g (%) dx + ag(—x)"*" "1 _ o(x)dx. The limit point pro-
cess is then

© h
I= Z Z Ej}(,”‘e,’
k=1i=0

where e; € R"*! is the basis element with ith component equal to one and the
rest zero. In other words, the points of I are located on the coordinate axes, the
points {j{*, k = 1,2,...} lying on the axis determined by e;.

In order to establish I, = I it is convenient to first specify a class of sets (as in
Section 2 of Davis and Resnick, 1985) which generate &. Let S be the collection
of all sets B of the form

B =(by, co] X(by,c;] X -+ X (b, ¢4,

which are bounded away from (0,0,...,0) and b,<¢;, b,#0, c¢;# 0 for
i=0,1,..., h. It is clear that S is a DC-semiring (cf. Kallenberg, 1976, page 3).
Moreover, since B € S is bounded away from zero, either

(C1) BN {ye;: yeR} =¢ fori=0,...,h,
or
(b‘,C-], l=.]7
(C2) BN {ye; yeR}={ 777" =~
d, 1#J.

That is, B has either empty intersection with all of the coordinate axes or
intersects exactly one in an interval. Note that in (C2), b, < 0 < ¢; for i # j and
0 & (b, c¢;]. Further properties of these sets are developed in following proposi-
tion.
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ProPpoOSITION 3.1.
(i) nP(a,;'Y, € B) = 0 if B € S satisfies C1.
(ii) nP(a,;'Y, € B) = A(by, ¢,] if B € S satisfies C2 with j = 0,
- N(b;, ¢;1 if B € S satisfies C2 with j # 0.
(iii) nP(a,'Y, € B,,a,'Y,€ B,) > 0if BandB,€ Sand 1 <t<1+ h.
(iv) n’P(a,'Y, € B,,a,,'Y,€ B,) < C for all n and t > 1 + h where C is a
constant depending only on the sets B, and B, in S.

PROOF. (i) Setting x* = |by| A |cg| > 0 and y* = |by| A |¢y| > 0, we have
nP(a,'Y, € B) < nP(Z,| > a,x*,|Z,Z,| > @,y*)
<nP(Z,| > a,M) .
+nP(Zy| > a,x*,|2,Z,| > @,¥*,|Z)| < a,M).
From (1.2) and (3.1) we have nP(|Z,| > a,M) - M~* as n — oo, which can be
made arbitrarily small by choosing M large. The second term is bounded by
a, y_*)

a, y*
nP||Z,| > a,x*,|Z,| > a_nﬁ < nf’(|Z1| > anx*)P(|Z2| > a—n i
> (x*)"*-0=0
since d,/a, = oo by (3.5).
(i1) Suppose j = 0. Then, with x* = |b| A |col, y* = min, _; _, (|0} A |c;]) >
0 and using an elementary bound, we have
|nP(a;‘Yl = B) — nP(a,by < Z, < a,¢y)| < nhP(Z,| > a,x*,1Z,\Z,| > @,y*),

which goes to zero as n = o« by the proof in (i). Moreover, it follows from (1.2)
and (1.3) that nP(a,b, < Z, < a,c,) = A(by, ¢;]. The argument for the case
j # 0 is handled in the same manner and is omitted.
(iii) If either B, or B, satisfies C1, then we are done by (i). So suppose B, and
B, satisfy C2 with B; Ne; = (b", c"]1 # ¢, B, N e, = (b}, c{?] # ¢. Then if
J#0and j'# 0,
(3.6) nP(a,'Y, € B,,a,'V, € B,) < nP(Z,Z, )| > G,x*,|1Z,Z,.;| > &,y*),
where x* = [b®| A [c] and y* = [bP| A |¢P|. Now if t # 1 +j and £+ #
1 + j, then by independence
nP(Z,Z, )| > @x*, |2 2,05 > 8,7*)
= nP(IZIZI+j|| > dnx*)P(lztzt+j'| > dny*)
- 0.
On the other hand, if ¢t =1+ jor ¢ + j/ = 1 + J, then we have the bound
nP(Z,Zy| > @,x*,1ZyZ5| > G,y*)
< nP(Z,| > a,M) + nP(Z,Zy| > d,x*,|ZyZ5| > @,¥*,|Z,| < a,M)

