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IMPROVED CONFIDENCE SETS FOR THE COEFFICIENTS OF
A LINEAR MODEL WITH SPHERICALLY SYMMETRIC
ERRORS
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Under the assumption of normal errors, confidence spheres for p (p > 3)
coefficients of a linear model centered at the positive part James—Stein
estimators were recently proved, by Hwang and Casella, to dominate the
usual confidence set with the same radius. In this paper, the same domination
results are established under various spherically symmetric distributions.
These distributions include uniform distributions, double exponential distri-
butions, and multivariate ¢ distributions. *

1. Introduction. For a standard linear model

(1.1) X=A 6 +o0 ¢,

nXxl nXp pX1 nxl1
assume that the design matrix A has a full rank p, ¢ has an n-variate normal
distribution N(0, I), and hence oe ~ N(0, 02I). For the confidence set problem,
the unequal variance case can be transformed to this equal variance case
when the ratios of variances are known. We focus here on the simpler situation
where the variance o2 is known. The usual 1 — « confidence set for 6 is

(1.2) Cx.o= {0: (0 — )(AA)(0 - §) < c%?},

where § = (A’A)~! A’X is the least squares estimator, and c¢? is chosen so that
P(x,<c®)=1-a

Even though Cy , enjoys many optimal properties (i.e., best invariant; mini-
max; admissible for p < 2), it is inadmissible when p > 3. Thus there exists a
confidence set that dominates Cy ,, i.e., which has the same volume but has
higher coverage probabilities than Cy , for every 6. In fact, the James—Stein
confidence sets C g , are such confidence sets, where

(1.3) Cys,o = {0: (0 = 8,5) (AA)(0 — 8y5) < c’o®)
and

as? T
(1.4) 8(,S=00+\1—(9_00),(14/14)(9_00)} (60— 6,).

The point estimator 8,5, with a being some positive number, is the positive part
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James—Stein estimator (1961) shrinking toward a prior guess 6, of 6. The
existence of confidence sets dominating Cy , was proved independently by
Brown (1966) and Joshi (1967). Constructive results were given in Hwang and
Casella (1984), which imply domination for any positive a less than a specific
bound. The upper bound that is derived analytically depends on c¢? and p but is
about 0.8(p — 2) when Cy , has 0.9 coverage probability and p = 20. The
largest a so that domination maintains is analytically proved to be no greater
than 2( p — 2) but is close to being 2( p — 2) according to their numerical study.
The numerical study in an earlier article by Hwang and Casella (1982) shows
that the largest improvement in probability (which occurs at 6 = 6,) can be
substantial. The history of this problem was discussed therein.

In this paper, we consider the same model as in (1.1), except that ¢ is assumed
to have a spherically symmetric distribution. That is,

(1.5) X = A6 + o¢, e~ f(le)?) pd.f.

(Normally the variance of any component of ¢ is taken to be 1.) We establish
results for a general f with special emphasis on ¢ distributions, double exponen-
tial distributions, and spherical uniform distributions. For a ¢ distribution (with
N degrees of freedom), '

1 ~(N+p)/2
(1.6) f(lel?) = constant(l + _1\—7|8|2) ;

for an exponential distribution (with parameter k)
(1.7) f(le|?) = constant eI,

The specific probability density function of the spherical uniform distribution is
given in (2.6). Model (1.5) has been considered in the literature. In particular,
when ¢ has a ¢ distribution, it was used by authors cited in Zellner (1976) to
model some practical situations. Under model (1.5), the usual least squares
estimator and its corresponding tests were studied to some extent by Thomas
(1970), Zellner (1976), and Box (1952 and 1953) and others. See Chmielewski
(1981) for an excellent survey.

Note, for virtually any distribution having # as a location parameter, Brown
(1966) has proved, for p > 3, the existence of confidence sets dominating Cy ,.
However, no constructive results have been obtained.

In this paper, we prove under (1.5) the domination of C,s , over Cy , for a
less than a given bound. The upper bound, in general, depends on the underlying
distribution. However, for many classes of flat tailed distributions that include
multivariate ¢ distributions, double exponential distributions, and uniform distri-
butions, the corresponding upper bounds are greater or approximately equal to
@y, the upper bound for the normal case. Therefore, the superiority of Cjg ,
over Cy , as proved by Hwang and Casella (1984) for the normal case, has been
broadened to these classes of distributions.

