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BEHAVIOUR OF THIRD ORDER TERMS IN QUADRATIC
APPROXIMATIONS OF LR-STATISTICS IN MULTIVARIATE
GENERALIZED LINEAR MODELS

By CHRISTIAN KREDLER

Technical University, Munich

The size of error is investigated when the log-likelihood of multivariate
generalized linear models is approximated by a quadratic function. The
nonquadratic tail is characterized by analyzing the cubic part of the log-likeli-
hood. In a local analysis simple bounds for that part can be expressed in terms
of expectations of the related random variables for arbitrary sample size N.
Additionally global error bounds are given for the univariate case.

Introduction. In many applications the log-likelihood is approximated by a
quadratic function. An adequate approximation and the corresponding asymp-
totic theory ensure that the classical linear regression results apply to nonnormal
models as well; cf. Lawless and Singhal (1978). The adequacy depends on the
parametrization (cf. Section 2) and on the size of the global approximation error,
for which until now no bounds have been published.

However, the investigations of Minkin (1983) and of this paper may be viewed
as steps in this direction. Both articles assess local errors in the main. Minkin
(1983) considers independent observations y;, of a univariate one parameter
family and the linear relationship §;, = xﬁ,B. He gives relative and absolute
bounds for the approximation error in a region R, characterized by a quadratic
form using the information matrix

Q(B.B)=(B- B I(BYB - B),
namely
Ra = {BlQ(.B’ B) < a}'

Minkin’s bounds depend on the analysis of more or less complicated remainder
functions. The paper treats logit and log-linear models explicitly, which are
special cases of univariate generalized linear models (GLM’s); cf. Nelder and
Wedderburn (1972).

In this article global error bounds for logit, log-linear, and models depending
on the gamma distribution are presented. The main subject, however, is a local
analysis of the relative quadratic approximation error in multivariate canonical
GLM'’s. Hence we cover the important multinomial case. )

In Section 1 the third derivative structure of an exponential family with
canonical parametrization is analyzed. A general technique for obtaining bounds,
applicable to all distributions of this kind, is derived in Section 2 and explicit
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results for the Poisson, gamma, and multinomial distribution follow. In any case
it turns out that the size of the cubic terms compared with that of the quadratic
one is of the same order as the relative deviations in the expectations of the
related random variables.

In the general multivariate case only local error bounds are available. Never-
theless they reveal what really happens in the nonquadratic tail. In Section 3 this
can be seen by comparing global and local errors for the univariate distributions
mentioned above. The results can be used in Section 4 to obtain a bound for the
cubic error terms in the quadratic approximation of likelihood ratio (LR-statis-
tics in GLM’s which is valid for arbitrary sample size N.

Finally it is shown how the results can be used to test linear hypotheses in
common GLM applications, like log-linear models or contingency tables. A special
multinomial regression model with continuous factors, namely the logistic dis-
criminant approach [cf. Anderson (1972)], completes the last section.

1. Third order properties of exponential family densities. Before we
can treat the subject of our paper we summarize some properties of exponential
families in canonical parametrization and the multinomial distribution which are
needed later.

Consider a discrete or continuous random variable Y = (Y;) € R? having an
exponential family density

(1) f(16) = c(y)exp{y™0 — b(8)}

with respect to the counting or Lebesgue measure. The canonical parameter
6 = () € R? is not involved in c. The partial derivatives of b, b,
bjxs bjps» - - - generate the cumulants of Y. With

@ p=(r;) = E(Y)=(b),

2 = (ojk) = COV(Y;', Yk) = (bjk)’ etc.