dn
< nP(Z, > a,M) + nP(Z,Z,| > &nx*)P(|Z3| >~ My*)

n

> M~ asn— o0,
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where we have used (3.5) in he second term. Since M is arbitrary the left side of
(3.6) must have a zero limit. The other cases j = 0 or j/ = 0 are done in a similar
way.

(iv) This follows easily from (i) and (ii) since for ¢ > 1 + A the vectors Y, and
Y, are independent. O

PRrROPOSITION 3.2. Let {Z,} be iid satisfying (1.2) and (1.3) with 0 < a < 2
and suppose E|Z,|* = oo. If a, and @, are given by (3.1) and (3.4) we have
I,=1

in the sense of convergence of point processes on the space E (cf. Kallenberg,
1976).

PRroOOF. Since the point process I is simple, it suffices to show by Theorem 4.7
in Kallenberg (1976) that

(3.7) EI(B) - EI(B) < o forall B€ S
and
(3.8) P(I(R) = 0) > P(I(R) = 0)

for all sets R which are a finite union of disjoint sets in S.

Clearly (3.7) is automatic from (i) and (ii) of Proposition 3.1 because I has all
of its points on the coordinate axes. Now suppose R = U 7., B; is a union of
disjoint sets in S. For a fixed positive integer k, define I, . (R) =
Yl e, \y(R) where [x] is the greatest integer < x. Using a Bonferroni-type
inequalitil, stationarity, and the disjointness of the sets B;, we have

m m m [n/k]
Y [n/k]P(a;'Y,€B) - Y ¥ Y [n/k]P(a,'Y, € B,,a,'Y, € B))
J=1 i=1j=1 t=2

[n/k]P(a,'Y, € B)).

1

M

< P(If, 11(R) > 0) <

J

It follows from above that

Y [n/k]P(a,'Y, € B,) = EI%, ,,(R) » k'EI(R)
j=1

as n — oo. Applying Proposition 3.1(iii) and (iv), we also have

[n/k]
limsup Y, [n/k]P(a,'Y, € B;,a,'Y,€ B;) = o(1/k) ask > o

n—oc t=2
fori, j=1,..., m, so that
1 — k'EI(R) < liminf P(I%, ,,;,(R) = 0)

(39) < limsup P(I% ,,(R) = 0) <1 — k7'EI(R) + o(1/k).

n— oo
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Since the vector-valued process Y, is A-dependent, a standard argument (cf.
Leadbetter, Lindgren, and Rootzén, 1983, Chapters 3 and 5) gives

(3.10) PH(It%, 4 (R) =0) — P(I(R)=0) >0 asn— oo

for every positive integer k. Taking the kth power of (3.9) and using (3.10), we
obtain

(1 -k 'EI(R))* < liminf P(Z,(R) = 0) < limsup P(L,(R) = 0)

< (1 - k'EI(R) + o(1/k))".
Now letting k£ — oo, we have P(I(R) = 0) - e~ ¥/(®, But [ is a Poisson process
so that e £I(®) = P(I(R) = 0) which verifies (3.8) as desired. O

THEOREM 3.3. Let {Z,} be iid satisfying (1.2) and (1.3) with 0 < a < 2 and
E\Z,|* = co. Then, if a, and @, are given by (3.1) and (3.4),

a,’ )y z},a,! Z (Z,2,., - "‘l‘n)""’ a,! )y (Z:Zyoh — 1a)
t=1

t=1 t=1
= (S, 8,,-.-,8),

where p, = EZ\Z,1,; 7, .5, and Sy, S,, ..., S, are independent stable random
variables; S, is positive with index a/2 and S,, S,, ..., S, are identically distrib-
uted with index o.