In Section 2, we prove a general theorem (Theorem 2.2) that relates the
domination result of C,5 , over Cy , to a measure of flatness of the assumed
distribution. See also Corollary 5.2. Sections 3 and 4 contain some stronger
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results for the ¢ distributions and double exponential distributions. Section 5
provides conditions on a which are necessary and are nearly sufficient for the
domination of Cjg , over Cy ,. This is based on the study of the coverage
probability of C,s , when |f] is large. In many cases, the largest possible a for
domination is at least 2(p — 2).

Note that our theorems also establish the minimaxity of Cg , for a wide class
of spherically symmetric distributions since C,g , is superior to Cy ,, which is
proved to be minimax by Hooper (1982).

Previously, in the context of point estimation, the point estimators of the
form §,5 , have been shown in Strawderman (1974), Berger (1975), Brandwein
(1979), and Brandwein and Strawderman (1978 and 1980) to dominate 6 for
various spherically symmetric distributions and varioys losses. Our results here
can also be considered to be their counterpart, namely the establishment of
improved confidence sets associated with their point estimators.

2. Domination results and their implications. To study the model (1.5),
we can assume without loss of generality that it has a canonical form representa-

. . A . . .
tion, i.e., A = | '|, where A, is a p X p nonsingular matrix. Furthermore, we
0

apply a linear transformation
§ - 0*=(Aa14,)"%(6-6,) and 6 —6*=(AA,)"*0-4,)

and note that 6* has the same distribution as e, + 0* where ¢, is the vector of
the first p components of e. The distribution of ¢, is also spherical. Even though
the p.d.f. of ¢, is obviously different from that of e, it will be denoted as f(-)
below. However, if ¢ has a n-dimensional ¢ distribution with N degrees of
freedom, then ¢, has a p-dimensional ¢ distribution with the same degree N. By
using the new variables 8* and 6*, we can now assume without loss of generality

that model (1.5) is
X,=0+¢,
where X, is the first p components of X. Also, since 6% is known, we can assume

without loss of generality that it is 1. Suppressing the subscripts p in X, and ¢,
leads us to write the model (1.5) as

(2.1) - X=0+c¢, e~ f(le]*) p.d.f.
Now Cy , and Cjg , are reduced, respectively, to

(2.2) Cy = {0:10 — X|* < c?},
and

(2.3) Cyo = {0: 10 — 84 X)* < c2),
where

a“(X)=(1—%)+X
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Note that in all the examples considered in this paper, f is decreasing.
(Throughout all the paper, decreasing means nonincreasing. Similarly, increasing
is equivalent to nondecreasing.) Hence C, is best among the invariant set
estimators in the sense that Cy has minimum volume among the invariant set
estimators with coverage probability at least 1 — a = P(6 € Cy). Furthermore,
Cy is minimax. That is C, minimizes the maximum of the volumes among all
the set estimators with confidence coeflicient (or minimum coverage probability)
at least 1 — a. See Hooper (1982, Theorems 1 and 2).

In this section, we will develop theorems that relate the domination of Cj.
over C to a quantity that measures the flatness of f. Readers more interested in
t or exponentially distributed error may read the next sections first without
much difficulty.

DEFINITION 2.1. The quantity f/(s)/f(s), when it is defined, is called the
relative increasing rate (RIR) of f at s.

The RIR of f measures the rate of increase of f relative to f and is usually
negative. If f has a large RIR, f dies out to zero slowly and consequently f has
a heavy tail. On the other hand, if f is very small (or very negative), f has a
sharp tail that dies out to zero quickly.

In the special case that X ~ N(6, 02I), the RIR is a constant function equal
to —(202%)"'. The following theorem states the domination results and will be
proved at the end of this section.

THEOREM 2.2. Assume that the RIR of f(s) is defined for every s, a, < s <
a,, where

(2.4) ay = [(C —Va)' ]2 and

a, =c*+a.