According to Barndorff-Nielsen (1978) the correspondence between 8 and p is one

to one and there is a scalar function g(p), namely the Legendre transform of b,
with partial derivatives g,, &,, &8ss .- such that

6, =g,(n),

(3) )
2 t= (grs(l"‘))’
and
(4) bjkl= - Z grst(p')orjoskotl’ j» k7 l1 r, S,t= 1,---,Q-

r,s,t
The partial derivatives of g(-) appear in related calculations by McCullagh
(1984). If we regard the third derivative tensors B = (b;,), G = (&,,,) as oper-
ators with three arbitrary arguments u,’v, w and & = 3u, v = Z2v, and w =
Sw € RY, respectively, we obtain from (4)
Blu,0o,w]= X bjp Ry = — Y 8rsll, O,
(5) I k1 r,s,t
= —G[Zu, =v, Zw].
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Finally we give the expressions above explicitly for the multinomial case, because
these relations are needed in the proofs of the subsequent section. There the
factorization (5) and the simple structure of G play a fundamental role.

Since the multinomial Y = (Y,,Y;,...,Y,)" with E(Y) = (7, m,..., 7,)",
m, + -+ +m, = 1 has a singular distribution, Y, does not appear in (1). We obtain
b(6) = In(1 + e® + --- +e%) and with the Kronecker delta 8,

-1 ]‘ 8"8
(6) 2 =(grs)= —+—1,
T T,
1 srssst
(7) G=(gu)=|—=—-——71| r,s,t=1,...,q,
Ty m,
and hence with u, o, w from (5)
0 8Ly, 0,0] = 27(r,(,3))5,

where

w,
T = 8’877_; -Yw/n? and 7= (wj).
t

r

2. Local error bounds in quadratic log-likelihood approximation. For
normally distributed random variables with known variance the log-likelihood is
quadratic in the mean value parameter. Outside of this special case
(9) L(6) =1n f(y|0)
is often approximated by some quadratic function. The adequacy depends heavily
on the parametrization used. Here we investigate quadratic Taylor polynomials
for the canonical parameter 8. In this case derivatives of order greater than 1 do
not involve the random variable y. Hence the bounds given in Section 4 for
GLM’s are valid for every sample size N (not only asymptotically). Here we
present our results concerning the structure of the cubic terms in exponential
family log-likelihoods. Global bounds are to be found in the subsequent section.

L(8) is expanded about some fixed 6* and p, p* denote the corresponding
expectations. It turns out that relative errors in the components of p and p* are
responsible for an inadequate quadratic approximation, i.e.,

With the quadratic form
(10) Q(6,6%) = (6 - 6%)"S(6*)(6 - 6%),
the Taylor expansion of L(#) is

IL.—“*
c=0(max - 7

J

By

L(6) ~ L(6*) = (y = #*)"(6 = 6*) = 3Q(6, 6*)(1 + }p4(6,6%))
+R,(0,6%),
where —p,Q/6 and R, describe the terms of order 3 and 4, respectively.

(11)



QUADRATIC LR STATISTIC APPROXIMATION 329

2.1. The univariate case. For simplicity we first present the results for
univariate Y, i.e., ¢ = 1. Denote by 5’ and g the j-order derivatives of b and
g, respectively (e.g., g® = g,,,), and let 03 = b®(8*) = 6,,(6*). Now (11) can be
written as

azy DO L) = (k=)0 - 6%) — jol(0 — 0"
x [1 + 56@(6%)(8 — 6*) /03] + R(8,6%).
From the results of Section 1 we deduce

(13) 60" - (—’:”—) +O(p— p)

%*

Together with (5) this shows that p; and

(14) py = —8¥(p*)oi(p — p¥)
differ only by terms of order 2. Hence we can replace p; by p% in (11) and get a

new remainder R* which is of the same order as the original R, (as p; is
multiplied by @). Using the notation of (3) we obtain

(1)  6=In(p) =g (r); &%¥nw)=-p"%  o=p=>0%(6)
for the Poisson and for I'(v, y) gamma variables:
0=—y=-v/n=2gn);

g¥(p) = —2m7%  o%=p/r = b2(0).
This leads to our first crucial result:

(16)

THEOREM 2.1. Size of p% for Poisson and gamma distribution. The relative
size of the cubic terms compared with the quadratic ones in (11) is
I — p

* b

(17) lp3| = C

where Cpyigeon = 1, Coamma = 2-

2.2. The multinomial case. In the multivariate case p; of (11) can be replaced
again by p¥*. After this we can formulate the following theorem for the quadratic
approximation error of the log-likelihood:

THEOREM 2.2. Size of p% in the binomial and multinomial case. Let =, ..., w,
as given in Section 1; then for ¢ = 1 (binomial) we obtain
@ —ar  my— a

(18) py=—7p—+
ar

oy ’
whereas for g > 1
—_ 4”*

Kt m
(19) lo% < 2/(q +1) ,max — .