Proor. Adapting the argument used in Section 2 of Resnick (1986) and in
Section 4 of Davis and Resnick (1985) (see also Resnick and Greenwood, 1978) it
is easy to show, for any 0 < § < 1,

n

-2 2 ~—1

0> ¥ 275 001 G L (220 422,05 8,00
t=1 t=1

_EZ1Z21[&,,5<|zlzz|sa,,]), 1<i<h

= (88,80,...,5h),

where
it 2
Ss = X (J”) ymss
k=1
and
o0
S = JO1 - sA(ds
' kgl kL= o) flsle«s,l] (ds)
for i =1,2,..., h. Clearly, Sos, Sf,...,SfL are independent since the points

(7% (U2}, - .., {Jg} are independent. The It representation implies S7 = S,
as § > 0,i=0,1,..., h (cf. Resnick, 1986) where the vector (S,, Si, ..., S,) is as
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described in the statement of the theorem. In view of Billingsley (1968, Theorem
4.2), the proof is complete once we show

n
(3.11) lim limsupE(a;2 Y Zt21[|Z,|sa,,8]) =0
t=1

=0 pow

and

n
(3.12) ;im lim sup var(d;l Y27, M2z, <a 6]) =0, i=1,..., h
S0 no oo =1 =6Cn
The expectation in (3.11) is equal to n/a’ EZ1;; ., 5; Which has the desired
limit by Karamata’s theorem (Feller, 1971, page 283). Since the process {Z,Z,, ,,
t=0,+1,+2,...} is i-dependent, (3.12) holds by the comment on the top of
page 266, Davis (1983). O

REMARKs. (1) If the distribution of Z, is symmetric then so is the distribu-
tion of Z,Z,, ,, in which case p, = 0.

(2) For 0 < a <1, the theorem remains valid without centering the terms
Z/ZI"rl by nu‘n' ‘

(3) In the case 1 < a < 2, EZ,Z, = (EZ,)? exists and from Karamata’s theo-
rem, nd, X(E(Z,Zy) — p,) = nd;2E(Z,Z21[|lezl>&n]) — const. Thus, by the con-
vergence of types result, Theorem 3.3 is also valid if u , is replaced by p% = (EZ,)2

4. Sample correlation function of {X,}. As before let {Z,} be iid satisfying
(1.2) and (1.3) with 0 < a < 2, E|Z,|* = c0, and define

(4.1) X, = A Z 2 s
J=—C
where
o0 5 - ) d=1, ifa>1
(4.2) X el < oo WIth{0<8<a ifa<l.

==

We shall first concentrate on the unadjusted sample correlation function defined
by

- . C(h)
(43) p(h) = Ws = U,
where
(4.4) C(h) = Zn: X Xiin

t=1

The sum in (4.4) is terminated at n rather than n — A for notational simplicity
in the following arguments. All of the results in this section, however, remain
valid if the upper limit is n — A. Put p(h) =X, c;c;.,/2; cf, which in the case
that var(Z,) < oo, is equal to corr(X,, X,,,). In Davis and Resnick (1985,
Theorem 4.2) it was shown under condition (1.4) that p(h) =, p(h). Here, we
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consider the limit distribution of p(%), suitably normalized. We begin with the
following proposition which is similar to Lemma 8.4.3 in Anderson (1971).

PROPOSITION 4.1. Assume (4.1), (4.2), and E|Z,|* = o. Then for every posi-
tive integer h,

t=11,j
1#]

;02| 5(h) ~ p(1) = [CO1 ' L Teleyon— cp(h)2 e,
(4.5)
-p 0,
where a, and d, are given by (3.1) and (3.4), respectively.