If a > 0 is such that

. f(s) —(p—2) |c+Vet+a
(2.5) N T e P ln[ Ja ]

then the coverage probability of Cs. is higher than Cy for every . Since Cs. has
the same volume as Cy, Cs« dominates Cy.

The following corollary gives some insight about the a’s that satisfy (2.5). The
proof is straightforward and is omitted.

COROLLARY 2.3. When p > 2, the solutions of a to the inequality (2.5) form
an interval (0, a,] where a, > 0. If the left-hand side of (2.5) is continuous in a,
then a, is the unique solution to (2.5) with the inequality replaced by an equality.
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When X ~ N(0, 6%I), the left-hand side of (2.5) is then the RIR, —(202) .
Theorem 2.2 and Corollary 2.3 then reduce to Theorem 2.1 of Hwang and Casella
(1984) which is stronger than the domination result in Hwang and Casella (1982).
Using a programmable calculator, one can calculate the upper bound a,. For the
normal case with ¢ = 1, the numerical values of a,, denoted as a,,, were
reported for selected values of c¢? and p in Hwang and Casella (1984) and are
reported in Table 1 (N = ) for convenience of further discussions.

Theorem 2.2 and Corollary 2.3 apply to virtually any spherically symmetric
distributions. In applying these theorems, the calculations are usually straight-
forward. See Hwang and Chen (1983) for results concerning other distributions.

.

TABLE 1

Values of bounds «, for domination under multicariate t distri-
bution with N degrees of freedom. For concenience of compar-
ing to the normal case, ¢* were chosen so that P( X}l, <c?) =
0.90. Values of ¢* are given in Table 2.

N p=3 p=5 p="1 p=9
1 0.866 1.887 2.702 3.438
3 0.792 2.081 3.003 3.811
5 0.746 2.220 3.240 4.123
7 0.716 2.324 3.431 4.384
9 0.695 2.401 3.586 4.605

10 0.687 2.396 3.653 4.703

15 0.659 2.345 3.913 5.098

20 0.642 2.310 4.019 5.380

25 0.632 2.284 3.990 5.591

35 0.618 2.250 3.947 5.652

45 0.614 2.228 3.917 5.621

55 0.605 2.213 3.895 5.596

90 0.596 2.184 3.850 5.540

o 0.580 2.132 3.760 5.413

N p=11 p=15 p=20 p=25
1 4132 5.449 7.018 8.539
3 4.556 5.940 7.560 9.112
5 4.924 6.385 8.065 9.657
7 5.242 6.787 8.56356 10.172
9 5.519 7.150 8.971 10.658

10 5.644 7.318 9.117 10.890

15 6.162 8.043 10.097 11.954

20 6.547 8.616 10.863 12.870

25 6.843 9.076 11.503 13.661

35 7.265 9.764 12.508 14.946

45 7.323 10.251 13.252 15.937

55 7.229 10.613 13.824 16.718

90 7.240 10.645 14.882 18.489

x 7.079 10.434 14.653 18.890
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For double exponential distributions and ¢ distributions, the a, are small.
Fortunately, these upper bounds are enlarged in Sections 3 and 4. Even though
Theorem 2.2 is weak for these special cases, it reveals clearly the relationship
between the domination result and the RIR. For another perhaps more signifi-
cant connection, see the first paragraph after Corollary 5.2.

Theorem 2.2 asserts that if the RIR of f is uniformly bounded below by a
certain bound, depending on p, ¢, and a, Cs. dominates Cy. Therefore, the
message is clear: Stein’s set estimator dominates Cy if the tail is heavy enough.
This is probably due to the fact that James-Stein estimator is a shrinkage
estimator.

We can also apply Theorem 2.2 to a spherical uniform distribution.

COROLLARY 2.4 (p = 2) (Uniform distribution over a sphere centered at the
origin with known radius). Suppose that the p.df. of e = X — 6 is

(2.6) f(le]?) = constant if |¢] < R,

=0 otherwise.

Then Cy. dominates Cy if 0 < a < (R? — ¢?).