<m<gq T
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The bound in (18) is slightly stronger than (19) for ¢ = 1. The additional factor
(g + 1)'/2 is due to Lemma 2.5 ( formulation to follow).

Before proving (18)-(19) we expose how these results can be used in practical
applications.

REMARK 2.3. Size of quadratic approximation error. From the theorems we
conclude that the relative size of the cubic terms is small if the leading digits of
the expectations p and p* coincide. In Section 3 we show that small p, yields a
small global approximation error R, under very general conditions. Hence the
approximation error is given in the main by the simple formulas (17)-(19).
Conversely, if the leading digits of p and p* differ, the quadratic approximation
may be bad. So we have derived a simple criterion for the adequacy of quadratic
log-likelihood approximations of exponential families (and as we see in Section 4,
of GLM’s), which can be easily checked during a computational procedure.

ProoF oF THEOREM 2.2. For the special binomial case we obtain with (7)
and 7y =1—-m

. *1—2'/71* . 1 1
(20) P3=(W1_7’1)W=(‘”1_7’1)W_1*_;6;’

which is the same as (18). O
Since the proof for multinomial Y is tedious only the main steps are sketched.

OUTLINE OF THE PROOF FOR MULTINOMIAL Y. Let 2 :=2{6*} and T(-} =
(7,{m*, -}) which are positive definite or symmetric, respectively, and further
7= (T, wq)T and e = (1,...,1)7. We need two linear algebra lemmas which
are stated without proof:

LEMMA 2.4. Factorization of the spectral radius r of a symmetric product.
For arbitrary u € RY

(21) u"ST3u < r[SV*TEV2?|uTSu.
LEMMA 2.5. Bounds for spectral norms.
I —meT|, < g +1,
Ilme™ll; < Vq -
Now the three steps of the multivariate proof are as follows:
(i) Let u = v=w:= 60 — 6*. Then (83 and Lemma 2.4 yield:
IB[w,w, w]|= |w ST{Sw)Zw| < r[ZV?T{Sw}=/2]Q(6, 6*)

(22)

(23)
= r[ST(=(6 - 6%))]Q(8, 6%).
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(ii) Analogously to (13) we expand w = 6 — 6* and obtain
(24) S(0—-60*)=7—7*+R,,

where R, again is multiplied by @ and hence is of order 4.
(iii) Define p,, = (7, — 7¥)/m%, m=0,...,q; D{p} = diag{p,,..., p,}; then
(6) and (8) yield in matrix notation :

r[ET{m — 7*}] <I(I - 7eT)D{p}; + Ilme |, P,
< 2y/q + 1 max|p,,|,

where we have used r[A] < ||A||, and applied Lemma 2.5. O

REMARK 2.6. The techniques described can be used in other cases as well,
because steps (i) and (ii) work for any exponential family. Step (iii) and Lemma
2.5 apply to the class of “multinomial like” distributions with a =- and G-struc-
ture analogous to (6)—(8), e.g., to the negative multinomial and the logarithmic
series distribution [cf. Johnson and Kotz (1969)].

3. Global error bounds depending on the size of p;. In this section the
connection between the global approximation error R, in (12) and the relative
error p; of cubic terms compared with quadratic terms is analyzed. For the
Poisson and gamma distribution small p, causes a small R,. This is not true for
the binomial case. Here p; = 0 is possible, whereas the global quadratic ap-
proximation error can be quite large (cf. Section 3.2). Note that the bounds of the
previous section hold for p%. But according to (14), p; and p% differ only by terms
of order 2.