Proor. We have
p(R) = p(R) = [C(0)] " (C(R) - p(h)C(0))

n

= [C(O)] - Z (Z Zcicht—iZHh—j - P(h)Z Zcicjzt—LZt—j)

t=1\ |
[C(O)]ilz ZZC( j+h jp(h)) t —Jj?
t=1 1 J
so that the difference in (4.5) is equal to

a-'a2[C(0)] 'Y T (cick p — clo(h))ZE,

t=1 1

~ a2'a2[C(0)] Z(( () Y22,

i t=1

- & 400 Sein = cp(h)| £ 2+ U,
i t=1
where U, ;= L0} ,Z} — Lp_, Z} is the sum of at most 2i random variables.
Since a}, ?C(0) converges in distribution (Theorem 4.2 in Davis and Resnick, 1985)
and X,(c,c,,, — cZp(h)) = 0 it suffices to show
5/2
< 00,

(4.6) : hmsupElZ c.Cion— co(h))U,

n—oc

8 defined in (4.2). Because 8 < a, E|Z,|° < o, so that by the triangle inequality
and assumption (4.2), we have

Z(CiciJrh - C?P(h))Un i

i

5/2
E

< Llleie, sl + lel’lp(R)?)EIU, |
13

< Llleiei sl + lel’lo(R)1*?) (21 EIZ,)°)
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and by the Schwarz inequality this is bounded by

< 2E|zl|‘*[(§|c,~|'*|i|)l/2(glci+h|s|i|)l/2 . |p(h)|5/2(§|c,~||i|)}
< o0

by assumption (4.2). Thus (4.6) follows since the bound does not depend on n. O

PROPOSITION 4.2. Assume (4.1), (4.2), and E|Z,|* = oo. Then

anz(C(O) - Z Z t z) - a72 Z thcl _)I’ 0.
t=1 - t=11,j
IEY A

ProOF. The proof of Proposition 2.1 can be adapted to this case but a
simpler argument is given here instead. Choose 0 < § < a satisfying (4.2) with
a < 28. The triangle inequality gives

n
-2 ) —28 8 8
Elan Z Z cichtsztfjl < a,” ' n Z |cicj| E|Z1Z2|

t=11,J i, J
i+j i#j

2 .
< na, | Llel) (BiZ,")".

Now since a,, is regularly varying with index 1/a, a?? is regularly varying with
index 28/a > 1, and hence na, ?* - 0. O

Rearranging the terms in the sum (4.5), we have

i e (!+h cjp(h))thiZt—j

=11i,J
i%j
n
(4.7) = Z Z ci(ci—j+h - ci—jp(h))thiZt—i+j
t=1 i j#0
Z Z Z‘pt th th i+
J#0 t=1

where ¢, ;= c,(¢;_jp— ci,jp(h)), 1=0,+1,+2,..., j=+1,+2,....

PROPOSITION 4.3. Assume (4.1), (4.2) and E|Z,|* = c0. As n — oo we have

(i) dnl( > (Z‘P;,,‘ZF:ZI—H,' + le/i, AthfiZIAi—j)
t=1 1 i

S+ 4 ) 2zz,+,) \
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for eachj > 0 and
n n

(i) ( S Yz, - Yy Zf) 0,
t=1 1 i t=1

and therefore a;,* (C(0) — L, c2Xr_ Z}) —p O.

ProoF. (i) Interchanging the order of summation and regrouping terms, the
difference in (i) becomes

n-1

d;lzlpi,j( Z Z1Z1+j - Z ZtZHj)

t=1-1 t=1

n-i1-j

+d;124’z, j( Z Z1Z1+j - Z1Z1+_/
i =1

t=1—i—j t

— 51 =1
- Y%n Zdji,jvn,l + a, Z‘Pi,ﬁiv‘ln,n
i L

where

V,‘: Z ZtZt+j—

t=1-1 t

ZtZHj
1
and

n—i—j n
W, = Z ZtZt+j - Z ZIZt+j'
t=1—-i—j t=1
However with 8 as chosen in (4.2)