In deriving Corollary 2.4, note that (2.5) is automatically satisfied for p > 2 as
long as the RIR is well defined. This is equivalent to a < R? — ¢?. Also note that
if the true distribution is uniform and if Cy has coverage probability 1 — a < 1
then ¢? < R? and hence the condition on a is not vacuous. A striking feature is
that even for p = 2, Cx can be improved by Corollary 2.4. This is not very
surprising in light of the fact that the best location invariant set estimator is not
unique which implies that Cy can be uniformly improved even for p =1 as
shown in Farrell (1964).

The remainder of this section will be devoted to the proof of Theorem 2.2. We
will need the following two lemmas which will also be useful in dealing with the ¢
distributions and double exponential distributions in Sections 3 and 4.

Assume as in (2.1) that the p.d.f. of X is f(|x — 6]|%). To prove the domination
of Cs. over Cy, we follow the technique developed in Hwang and Casella (1984).
We consider two regions of §: |f| < ¢ and || > c. For the first case, we have the
following lemma.

LEMMA 2.5. For |0 < cand a > 0,

(2.7) P(6 € Cy) > P(8 € Cy).

ProoF. The proof is similar to the proof of Theorem 2.1 in Hwang and
Casella (1982) and is hence omitted. O

Below we need only focus on the situation |f| > c. For such a region a formula
for d/da P(0 € C;.) is established in Lemma 2.6. Note that the domination
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results can be proved for a € (0, a,] if one can show that for every a € (0, a,],
i P(feCs)>0
-— S a) >0,
da 8

since this implies that for all a € (0, a,]
a—0"

due to the continuity of P(f € Cs.) as a function of a.

Define
a +
=1 - —
ur)=(1-%)
a(r) =a(r,B) =r*— 2r|lcos B + |62,
p—2 - )
(2.8) Q=2]] [ sin"!(¢)dt,
i=170
and
. c T
B, = sin (m) < 3

Also let r, be solutions to

r.u(r,) = |0lcos B + yc* — |0)°sin® B

(2.9) def

le.,

(2.10) r.(a,0,B8)= (r‘l{+ V(r‘i’)2+4a)/2.

Using these notations and a spherical transformation, one can write
By [t .
(2.11) P8 € Cy) = Qf’f P~ lsin?~28f(a(r)) drdp.
0 Yr.

Now the derivative formula of Hwang and Casella (1984) can be generalized to
this case. The straightforward proof, which is omitted, is based on interchanging
the order of.differentiation and integration, and the fundamental theorem of
calculus.

LEMMA 2.6. Assume that |8] > ¢ and that f(a(r)) is a continuous function
on the set of (r,B) such thatr_<r<r,and 0 < B < B, Then

9
(2.12) —Py(0 € Cy) = 2["m(a,0,B) dp,
da 0

where

(2.13) m(a,0,B) = Sin,,zﬁlri’f(a(m)) _reflatr)) |

r’+a r’+a
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PRrOOF OoF THEOREM 2.2. By Lemma 2.6., we need only show that for all 8,
0<B<p,and 0, 0] > c,

m(a,6,B) >0,
which is clearly equivalent to
ro\" 2 fa(ry)) 1+ar?
(_) fla(r_)) "1t ar?
Since r, > r_ for all 0 < B8 < B,, (2.14) could be established if one could show
(m )”‘2f(a(r+))

2 B TPE30) Rt

(2.14) -

(2.15)
or equivalently,
r
(2.16) gla(r,)) - gla(r)) = =(p = 2)n—,
where g(s) = In f(s). By the mean value theorem, g(a(r,)) — g(a(r_)) equals
g'(s)a(r,) — a(r_)) for some number s between a(r_) and a(r, ). Now
(2.17) a(r,) —a(r.) =(r, —r_)(r, + r_— 2|6|cosB).
From (2.9),
2|0|cos B = r+ ro.
Since (2.9) and (2.10) imply r, > r_ > Va,

( ) a\* ) a
r = _— = - —,
A =
which, together with (2.9), imply that
a a
2|0lcosB=r,——+r_——.
r r