3.1. The principle. We use the notation of Section 2.1. For an arbitrary
univariate exponential family the following approach works.
Starting from equation

(25) ps = (6 — 6*)6(6%)/6™(6*)
the error term of (12) is

R 1 o 74 b(2)(0*) 4
(26) Ry(6,6%) = 7 0(8)p; 0 |

where 0 is some convex combination of 8 and 8*.
Hence we get the following:

’

THEOREM 3.1 (Global approximation error). The remainder R, of the Taylor
expansion (12) can be bounded by

IR, < p4M/41,
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where
(27) Mo = max{e’, e},
3v o*
(28) M nma = gmax{l, -0—},
1+ e"')4
(29) 0* + 0.

binomial ~— (1 _ ea.)4 ’

Proor. By inserting the following quantities

b2 (0*)/6(8*%) b4(8)
Poisson 1 ea_
gamma —-0*/2 61/_/04
binomial a+ey/a-e) [6(8) < 1

cf. Section 3.2

(27) and (28) are valid for arbitrary 6, 8*, whereas the binomial bound approaches
infinity for 8* — 0. This case is investigated in the following section. O

3.2. Global bounds for the binomial distribution. The second order Taylor
expansion of the binomial log-likelihood is

(30)  L(8) — L(6*) = (¥ — w)(8 — 6*) — 40%(6 = 6*)° + R(6,6%),
where o2 = e?" /(1 + €)% Since b®(0) = e®(1 — e?)/(1 + €)® and b“(9) =
e?(1 — 4e® + e?%)/(1 + e°)* are uniformly bounded by 1 we have:

THEOREM 3.2 (Global quadratic approximation error of the binomial). The
remainder of the log-likelihood Taylor expansion (30) is bounded by

(31) |R(8,60*) <0 — 6*3/3!
and for 8* = 0 we obtain
(32) |R(6,6%)| < 6*/4!.

3.3. Interpretation of the bounds. Working with quadratic log-likelihood
approximation we are interested in how large the neglected terms are compared
with the approximating ones. This problem is solved exactly only for uni-
variate Y. _

Except the binomial case for p; = 0, which has been analyzed separately, for
Poisson, gamma, and binomial random variables small p; yields a small global
approximation error. This justifies the practical relevance of p; as a measure for
the adequacy of the quadratic approximation. Note that the roles of § and * in
(11) and (12) may be interchanged which possibly improves the bounds (27)-(29),
eg, M =3y,

gamma
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An explicit analysis for the multinomial case seems too hard because of the
difficult multivariate structure.

In the last chapter we demonstrate how the results can be applied to model
selection in canonical generalized linear models.

4. LR-statistic approximation and model selection in GLM’s. The theo-
rems of Section 2 refer to the log-likelihood L itself and not to any expectation of
L or its derivatives. In the following the results are extended in a natural way to
generalized linear models (GLM’s). Hence we obtain computationally available
bounds for the quadratic approximation error of the according LR-statistic which
are valid for any sample size N. An application of hypothesis testing in logistic
discriminant analysis completes this section.

Consider independent exponential family response variables y; € R? char-
acterized by parameters 6;) € R? and linked with regressor variables x;, € RZ,
i=1,..., N. According to (1) the common log-likelihood (here denoted by L) is
given by

(33) Ly(8) = const.+ Z {ygﬁm - b(H(i))},

where 8 is the collection of the 0,y

Although our approach covers the multinomial case, too, we restrict ourselves
to g = 1, for simplicity, and consider GLM’s, where the unknown parameters
6, € R range in a linear subspace, spanned by the x,), i.e.,

(34) 6 = XB.

X = (xf},,..., xly,)" denotes the usual design matrix and 8 € R” is an unknown
parameter vector.

In the notation of Nelder and Wedderburn (1972) the model described by (33)
and (34) is a canonical GLM, because the 6;, themselves, and not some functions
of them, range in a linear subspace.