8
< limSUp ZN’;,/’ISEIV;IJ'S

n i

limsupE’Zzpi,jVn‘l
< 2Y W, PlIE|Z,P|Z,)° < oo,

whence @, 'Z, ¥, ,V, , =p 0. The same argument also gives @, 'Ly, W, , —p0,
which proves (i). '

(i) The above argument also works in this case but with 8 replaced by /2.
The last statement follows from Proposition 4.2. O

THEOREM 4.4. Suppose X,= Y%  c,Z, ; where {c;} satisfies (4.2) and
(Z,) satisfies (1.2) and (1.3), and E|Z|* = 00,0 < a < 2. If a, and @, are given
by (3.1) and (3.4), then for any positive integer [,

(4.8) (a,'a%(p(h) = p(h) = dy,,/CO0),1 < h<1)=(Y,,Y,,....Y))
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in R!, where

d Z p(h+j)+p(h—j)—20(j)p(h)) ZCZEZZl[,//Ka y

; (p(h+J)+p(h—Jj)=2p(j)p(h))S/S,,

and S,, S,,S,,... are independent stable random variables as described in
Theorem 3.3 (i.e., S, is positive with index a/2 and S,, S,,... are identically
distributed with index «). In addition, if either

1) 0<a<l,or
(ii) « = 1 and the distribution of Z, is symmetric, or
(iii) 1 <a <2 and EZ, = 0,

then (4.8) holds with d, , =0, h=1,...,1, and a location change in the S;’s,
J=1

Observe that since both a, and &, are regularly varying with index 1 /a the
normalization a2/d, is also regularly varying with index 1/a. That is, a;, 2/a,
n'/*L(n) for some slowly varying function L.

Proor. From Proposition 4.3, Theorem 3.3, and the continuous mapping
theorem, we have for any fixed positive integer m,

a,’C(0),d," 3 Zn: (ZlPi,j(Zt—iZz—Hj - Iin)))

o0<|jlsm t=1" i

(4.9)

- (mets £ v+ )

J=11

where p, = EZ,Z,1(,; ;<4 - The dependence of ¢, ; on h is temporarily sup-
pressed. The plan of the proof is to first show that’ (4 9) remains valid with m
replaced by oo and then make use of Propositions 4.1-4.3 to derive the weak limit
of @, 'a%(p(h) — p(h) — dy, ./ C(O)).
To establish the limit in (4.9) with m replaced by oo it suffices to show (cf.
Billingsley, 1968, Theorem 4.2) that
7) =0

(4.10) lim limsupP|a

| T Y T2z )| >

M- 5 J>mt=1 1
for every y > 0 and
m <
(4.11) Z Z(‘Pi,,‘ + ‘Pi,—j)Sj: Z Z(‘Pz,, + ‘Pz,—j)‘sj'
J=1 i =11

The limit in (4.11) can be checked using characteristic functions since
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X, i+, )| < . As for (4.10), we have the bound

Pla,' ¥ 8 Su (2 iz ) >y)

|JI>m t=1 i
n
<Pla,'| ¥ X Z‘Pi,/(zt—izt—wjluz, e lsa,] T .‘Ln) > Y/2)
|j|>m t=1 1
i |
+Pla | X X Z‘l’i,jztﬂztfiﬂlnz, oz, l,,|>&,,]‘> Y/2
|J|>mt=1 1

=A + B.

Applying Chebyshev’s inequality to A gives, after some simplification (see the
proof of Proposition 2.1),

n n

A<dy 2,2y X Y X W (e ol + Woriiy, il

s=1t=1 1 |j|>m|j|>m

7L |¢s7t+z+j’,j’| + I¢s—1+t—j+j’,j’|)0:;27

where 07 = E|Z,Z,|*1[; ;. <4 1- A change of variables in the summation gives the
bound

A<ay%;’n Y X X ¥ W (el

t=—oc i=—oc |j|>m|j|>m
2
+ I‘Pti—i*j,j’l + |1Pt+z+j’,j'| + |1Pt+z—_; +j’,j'|)0n )
and since X% [Y, . | = L2 -, [¥,, ;| for all integers &,
~ 2
A 34725;‘2;14( Y X |¢i,j|) o?.
1= = |jl>m

The absolute summability of the c;’s ensures that all of the above sums involving
[¢, ;| are finite and in particular lim,_ X ., X% . [¥, / = 0. Thus by
Karamata’s theorem (&, %no? - a/(2 — a)), we have lim,,, , _ limsup, , A = 0.