+ _

Substituting this expression for 2|6|cos 8 in (2.17) shows that
r., r_

(2.18) . a(r+)—a(r*)=a r——r— >0

- +

and that (2.16) is equivalent to

ag’(s)(t - %) > —(p—2)logt,

where ¢ denotes r,/r_. The last inequality can be established if we require that

. p—2 log ¢
(2.19) inf g'(s) = — inf .
a(r y<s<a(r,) a 101> ¢ t— l/t

0<B<fy

Differentiating the function (logt)/(t — 1/t), dropping the denominator, and
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differentiating the numerator again show that

log ¢ . o
(2.20) is decreasing in ¢, t> 1.
t— 1/t
Hence the right-hand side of (2.19) attains its infimum at ¢ = ¢*, where
def
t* = supt .
101> ¢
0<p<p,

It can be shown as on page 9 of Hwang and Casella (1984) that ¢ is decreasing in
B and |6|, and consequently

3 N
(221) t* = t||0|=c= i}_%-a
B=0 a

and

t*___‘__

2¢
t*  Va

Therefore (2.19) is equivalent to

—(p—-2 c c+a
inf g'(s) = (2];/5 )log[ i ‘/E+ }

alr )<s<a(r,)
Comparing this inequality with (2.5) and noting g’(s) = f'(s)/f(s), we would
have established Theorem 2.2 if we could show

(2.22) a,= inf a(r_
0 i
0<B<p,
and
(2.23) a, = sup a(r,),
1 +
6|>c
o|</|;</;(,

where «, and «, were given in the statement of Theorem 2.2. These two
equations are established in Lemmas A.3 and A.4 of Hwang and Chen (1983) and
Theorem 2.2 is proved. O

For a multivariate ¢ distribution and a double exponential distribution,
Theorem 2.2 can be strengthened, which will be the goals of the next two
sections.

3. Refinement of the domination results for the multivariate t distribu-
tion. In many distributions including normal distributions, ¢ distributions, and
the exponential distributions, the RIR f’(s)/f(s) is an increasing function. (In
other words, In f is convex or f is log convex.) In this section we take advantage
of such a fact and derive some stronger theorems. Even though we mainly focus
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on t distributions, the ideas can be grasped more easily if the general results are
presented first.

THEOREM 3.1. Assume that X ~ f(|x — 6|%) and f is log convex. Let a, and
t* be as in (2.4) and (2.21). Then Cs. dominates Cy provided that

(3.1) inf A(¢) > —(p-2),

1<t<t*
where

g(a(t -t + 0‘0) - 8(ay)

- and g(s) =1n f(s).

h(t) =

Proor. Applying (2.18) and using the notation t=r +/Tr_ show that (2.16) is
equivalent to

gla(r)) +a(t—t") — gla(r.))
In ¢
Since a(r_) > a, and g is convex, the left-hand side is greater than or equal to
g(a(t —t7") +ay) — g(a)
In ¢ '
This together with (3.1) imply the theorem. O

(3.2) > —(p-2).

Minimizing h(t) is usually quite difficult. However, with the help of the
following Lemma 3.2, it can be solved for ¢ distributions and double exponential
distributions. An empty set and a single point set are called degenerate intervals.

LEMMA 3.2. Assume that g is differentiable. Suppose the set of t > 1 such
that
p—2
t

is an interval ( possibly degenerate or possibly with infinite length). Then (3.1) is
equivalent to (i) K(17) > —(p — 2) and (ii) h(t*) > —(p — 2).

(3.3) +ag(a(t—t ) +a))1+t2)=20

Proor. Clearly (i) and (ii) are necessary for (3.1). To prove that (i) and (ii)
are sufficient, note that (3.1) is equivalent to

(34) (p—2)nt+gla(t—t") +ay) —8(ay) =0, Vt,1<t<t*

The derivative of the left-hand side of (3.4) is exactly the left-hand side of (3.3)
which by assumption has an interval solution. If this interval is degenerate, then
(i) and (ii) clearly imply (3.4) and this lemma is proved. If this interval is not
degenerate, let A, Ay,1 <A, < A, < oo be the endpoints. Below, we show that

. = 1 and hence the left-hand side of (3.4) is increasing for ¢ € [1, A,] and is
decreasing for ¢ > A,. This should imply that (3.4) holds for ¢, 1 < ¢ < ¢*, since
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(3.4) holds for ¢ = 1 by trivial observation and also holds for ¢ = ¢t* by condition
(i1). This would have established this lemma.