Among several authors McCullagh and Nelder (1983) expose that a variety of
classical applications, like log-linear models, contingency tables, and binary and
survival data analysis fit into the GLM framework. Furthermore, according to
Fahrmeir and Kredler (1984), the logistic discrimination approach, which seems
to be superior to the widely used linear Fisher discrimination, [cf. Press and
Wilson (1978)], leads formally to a multinomial GLM.

Model selection and checking the goodness of fit in the models mentioned
above usually is carried out by tests of hypotheses H, concerning the parameters
6 or B, respectively. Denote by 0H XBy and 6 = XB the maximizer of Ly
under and without restriction H. As VL (0) = 0 the Taylor expansion of the
LR-statistic is

(35) A= _2{LN(0H) - LN(o)}

= Qn(0y,0)(1 + p%/3) — 2R%,
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where @y, p*, and R** denote the quantities (associated with the total sample
size N') corresponding to @, p%, and R% of Section 2.
Applying the theorems of Section 2 yields directly:

THEOREM 4.1 (Size of error in quadratic LR-statistic approximation). For
Poisson, gamma, and multinomial response variables we obtain

pH — i
(36) lo%| < 2y/g + 1 max max |————|
it O<m<g Mim
where f;(fio=1—fi; — - —fi;, for multinomial y;) and p¥; denote

the estimated expectations under and without restriction H. According to (36)
the LR-statistic can be replaced by its quadratic Taylor polynomial, presumably
the relative errors of fi;; and pfj are small compared with 1, i.e., the leading
figures coincide. For the test of inear hypotheses

H:AB=a
in the models mentioned above we can proceed as follows:

(i) Compute 8, Ly (), and VZLN(H)
(it) Compute approximations for ,BH, 0H, and the LR-statistic A in a suitable
linear model with cross-product matrix —v °L N(0)
(zu) Accept the quadratic approximations of (ii) if the leading digits of fi,;
and p¥l coincide.

Usually during the process of model building a variety of nested linear
hypotheses, e.g., concerning the significance of certain parameters, are carried
out. For a sequence of tests the same linear model can be used as long as
condition (iii) is fulfilled. If (iii) is violated we take a new adjusted cross-product
matrix instead of — v 2L N(é), For example, in logistic discriminant analysis [cf.
Anderson (1972)], the a posteriori probability for the classification of observation
(i) in group Q,, B =0,1,..., q is given by

q
W(xh B(k)) = exp(xiT, B(k)) Z exp(xiTB(m)), :B(O) =0.
m=0

This leads to a canonical multinomial GLM. We set x;, = 1 and start with the
explanatory variables x,,..., x,,. In order to check which variables are signifi-
cant for discrimination, we test nested hypotheses like

H"B=Bp 1=.'.=B'=O J=p7 72

The corresponding values of the log-likelihood L 5 ( 0H ), then can be computed in
the following way:

Ly(8){exact), LN( éHp ) yeees LN(éH,m ){ quadratic approximation )
update L y( 9},’,) {exact}, Ly( 9ka l ), . {quadratic approximation} .

For variable selection problems this yields an effective and fast procedure [cf.
Kredler (1984)].
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5. Conclusions. The analysis of the LR-statistic for multinomial, Poisson,
and gamma samples, given in this paper, applies in an analogous way to related
distributions like the negative multinomial and logarithmic series. This paper
gives an algebraic analysis of the quadratic log-likelihood approximation. The
analysis depends heavily on the use of the canonical parametrization of exponen-
tial families, only in this case higher derivatives of the log-likelihood do not
depend on the random variable Y. Consequently the error bounds for canonical
GLM'’s given in the last section are valid for arbitrary sample size (not only
asymptotically). Since the analytic dependencies between canonical and expecta-
tion parameters play a crucial role our results cannot be easily extended to other
parametrizations. Nevertheless our analysis works for many important applica-
tions.
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