With 6 as given in (4.2)

. B<27%,°%n > Z|1Pl,j|8E|le2|51[|Z,zz|>&,,]
lj1>m i

and again by Karamata’s theorem, nd;'SE|ZlZQ|‘31[|Z|Z2|> a1~ «/(a — &) so that
lim,, _  limsup,_ ., B = 0, which establishes (4.9) with m replaced by .

Now from Proposition 4.1 and (4.7), we have

a, 'a’(p(h) — p(h)) = d;laz(c(o))il Z Z Z‘Pi,jzt—izt—wj + Op(l)'
JEOt=1 1
Since

Y (i + ¥, )/ el =p(h+J) +p(h=j) = 2p(j)p(h),
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we then have

a,'a,(p(h) - p(h) —d, ,/C(0))
= d_la2 C(O) Z Z le/z j( t—1i t i+j f"‘n) + Op(l)‘

JEO =1 1

It follows by applying the continuous mapping theorem to (4.9) that

a,'al(p(h) - p(h) —d, ,/C(0)) = Z (Wi i+ ) ,/Zc280

J=1 1
= Yh‘
The proof of the joint convergence in (4.8) is essentially the same as the above

argument. The only difference is that the vector in (4.9) is extended to an
[ + 1 — dimensional vector where the (2 + 1)th component is given by

a,' X Z 2UINZ, _Z =), h=12,...L
0<ljl<m t=1 i
Finally, the last statement of the theorem is an immediate consequence of
Remarks 1-3 in Section 3. O

In the following two results, we consider the limit laws of the mean corrected
version of the sample correlation function defined by
n n
5(h) = Z (Xt_ X)(Xt+h_ X)/Z (Xt_ X)Za
t=1

t=1

where X = ¥7_, X,/n.

COROLLARY 1. Suppose 1 < a < 2. Then for any positive integer I,
(a,'a%(p(h) — p(R),1 < h < 1) = (V,,Y,,..., V).

PROOF. Since the function p(4) is location invariant, we may assume without
loss of generality that EZ, = 0 (otherwise consider the process X, — EX, =
Y5 o cZ,_;— EZ,_)). In view of Theorem 44 it suffices to show p(h)
ﬁ(h) = 0,(G,a,). Us1ng the identity Y7 " (X,— X)?=nX? we have

(412) (k) - p(h) = (p(mn%? - X3 x) ¥ (%, %)
t=1 t=1
In Section 4 of Davis and Resnick (1985), it was shown that X7 (X, — X)?=
(a ), 1 X, = 0y(a,) = 0,ad,), and p(h) >p p(h). Since X - EX, =0
and X, X, /n EX = 0 a.s. by the ergodic theorem, this implies 5(A) —
p(h) = o, (d,a,?) as desired. a

In the 0 < a < 1 case, the sample mean plays a dominant role in determining
the limit distribution of 5(&). In order to describe this result, it is necessary to
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first define two random variables. Let {j,: 2= 1,2,...} be the points of a
Poisson process on R\ {0} with intensity A(dx) = apx * 1, . (x)dx +
ag(—x) “ 1. o(x)dx, where p and g are given in (1.2). Now if 0 < a <1,
then T¥_,|j,] < oo as. so that the random variables S =Yj_, j, and S, =
Y7_, j? are well-defined. In particular, S and S, each have a stable distribution
with index « and «/2, respectively.

COROLLARY 2. Suppose 0 < a < 1. Then for any positive integer [

(n(p(h) — p(R),1<h<l)=((p(h) —=1),1<h< z)(;c,)st/(;cfso).