To show A, = 1, all we need to do is to show that (3.3) is satisfied for ¢ = 1.
Now condition (i) and 'Hospital’s rule imply

~(p—-2)<h(1") = atg’(a(t -t + 0‘0)(1 + 7)) o0s
which is equivalent to (3.3) for t = 1. O

Theorem 3.1 and Lemma 3.2 can be applied to the ¢ distributions and the
double exponential distributions and yield domination results stronger than
Theorem 2.2. Here, we concentrate on ¢ distributions, since the results for the
double exponential distributions can be further improved in the next section.

CoRroLLARY 3.3 (Multivariate ¢ distribution). For p > 2, Cs. uniformly
dominates Cy provided 0 < a < a,, where a, = min(a,, a,),

2
p—2)\2 N+ ¢?
]2 et 2
a, mm{c,(N+2) »c \/c+p_2(N+2)

if (p—2)=<c?

N+p

= —9 ;
N+p (p—2) otherwise,

and a, is the unique solution to
2Ap-2)/N+p 2()\/(7
1 —
( N+{2C\/E+[(C—\/E)+]2})

c+ Ve +a
— = 1.

Va

Proor. For multivariate ¢ distributions, (3.3) is equivalent to

(3.5) p-2 1+t N*p 0
: —— —a(l+t >
t . )2(N+a(t—t’1)+a0)

u(t)"if(t+ %) - m(t— %) < %(N+ a,),

where m = 2(p — 2)/n + p. Clearly the derivative of u(¢) is increasing in ¢ and
hence u(t) is convex. Therefore the solutions to (3.5) form an interval. Applying
Theorem 3.1 and Lemma 3.2, and solving conditions (i) and (ii) yield this
corollary. O

Numerical values of a, for the multivariate ¢ distribution are reported in
Table 1. Note in Table 1, that the a, are, in many cases, comparable with a,,
whose values were given in the same table under N = co. Hence the domination
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results for the normal case as established in Hwang and Casella (1984) hold for
many multivariate ¢ distributions by Corollary 3.3. Numerical studies in Hwang
(1983) and the asymptotic results in Section 5 show that under multivariate ¢
distributions Cs. usually dominates Cy even when a = 2(p — 2).

4. Refinements of the domination results for the double exponential
distribution. Even though the technique developed in previous sections ap-
plies also to the double exponential distribution and yields larger a’s than
Theorem 2.2, we can do even better by another approach to be described here. In
establishing the domination results, as before, all we have to do is to establish a
sufficient condition for (2.16) or equivalently

aef g(a(r,)) — gla(r ) -
(4.1) L(61, B) o > -(p-2).
The difficult in deriving a sufficient condition for (4.1) is that L depends on |8
and B in a fairly complicated manner and consequently the minimum over all |6|
and B is hard to find. Under the condition of the following lemma, we were able
to show that L is minimized at 8 = 0 and hence the remaining minimization
problem involves only |#| which is considerably simpler.

LEMMA 4.1. Assume that g(t) is convex and decreasing and g’ is concave.
Then for every |0, L(|6|, B) is increasing in B and consequently for every 0,
L(|6), B) is minimized at B = 0.

Proor. Write

gla(r,)) — gla(r.)) Ha(m) - a(r_)}

L(#), ) = o

(4.2) a(r+) _a(r—)
def
“'R.R,.

From (2.18), R, = a(¢ — t"')/log ¢t and by (2.20), R, increases as ¢ increases.
Since ¢ decreases as 8 increases, so does R,. Now because R, is nonpositive, to
establish the lemma, it suffices to show that —R, is decreasing or R, is
increasing in B. This can be shown as in Lemma 3.5 of Hwang and Chen (1983).
The arguments are fairly technical and are omitted. O

The assumptions of Lemma 4.1 are satisfied for multivariate ¢ distributions
and double exponential distributions. Now under the assumptions of Lemma 4.1,
a sufficient condition for domination is

L(|6),0) > —(p — 2) forevery |0] > c,
which by (2.9) and (2.10), is equivalent to
g((r, = 10)%) - g((r_— 161)")

log(r,/r_)

(4.3)
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where

rilg=0= %[|0| +c+ V(0 )"+ 4a].

If one could find the minimum of the left-hand side of (4.3), in general, one would
have established domination results stronger than Theorem 2.2 and Corollary
3.3. However, solving this minimization problem, in general, is very difficult. So
far, we have only been successful for the double exponential distribution. The
result is reported in the following theorem.

TaeoREM 4.2 (Double exponential distribution). For p > 2, Cs. uniformly

. . . def . .
dominates Cy provided 0 < a < min( %, a;) = a, where a; is the unique solu-
tion to ’

(4.4)

c+ ‘/’E +a (p—2)/k
(—‘/—c;———) “exp{—Vc*+a +c—\/5}=1
a

Proor. Note that g(s) = — ks . To establish (4.3), we show that under the
condition a < ¢2, L(|0],0) is minimized at || = c. Since the condition L(c,0) >
—(p — 2) is equivalent to 0 < a < a;, we will have established the theorem.
Now similar to (4.2), write

a(t—t") gla(r,)) — gla(r_))

L(|8],0) =
(161,0) log ¢ a(r,) —a(r_)
B=0
_a(t—t_l) (-K)
logt Ir,— 1611+ r_— 16]|,_,

Note that r, > |6] and since, a < c?, that r_ < |6|. Therefore

Iry = 100+ 17 = 101l o= —7- lg—or

which equals
(4.5) (1] + ¢) — ¢(16] — ¢),

where ¢(s) = [s + Vs? + 4a]/2. Since ¢(s) is convex, (4.5) increases in |6|. The
function — L(|6],0) thus decreases in |6], since a(t — t~')/log t increases in ¢ by
(2.20) and ¢ decreases in ||. This implies that L(|6},0) increases in || and the
theorem follows. O

Note that Theorem 4.2 is very strong in that it specifies a very large upper
bound on a. This bound, aj, is probably very close to the best bound that one
can establish using the technique of Hwang and Casella (1984). As in Table 2, for
k=1, a, is larger than p — 2, the traditional choice of a in the point
estimation problem. If one considers the & so that the common variance is 1,
then £ = /p + 1. (In general the variance equals (p + 1)/k%)For k= /p + 1,
a,, is also reported in Table 2 and is less than but close to a,,, as reported in the
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TABLE 2

Values of bounds for domination. The c? are chosen so that
P(xf, <c?) =09.

N8, I) k=1 k=\p+1

c? anr ag ag
3 6.251 0.580 1.448 0.643
4 7.779 1.339 3.408 1.401
5 9.236 2.132 5.650 2.158
6 10.645 2.942 8.129 2.906
7 12.017 3.760 10.804 3.646
8 13.362 4.585 a 4.378
9 14.684 5.413 a . 5103
10 15.987 6.245 a 5.822
11 17.275 7.079 a 6.537
12 18.549 7.915 a 7.246
13 19.812 " 8.754 a 7.952
14 21.064 9.593 a 8.654
15 22.307 10.434 a 9.353
16 23.542 11.276 a 10.050
17 24.769 12.119 a 10.743
18 25.989 12.963 a 11.435
19 27.204 13.808 a 12.124
20 28.412 14.653 a 12.811
21 29.615 15.500 a 13.496
22 30.813 16.346 a 14.180
23 32.007 17.194 a 14.862
24 33.196 18.042 a 15.542
25 34.382 18.890 a 16.211

#The value is the same as the value of ¢? in the first column and
the same row.

same table. Hence most of the domination results for the normal case established
in Theorem 2.1 of Hwang and Casella (1984) stand under the double exponential
distribution with common variance 1.

It is unfortunate that we failed to establish a theorem similar to Theorem 4.2
for the multivariate ¢ distribution. The corresponding expression on the left-hand
side of (4.3) becomes very messy and we cannot find the minimum. If we were
able to show that the minimum occurs at |f| = ¢, we would have shown that
domination results hold for a < a, rather than @ < min(q,, a,) as needed in
Corollary 3.3. This would establish a larger interval of a for domination.
However, numerical study also shows that |#| = c is not the minimum point of
the left-hand side of (4.3) unless there are further conditions on a and c?.