REMARK. Some properties of the distribution function of S2 /S, are studied
in Logan et al. (1973). See also Cline (1983).

PrROOF. Let {j,} be the points of a Poisson process as described above. Using
an argument similar to that given in Section 4 of Davis and Resnick (1985) (see
also Resnick, 1986, Section 4) it is easy to show

a;lt‘éxua;zé(&— 7‘)2) = ((Zc)(éfk)(zc)(;’"))

(4.13)
= ((Zci)S,(Zcf)SO).
i i
Now rearranging the identity in (4.12), we have
n(p(h) = p(h)) = n(p(h) - p(h))
(4.14) . n(p(h) — 1)nX? . nX(Zh (X, - X,.,))
n 12 ,, =2 .
Z1=1(Xt_X) Zt=l(X1_X)
By Theorem 4.4 the first term is 0,(d,a, 2n) = 0,(1) since a < 1. The third term
in (4.14) is also negligible because nX = O, (a,), (X7_ (X, — X)) ' =0ya,?),
and Y/_(X; - X,,;) = O,1) so that the product of the three terms is
O,(a,") = 0,(1). As for the middle term,
n(p(h) = YnX* _ (p(h) = D(E,c:S)’

(X, - )_()2 (Z,¢f )S()
follows from (4.13) and the weak consistency of p(%). Finally the joint conver-
gence in the statement of the corollary is clear. O

We close this section with a comparison of the standard result for the
correlation function in the finite variance case and Theorem 4.4. Assuming that
Z, has a finite variance and a zero mean, Theorem 8.4.6 of Anderson (1971) gives

n'2(p(1) = p(1), 8(2) = p(2),..., 8(1) = p(1)) = (V;, V},..., V),
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where the limit vector has a multivariate normal distribution with mean zero and
covariance matrix given by Bartlett’s formula

o0

ran=2 (o(g+i)p(h+))+p(g—J)e(h+7)—20(j)p(g)p(h +))

: ap(Ne(m)ele +7) + 26N )p(@)p(h).

However, by checking covariances the components in the limit vector may be
written as
[e¢]

(415) V,= X (p(h+))+p(h=j)=20())e(R)S, h=1.2,...,1

j=1
where {S;} is a sequence of iid N(0, 1) random variableé. This corresponds to the
numerator portion of the limit in Theorem 4.4 with a« = 2. In fact, S; may be
identified as the weak limit of o~ ?n"'?X}_, Z,Z,,,, j=1,2,.... Moreover, in
the finite variance case, the sample variance

n [c¢]
ntY X, Y ctvar(Z,) > 0,

t=1 J=—00
whereas a, L}, X? = Y% 25, in the 0 < a <2 case. This phenomenon
accounts for the division by S, in Theorem 4.4 and not in (4.15).

5. Examples. In this section, we consider applications of Theorem 4.4 to
some time series models. Throughout this section, assume the hypotheses of
Theorem 4.4 are met and, for simplicity, suppose the distribution of Z, is
symmetric and that the distribution of |Z,| is asymptotically equivalent to a
Pareto. It then follows that

(n/logn)"*(p(h) — p(h))

(5.1) it . . .
= Y (p(h+7) +o(j— ) = 20(j)o(h))S;/S,
J=1
and S,, S,,... is now an iid sequence of symmetric a-stable random variables,

independent of the positive a/2-stable random variable S,.
The numerator of the limit in (5.1) is also a symmetric a-stable random
variable with characteristic function given by

(52) exp{— > lo(h +5) + p( = ) = 20(Np(R)"1A").

Jj=1
Extending the notion of variance for a Gaussian random variable, Stuck (1978)
defined the dispersion of a random variable with characteristic function (5.2) by

(5.3) disp= X 1p(h +7) + p(j — h) — 2p(J)p(R)"

j=1
(See also Cline, 1983.) The limit in (5.1) is then equal in distribution to
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(disp)'/“S, /S,. Notice that upon setting a = 2 in (5.3), we get this asymptotic
variance of p(4) in the traditional finite second moment setting.