5. A necessary and nearly sufficient condition for the domination of C;.
over Cy. In the previous sections, we provided sufficient conditions for Cy. to
dominate Cy. In most cases, a was less than p — 2, the traditional choice of a in
the James—Stein point estimator. Here, we provide some evidence that the range
of a is probably at least twice as large as what was given earlier.
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In this section, we use an asymptotic formula (5.1) (as |#] — o) to derive
necessary conditions (Corollary 5.2). We provide some evidence that these
necessary conditions are close to be sufficient. Theorem 5.1, generalizing Theo-
rem 3.1 of Hwang and Casella (1984) for the normal case, can be proved by using
Taylor expansions and some tricky applications of integration by parts. For the
details, see Hwang (1983).

THEOREM 5.1 (p > 2). Assume that f"(t) exists and is continuous in t,
0<t<c If

@) fm< F(1Y12) dY | < oo,
(i) . V |Y1%(1Y|?) dY | < oo,
Yi<e
and
(iii) lim ¢7f(¢%) = lim tPf'(¢%) = 0,
t—0 } t—0

then, as |0] — oo

Qac”?
plo®
where 1 — a = P(0 € Cy) and Q is as in (2.8).

(5.1) P(€Cp)=1—a+ [(p - 2)f(c®) + af(c?)] + o(16172),

The assumptions in Theorem 5.1 are not restrictive and are satisfied by
normal, double exponential, and multivariate ¢ distributions. Theorem 5.1 can be
used to provide conditions necessary for the domination of Cy. over Cy.

COROLLARY 5.2. Under the assumptions of Theorem 5.1, necessary condi-
tions for the domination of Cs. over Cy are a > 0 and

(5.2) af’(c®) + (p — 2)f(c*) 2 0.

PrROOF. Obviously if Cs« dominates Cy then a > 0. (Otherwise if a < 0, Cj«
has smaller coverage probability than Cy at |§| = 0 and if a = 0, Cs« and Cy are
identical.) Inequality (5.2) follows directly from (5.1). O

If f(c?) > 0, condition (5.2) is then equivalent to
f(c?) p—2
> — .
f(c?) a
Note that the left-hand side is exactly the RIR. Therefore, (5.3) implies domina-
tion for large |6 if the tail of the underlying distribution is flat enough.

Due to the shrinkage nature of 8¢, one expects that for small |8|, §¢ and Cj«
perform better than X and Cj, respectively. In fact, by Lemma 2.5, the coverage

(5.3)
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probability of Cs. is higher than Cy for || < c as long as a > 0. Therefore, it is
moderate |@| that are of concern.

For moderate |6|, one can expect the coverage probability to be reasonable.
Exact numerical computations of the coverage probabilities of Cs. performed in
Hwang (1983), using (2.11) show that this is the case. It turns out that if a
satisfies the necessary conditions in Corollary 5.2, then Cj. is close to dominating
Cy. In fact, with the addition of the condition

1 - S Po(o S5 Csu)!0=c‘
(5.4) = (2.11) with |6 replaced by c in the definition
of B,and r,,

these would become sufficient according to the numerical studies in Hwang
(1983), and, given (5.2), (5.4) is not much of a restriction.

Next we apply Corollary 5.2 to various distributions. The necessary condition
is0<a<2(p-—2)for N0,I); 0<a<2(p—2)c/k for the double exponen-
tial distribution (2.4); and 0 <a <2(p — 2N + ¢?)/(N + p) for a multi-
variate ¢ distribution. If we have chosen ¢ according to a normal distribution
(ie, P(x} < c¢)=1- a), c* is larger than p (unless 1 — « is smaller than 0.6)
and hence the upper bound for the multivariate ¢ distribution is larger than
2(p — 2), i.e., the bound for the N(6, I') distribution. If £ = 1, ¢ is usually larger
than 1 (unless 1 — « is less than 0.01); hence similar conclusion holds for this
double exponential distribution. Even if £ = /p + 1 (so that the component
variance is 1), the upper bound for the exponential distribution is usually larger
than 2(p — 2) (unless 1 — a is less than 0.75). Hence, again, the domination
results for the normal case usually hold for the multivariate ¢ distribution and
the double exponential distribution with & =1or k= /p + 1.
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