5.1. MA(g). Suppose {X,} is the finite moving average
X, =2,+027Z,_,+---+6,Z,,

Then, since p(h) = 0 for |h| > q, we have for h > g

14

q 1/a
(n/log n)"/*(p(k) = p(h)) = (1 +2} |p<j>|a) S1/Sy

5.2. Estimation of 6 in a MA(1). For the MA(1) process X,=Z,+ 0Z,_,,
p(1l) = 8/(1 + 6%). A method-of-moments-type estimator for 8 is found by solv-
ing the latter equation for . Choosing the solution with the constraint 0| < 1
(cf. Fuller, 1976) gives

(1-(-4*)"%)/(25), ito<|p| <05,
0= -1, p< —0.5,
1, p> 0.5,

where p = p(1). Letting g(p) denote the inverse of the function 6/(1 + ?) with
|8] < 1, we have by the mean value theorem

0-0=g(p)—g(p)=g"(p)(p—p)+0,p—p).

Hence
(n/logn)/*(8—0) = (1 - 62)7'(1 + 62)*((1 - 20*(1))" + p(1)I) *S./S,.
The dispersion of the numerator of the limit simplifies to

(1+6%"+ 19141 + 6*)°
(1-6%"

By setting a = 2, we obtain the asymptotlc variance of 0 (cf. Fuller, 1976, page
343). Note that while this estimate of  is inefficient in the finite variance case,
its performance in the 0 < a < 2 case seems to be good. For example, in a
simulation experiment, 100 rephcatlons of the process Z,— 04Z, ,, t=
1,2,...,100, were generated where Z, is Cauchy distributed. The mean of the §’s
was — O 40074 with a standard dev1at10n of 0.0790. This compares favorably with
the asymptotic standard deviation of (1 — 62)/n)"/2 = 0.0917 for the maximum
likelihood estimator of # in a MA(1) model assuming the noise sequence is
normally distributed. While comparing variances in this situation may be a bit
misleading, it nevertheless gives an indication of the reasonably good perfor-
mance of f in the 0 < a < 2 case. For some comparisons in AR( p) models see
Bloomfield and Steiger (1983).
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5.3. AR(1). Let {X,} be the AR(1) process X, = ¢X,_, + Z, where |¢| < 1. In
this case, p(h) = ¢/ and estimating ¢ by ¢ = p(l), we have

. 1/«
(n/logn)“(é—¢) = | X (¢ +¢/7 1 —20%)"| S//S,
=
1—¢°
= msl/so-

54. Yule-Walker estimates. The Yule-Walker matrix equation for the
AR(p) model X,=¢,X,_, + -+ +¢,X, ,+ Z, assuming 1 — ¢,z — ¢,2% —
c—¢,2" #0, ]2 < 1,1is
(5.4) R¢ =p,
where R is the p X p matrix [p(i —j)]? j=1 ¢ =(¢y,...,9,), and p =
(p(1),..., p(p)). The Yule- Walker estimate of ¢ is then defined as the solution
of (5.4) with R and p replaced by R = [p(i — j)]7 j—1and p = (p(1),..., p(p)y,
respectively. As in Yohai and Maronna (1977), for z € R” define Y(z) = R(z) 'z

where R(z) = [2,_;]7,;_, and 2, = 1. Since R -, R and R is nonsingular, this
implies ¥(p) is well defined for large n. The mean value theorem then gives

é—o=D(p—p)+0,(p—p),

where D is the p X p matrix of partial derivatives of iy evaluated at p.
Consequently,

t—p

(n/logn)"*($ - ¢) = DY,
where Y = (Y, Y,,...,Y,) with Y, = X% (p(h +j) + p(h — j) —
20())p(h)S;/Sy, h=1,..., p.
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